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Abstract: A deterministic production and transportation planning problem is considered over a finite time horizon for two 

products that can be produced in each of two regions. Each region uses its own facility to supply the demands for two products. 

Demands for product 2 in one region can be satisfied either by its own production or by transportation from other region, while 

no transportation between two regions is allowed for product 1. Production, inventory and transportation costs are assumed to be 

non-decreasing and concave. The objective is to find the schedule of production and transportation in each region by which the 

total cost over the horizon is minimized. Using a network flow approach, we develop a dynamic programming algorithm that can 

find an optimal policy. 
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1. Introduction 

Until the 1980s, traditional dynamic lot-sizing models 

have been applied for solving the production and inventory 

problems. Various production and inventory models have 

been developed for single and multi-facility problem with a 

finite planning horizon of � periods. For example, a single 

product, single facility dynamic lot-sizing problem with 

time-dependent concave costs have been first proposed in [1]. 

In certain types of concave cost networks, the algorithm to 

determine minimum cost flows has been considered in [2]. A 

similar problem under the assumption that the production 

levels were restricted to period-dependent capacity limits has 

also studied in [3]. They have devised a dynamic 

programming and shortest path algorithm only for the case of 

constant capacity. A single-facility multi-product production 

planning problem with no capacity constraint was proposed in 

[4]. A deterministic capacity expansion model for two facility 

types has been described in [5]. At the beginning of each 

period, facility �	(�	�	1,	2) could be expanded, either by new 

construction, or by conversion of idle capacity associated with 

facility 
	(
 � 1, 2	and	
 ≠ �)  to accommodate the demand 

for facility � . In these papers, they have assumed the cost 

functions to be concave, but they haven’t considered the 

transportation of the products. Above these papers, a lot of 

papers have been published handling the problems related to 

the dynamic lot-sizing for many different types of production 

environment. [6-10] Whereas, in the supply chain 

management (SCM) area that developed in earnest in the 

1990s [11], there have been many efforts to resolve the 

integrated problems considering key business processes of 

production, storage and distribution, from original suppliers 

through end users. [12-14] However, they have assumed the 

cost functions to be linear due to the intrinsic complexity of 

the concave function. But it is more realistic that the cost 

functions are assumed to be non-decreasing and concave 

reflecting the economies of scale. In this paper, based on the 

traditional dynamic lot-sizing problem, we consider 

integrated production, inventory and transportation problem. 

We assume that the cost functions used in this problem are to 

be non-decreasing and concave in order to represent the 

realistic cost functions. Though the problem suggested in this 

paper does not resolve the general integrated supply chain 

problem, it is meaningful in respect of applying more 

realistic cost functions to somewhat simplified supply chain 

problem. In this paper, we consider a production, inventory 

and transportation planning problem for which two production 

regions are involved. In each region, a single facility 

manufactures two items (or products) each taking a fixed part 

of the whole production amount to satisfy its own demands 

over the discrete � periods. In the problem, we assume that 

the transportation is allowed only for product 2 from one 

region to another. 
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Such a problem involving multi-products by a single 

facility occurs frequently in two functionally distinctive 

classes of manufacturing industries; one in chemical industry 

and the other in machinery (or food) industry. Each of these 

cases is described in a bit more detail. In the first case, the 

involved input resource contains various components in a 

fixed quantity proportion, which are distinctively converted 

into their corresponding commercial products in the fixed 

proportion. Therefore, all the products are distinctively 

various in both quality and quantity. As an example, an oil 

refinery problem can be considered, for which each unit of 

crude oil is refined to produce two different products, say 

gasoline and a fine chemical resource, in the fixed quantity 

ratios, say α� > 0  and α� > 0 , respectively. As another 

example, consider a production system, for which each 

operation generates by-product in a fixed ratio, say α. In the 

other class, the employed facility (plant) with a certain number 

of distinctive sub-operation lines attached operates to supply a 

resource (fixed) simultaneously to all the attached lines, each 

of which generates its own commercial products. Therefore, 

all the products are in the same quality but their quantities are 

distinctively dependent on the capacities (fixed) of the 

involved sub-operation lines. As an example, a steel 

processing system can be considered, for which each unit of 

steel is processed to produce nail and wire simultaneously in a 

pre-specified weight proportion. 

In connection with transportation, the following examples 

can be taken into account. As the first example, an import 

policy for cotton is implemented at two regions, for which two 

kinds of blended yarns are manufactured in each region, one 

with 40% chemical fiber mixed and the other one with 60% 

chemical fiber mixed. Only the blended yarn with 60% 

chemical fiber mixed can be transported from one region to 

another. In the case, the chemical fiber resource is assumed to 

be plentifully available for blending the two distinctive yarns. 

As another example, consider a general chemical process, for 

which a by-product is generated and its transportation from 

one region to another is allowed for its own market demands. 

The associated policy consists of determining the 

production and transportation amounts in each period at each 

region over the planning horizon. The incurring costs include 

both the production and transportation costs and the inventory 

holding costs. All the involving cost functions depend on 

period and are non-decreasing concave. The goal of this paper 

is then to find an optimal policy by which the total cost 

incurred over the whole horizon is minimized. 

The remainder of this paper is organized as follows. In 

Section 2, the proposed problem is formulated as a non-linear 

programming problem. Then we show that the constraints in 

the formulated model can be described as a single source 

network problem. The characteristics of an optimal solution 

are identified and a dynamic programming approach is 

addressed to solve the problem in Section 3. In Section 4, the 

algorithm is illustrated with a numerical example. Finally, a 

conclusion is drawn in Section 5. 

2. Model Formulation 

The model assumes a finite planning horizon of � periods 

in which each production (and each transportation, if 

necessary) occurs instantaneously and simultaneously at the 

beginning of each period. Useful notations are defined as 

follows: 

���
� = Demand for product � in region � at period �, where 

���
�s are positive integers 

��
�(�) = ∑ ���

��
���  

���
�  = Amount of production for product � in region � at 

the beginning of period � 

 ��
�  = Amount of inventory for product � in region � at the 

end of period � 

!�
� = Transportation amount of product 2 from region � to 

region 
 at the beginning of period �, where �, 
 = 1, 2 and 

� ≠ 
 
"��

�#���
�$ = Cost of producing ���

�  at the beginning of period 

� 

%�
�(!�

�) = Cost of transporting !�
� from region � to region 


 at the beginning of period � 

&��
�# ��

�$  = Inventory holding cost of  ��
�  from period 

(� − 1) to period � 

It is assumed that "��
�(�) , %�

�(�) , and &��
�(�)  are 

non-decreasing concave functions. And also we assume that 

��
� = ���

� 	= 	 ���
� . This assumption implies that one unit of 

resource consumption leads to all the involved products each 

resulting in its own single commodity unit. From the above 

assumption, we can let "�
�(��

�) = 	∑ "��
�#���

�$�
��� , for all �. 

There is no loss of generality in assuming that both the 

initial and final inventories are zero for each of the products, 

since otherwise the original problem can be adjusted by 

employing certain fictitious periods or artificial demands at 

the end of period �. 

The problem is then to minimize the total costs of 

production, inventory and transportation, which can be 

formulated as follows: 

(PB) 

minimize F(z) = ∑ (∑ ("�
� )(��

�) +�
���

)�
��� %�

�(!�
�) 

+ ∑ &��
�( ��

�)]]�
���  

subject to 

 ��
� =  �,�,�

� + ��
� − ���

� , � = 	1, 2, � = 1, 2, … , �    (1) 

 ��
� =  �,�,�

� + ��
� + !�

. − !�
� − ���

� , 


, � = 	1, 2, 
 ≠ �, � = 1, 2, … , �          (2) 

 �/
� =  ��

� = 0, �, � = 	1, 2              (3) 

��
� ≥ 0, !�

� ≥ 0,  ��
� ≥ 0, �, � = 	1, 2, � = 1, 2, … , �  (4) 

The objective function 1(2)  is concave, since "�
�(�) , 

%�
�(�) , and &��

�(�)  are concave functions. The constraints 

(1)-(4) of the problem (PB) define a closed bounded convex 

set. Since 1(2) is non-decreasing concave, there exists an 

extreme point optimal solution. The constraints (1)-(4) can be 

described as a single source network problem. The network is 

shown in Figure 1. 

The constraints (1) - (4) can be shown to be totally 

unimodular as done in [15]. Therefore, since the demands are 

integers, any extreme point solution consists of integer values 
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for all variables. 

In the next section, we shall describe the properties of an 

optimal solution and an algorithm for finding the solution. 

3. Extreme Flows and Optimal Schedules 

3.1. Characteristics of an Optimal Solution 

Since the constraints (1) - (4) define a convex set, and 1(�) 

is concave, the minimum cost is attained at an extreme point 

of the set. So we shall concentrate on finding such an extreme 

point solution. 

 
Figure 1. A Network Representation 

We shall first derive certain optimality properties, some of 

which will be used later to construct a solution algorithm. As 

done in [16], it can be shown easily that a feasible flow in the 

network of Figure 1 corresponds to an extreme flow if and 

only if it does not contain any cycle with positive flows. 

Furthermore, referring to [2], an extreme flow is composed of 

some nodes and arcs, where each of the nodes has at most one 

positive input. These extreme flow properties lead to the 

following sufficient conditions for an extreme point solution 

of the given problem: 

(i)  �,�,�
� 	�	 �,�,�

� 	�	�	�
� = 0, � = 1, 2	and � = 1, 2, … , � 

(ii) !�
� 	�	 �,�,�

� = 0, � = 1, 2	and � = 1, 2, … , � 

(iii) �	�
� 	�	!	�

. = 0, �, 
 = 1, 2	and � ≠ 
, � = 1, 2, … , � 

However, the extreme flow property clarified in [2] is for 

single source networks, so that it is not always satisfied in our 

model. Therefore, we shall find some additional properties 

that are useful for our algorithm development. 

Let period � be called an “inventory point” if  ��
� = 0 for at 

least one of both �  and � , that is, ∏  ��
�

�,���,� = 0. And a 

production (transportation) point of a schedule 2 in region � 

is defined as a period � in which �	�
� > 0	(!	�

� > 0). 

Theorem 1 Let 4  and 5  be two consecutive inventory 

points (4 < 5). If 2 is an extreme point solution, then the 

following properties are satisfied: 

(i) In each region, there exists at most one production 

point between 4 and 5 (including 5) 

(ii) !�7
� 	�	!�8

� = 0, 4 < ��, �� ≤ 5 

(iii) !�:
� 	�	!�;

� = 0, � = 1, 2, 4 < �<, �= ≤ 5 

Proof of (i). We consider a region �. Assume that a feasible 

solution 2 , 2 = (�	�
� , … , �	�

� ; 	�	�
� , … , �	�

� ; !	�
� , … , !	�

� ;	 
!	�

� , … , !	�
� ) satisfies (ii) and (iii), but not (i); that is, there 

exists two distinct production points ��  and ��  such that 

 �,�,�
� 	�	 �,�,�

� 	�	�	�
� ≠ 0  for � = ��, ��	(4 < �� <	�� ≤ 5) . 

Then there exists δ > 0  such that 

@ = (1 2⁄ )minD��7
� , ��8

� ,  ��
� , �� ≤ � < ��, � = 1, 2E . Therefore, 

the following two solutions 2̅ and 2̂ also satisfy (ii) and (iii): 

a) �̅�7
� = ��7

� − @ , �̅�8
� = ��8

� + @  and for all other � , 

�̅�
. = ��

.
, !H�

. = !�
.
, 
 = 1, 2 

b) �I�7
� = ��7

� + @ , �I�8
� = ��8

� − @  and for all other t , 

�I�
. = ��

.
, !I�

. = !�
.
, 
 = 1, 2 

Since 	@ > 0, the above solutions are feasible. However, 

��7
� = �

�
#�̅�7

� + �I�7
� $  and ��8

� = �

�
#�̅�8

� + �I�8
� $ . Hence 2 =

�

�
(2̅ + 2̂) , where 2̅ = (�̅�

�, … , �̅�
�; 	 �̅�

�, … , �̅�
�;	 

	!H��, … , !H�
�; 	!H��, … , !H�

�) , 2̂ = (�I��, … , �I�
� ; 	�I��, … , �I�

�; 
!I��, … , !I�

�; 	!I��, … , !I�
�). This implies that 2 is not an extreme 

point. It completes the proof of (i). 

Proof of (ii). Likewise, assume !H��, … , !H�
�;	that a feasible 

solution 2 satisfies (i) and (iii), but not (ii). Let �� and �� be 

two distinct positive transportation points; that is, !�7
� >

0 and !�8
� > 0, where 4 < �� ≤ �� ≤ 5. Then we can find a 

real value @ > 0 such that 

@ = �

�
min D!�7

� , !�8
� ,  ��

� , �� ≤ � < ��, � = 1, 2E. 

Following the procedures described for the proof of (i), we 

can show that 2 is not an extreme point. Similarly, (iii) can be 

proved. Thus, the proof is completed by contraposition. 

3.2. Dynamic Programming Approach 

We can solve the problem (PB) by applying a dynamic 

programming approach. The approach is based on using the 

vector  � = ( ��
� ,  ��

� ;  ��
� ,  ��

� )  that satisfies the definition of 

“inventory point”, which represents the state variables. 

From the totally unimodular property, it follows that an 

extreme point consists of integer values. Hence, a search for 

an optimal solution is limited to integer values of  ��
�  that 

satisfy the conditions, 0 ≤  ��
� ≤	��

�(� + 1)  and 0 ≤
∑  ��

� ≤�
��� ∑ ��

�(� + 1)�
��� . Therefore, our goal is to find an 

optimal sequence of successive inventory points and the 

associated solutions of the sequence. The minimum cost 

incurred between any two consecutive inventory points can be 

computed using the aforementioned properties for extreme 

points. 

We now describe the dynamic programming approach to 

solve the problem (PB). Let KLM( L ,  M) be the minimal cost 

between two successive inventory points 4 and 5. Then, 
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KLM( L ,  M) =
minNO

P,QO
P	 ∑ R∑ "�

�(��
�) + %�

�(!�
�) +�

��� ∑ &��
�# ��

�$�
��� SM

��LT� (5) 

subject to 

(i)  L and  M  are inventory point values, 

(ii) Constraints (1) - (4) are satisfied for	� = 4 + 1,… , 5, 

(iii) ∏  ��
�

�,���,� > 0, � = 4 + 1,… , 5 − 1, 

(iv) �	�
�  and !	�

�  satisfy the properties described in 

Theorem 1, for all 	�  and � , (� = 4 + 1,… , 5; � =
1,2). 

Since all the possible sequence of those (4-5) 

subproblems include all the extreme points of the constraints 

(1) - (4), there exists an optimal solution of (PB) that consists 

of a sequence of subproblems with KLM( L ,  M)  values as 

defined above. The computation of KLM( L ,  M) values will be 

described in detail in the next section. 

Furthermore, let U�( �) be the cost of optimal policy over 

periods � + 1,… , �, given that period � is an inventory point 

with a value  �. Given KLM( L ,  M) values for all 4 and 5, the 

following dynamic programming formulation holds: 

UL( L) = minLT�VMV�	(KLM( L ,  M) + UM( M)],  L ∈ XL,        

4 = � − 1,… , 1, 0              (6) 

U�( �) = 0,  / = (0, 0; 0, 0) and  � = (0, 0; 0, 0),      (7) 

where XL is the set of all possible “inventory point” values at 

period 4 . The equations (6) and (7) indicate a backward 

dynamic procedure starting 4 = � − 1  and ending 4 = 0 . 

U/( /) represents the cost of an optimal solution. 

Most of the computational efforts involved in solving the 

problem (PB) is spent on computing KLM( L ,  M) values for 

each (u-v) subproblem solution. Thus we will concentrate our 

efforts on solving more efficiently such subproblems. 

3.3. Approach Solution Procedure of a (Y-Z) Subproblem 

Let [�
�  be the production amount of product � at facility � 

(i.e., region �), during periods 4 + 1,… , 5, given  L and  M  

as successive inventory points. Then, 

[�
� =  �M

� −  �L
� + ∑ ���

�M
��LT� , �=1, 2             (8) 

[�
� =  �M

� −  �L
� + ∑ ���

�M
��LT� + ∑ (!�

� − !�
.)M

��LT� , 

 �, 
=1, 2, (� ≠ 
)                       (9) 

From the assumption that ���
� = ���

� , for all �, we see that 

[� = [�
� = [�

� , �=1, 2. And let \�  be the transportation 

amount from region � to region 
 (�, 
 = 1, 2, � ≠ 
) over 

periods 4 + 1,… , 5; that is, \� = ∑ !�
�M

��LT� . Then equation 

(9) can be expressed as follows: 

[�
� =  �M

� −  �L
� + ∑ ���

�M
��LT� + \� − \.         (9’) 

Since [�
� = [�

� , �=1, 2, we can see from (9’) that 

\� − \� = ( �M
� −  �L

� + ∑ ���
�M

��LT� ) − ( �M
� −  �L

�  

+∑ ���
� )M

��LT�                (10) 

\� − \� = ( �M
� −  �L

� + ∑ ���
�M

��LT� ) − ( �M
� −  �L

�                

+∑ ���
� )M

��LT�                (11) 

Subsequently, if the right hand sides of the equation (10) 

and (11) are not equal, then the subproblem is infeasible. 

Otherwise the subproblem is feasible. Letting \ = \� − \� 

and |\| denote the absolute value of \ , we can see from 

Theorem 1 that either \� = |\| or \� = |\|. In other words, 

if \ > 0, \ = \�  but \ < 0, −\ = \�. Further, if any one 

of [�  and [�  is negative, then the subproblem is also 

infeasible. 

Moreover, suppose that  �L
� ≠ 0  but  �L

� = 0  and \. =
0	(� ≠ 
, �, 
 = 1, 2). Then, !LT�

. > 0  or �LT�
� = [�  is 

required to satisfy the demand ��,LT�
� . However, since \. = 0, 

it is required that �LT�
� = [�. This implies that in this case, 

the production point in region � is fixed at period 4 + 1. 

These properties lead to the following proposition, which 

describes the feasible location of a transportation point for a 

(u-v) subproblem. 

Proposition 1  Assume that a  (u-v) subproblem is given 

and \. > 0. Then the optimal transportation point within the 

subproblem can be only one point between period 4 and �̂ 

(including �̂ ), where period �  satisfies the following 

relationships: 

(i) If 0 < \. <  �M
� + ��M

� , for �, 
=1, 2 and � ≠ 
, then 

�̂ = 5 

(ii) If  �M
� + ��M

� < \. <  �M
� + ∑ ���

�M
��LT� , for �, 
 =1, 2 

and � ≠ 
 , then there exists a period �̂  such that 

 �M
� + ∑ ���

�M
���̂T� < \. <  �M

� + ∑ ���
�M

���̂ , 4 + 1 ≤ �̂ <
5 

(iii) If \. =  �M
� + ∑ ���

�M
��LT� , for �, 
=1, 2 and � ≠ 
 , 

then �̂ = 4 + 1 

Proof. Since proofs of (i) and (iii) are obvious, we consider 

only the proof of (ii). Consider period �∗ (4 + 1 ≤ �̂ < �∗ ≤
5) such that !�∗

. > 0 so that !�∗
. = \. (> 0) from Theorem 1. 

Then, from the hypothesis in (ii), we can show that 

 �M
� + ∑ ���

�M
���∗ < !�∗

. . 

Suppose that if  �M
� + ∑ ���

�M
���∗ < !�∗

. . Then, since the 

inventory amount at the end of period 5 is greater than the 

given inventory  �M
� , its solution violates the definition of (u-v) 

subproblem. And if  �M
� + ∑ ���

�M
���∗ = !�∗

. , then it indicates 

that  �,�∗,�
� = 0, which is not allowed in a (u-v) subproblem, 

either. Therefore, the transportation point must not be located 

after period �̂. It completes the proof. 

Transportation policies are summarized in the following 

Theorem. 

Theorem 2 Suppose that \. − \� > 0, for 
, �=1, 2 and 


 ≠ � . Then, we can use the following policies to get the 

optimal transportation point. 

(i) If  �L
� + [� < ��L

� , then !LT�
. = \.  and all other 

transportation variables have values of zero 

(ii) Otherwise, there exists only one transportation point 

` between 4 and �̂ (including �̂) such that !a
. = \., 

where �̂ is the period obtained from Proposition 1. 

Likewise, for the case of  �L
� > 0 , (�=1, 2), a similar 

relationship can be constructed for the production point. 

Proposition 2  Consider the case of  �L
� > 0, (�=1, 2). Let 
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��
′  and ��

′′  ( 4 < ��
′ , ��

′′ ≤ 5 ) be the periods in which the 

following relationships are satisfied: 

(i) If  �L
� ≤ ��,LT�

� , then ��
b = 4 + 1 

(ii) If ��,LT�
� <  �L

� < ∑ ���
�M

��LT� , then there exists ��
b  

such that ∑ ���
� ≤  �L

� < ∑ ���
��P

c

��LT�
�P
c,�

��LT� , for 

4 + 1 < ��
b ≤ 5 

(iii) If  �L
� ≥ ∑ ���

�M
��LT� , then ��

b = 5 

(iv) If [� <  �M
� + ��M

� , then ��
bb = 5 

(v) If [� ≥  �M
� + ��M

� , then there exists ��
bb  such that 

 �M
� + ∑ ���

� ≤ [� <  �M
� + ∑ ���

�M
���P

cc
M
���P

ccT� , for 

4 + 1 ≤ ��
bb < 5 

Then, there exists only one optimal production point 

located between 4 and �� (including ��) in region �, where 

�� = min	D��
′ , ��

′′E. 
Proof. If �� = 5 , then the above property is obviously 

satisfied. Consider the case of 4 < �� < 5. 

Suppose that �� = ��
′  and in period �̂  (4 < ��

′ < �̂ ≤ 5), 

��̂
� > 0 (i.e., ��̂

� = [� > 0). For the case of (i), it leads to an 

infeasible solution for the (u-v) subproblem, since  �,LT�
� ≤ 0. 

Next, consider the case (ii). In this case,  �L
� − ∑ ���

��P
′

��LT� <
0 . Hence, the amount of [�  produced at period �̂  incurs 

negative inventories  ��
� < 0, at each period �, � = ��

′ , … , �̂ −
1. Therefore, its solution is infeasible. 

Furthermore, in the case of which �� = ��
′′ , it is similarly 

proved by following the proof steps in Proposition 1. 

These production policies are summarized in Table 1. 

Table 1. Production Policies 

      		deY
f  

dgY
f  

0 positive 

0 �LT�
� = [� ��

� = [�, 4 < � ≤ �� 

positive �LT�
� = [� ��

� = [�, 4 < � ≤ �� 

Theorem 1, Theorem 2, and the information in Table 1 can 

be employed together to solve every (u-v) subproblem, which 

represent out solution algorithm. 

In the next section, a numerical example is presented to 

illustrate the algorithm. 

4. A Numerical Example 

We illustrate the algorithm with a 3-period two-product 

two-facility problem. The production, inventory and 

transportation cost functions are given as follows: 

"�
�(��

�) = (30 + 8��
�)(0.9)�,� 

"�
�(��

�) = (20 + 10��
�)(0.9)�,� 

&��
�# ��

�$ = 5 ��
�(0.9)�,� 

%�
�(!�

�) = 5!�
�(0.9)�,� 

� = 1, 2, 3 and � = 1, 2 

The demand data for m���
� n, m���

� n, m���
� n and m���

� n	are given 

as (2, 2, 1), (1, 1, 1), (1, 1, 1) and (1, 2, 2), respectively. 

Conveniently, we shall assume that !�
� = 0, � = 1, 2, … , � . 

We know that the problem can be decomposed into several 

(4-5)  subproblems, each of which can be solved 

independently by use of Theorem 1 and the relations (5), (6) 

and (7). 

Let o�� be the ��� state variable at inventory point �. Then 

the recursive equations shown in (6) and (7) are represented as 

follows: 

UL(oL�) = minLT�VMV�	RKLM#oL� , oM.$ + UM#oM.$S, oL� ∈ XL, 

4 = � − 1,… , 1, 0, � = 1,… , pL, 
 = 1,… , pM    (6’) 

U�(o��) = 0, o�� =  � = (0, 0; 0, 0), 

        o/� =  / = (0, 0; 0, 0)               (7’) 

Where XL is the set of all possible “inventory point” values 

at period 4 and p�  is the number of states at period �. o�� 

values are shown in Table 2. 

Table 2. o�� values 

q req rgq 

1 (0, 0;1, 0) (0, 0;1, 0) 

2 (0, 0;2, 1) (0, 0;2, 1) 

3 (0, 0;3, 2) (0, 1;0, 0) 

4 (0, 1;0, 0) (0, 1;1, 1) 

5 (0, 1;1, 1) (0, 2;0, 1) 

6 (0, 1;2, 2) (1, 1;1, 0) 

7 (1, 0;2, 0) (1, 2;0, 0) 

8 (1, 0;3, 1) (1, 3;0, 1) 

9 (1, 0;4, 2) - 

10 (2, 1;2, 0) - 

11 (2, 2;1, 0) - 

12 (2, 3;0, 0) - 

13 (3, 2;2, 0) - 

14 (3, 3;1, 0) - 

15 (3, 4;0, 0) - 

o/� = o<� =(0, 0;0, 0) 

Consider the subproblem K/<(o/�, o<�), where o/� = o<�= 

(0, 0;0, 0). By equations (8) and (11), [� = 5, [� = 3, and 

\� = 2. According to the information in Theorem 2 and Table 

1, policy (i) yields ��
� = 5, ��

� = 3, !�
� = 2 with the total 

cost of 207.5, policy (ii) yields ��
� = 5, ��

� = 3, !�
� = 2 and 

other variables are zero with a total cost 206.5. Hence the 

result of the policy (ii) is the optimal one. As another 

subproblem, the values of K�<(o�� , o<�) are shown in Table 3. 

Other KLM#oL� , oM.$  values for 0 ≤ 4 < 5 ≤ 3  can be 

calculated similarly. 

After solving all such subproblems, the shortest path is 

searched using the dynamic programming formulation in 

equations (6’) and (7’). The U�(o��) values can be calculated 

and its results are shown in Table 4. 

Table 3. (2-3) subproblem 

q rgq rse tgs(rgq, rse) 
1 (0, 0;1, 0) (0, 0;0, 0) 55.08 

2 (0, 0;2, 1) (0, 0;0, 0) 30.78 

3 (0, 1;0, 0) (0, 0;0, 0) 59.13 
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q rgq rse tgs(rgq, rse) 

4 (0, 1;1, 1) (0, 0;0, 0) 34.83 
5 (0, 2;0, 1) (0, 0;0, 0) 38.88 

6 (1, 1;1, 0) (0, 0;0, 0) 24.30 

7 (1, 2;0, 0) (0, 0;0, 0) 28.35 
8 (1, 3;0, 1) (0, 0;0, 0) 8.10 

Table 4. U�(o��) values 

� ue(req) ug(rgq) 

1 111.15 55.08 

2 90.45 30.78 

3 75.15 59.13 
4 115.20 34.83 

5 94.95 38.88 

6 79.20 24.30 
7 106.20 28.35 

8 79.20 8.10 

9 78.48 - 
10 80.28 - 

11 84.33 - 

12 63.90 - 
13 58.50 - 

14 62.55 - 

15 66.60 - 

U/(o/�) = 195.5 

The optimal policy of the entire problem is then ��
� = 2, 

��
� = 3, �<

� = 0, ��
� = 2, ��

� = 0, �<
� = 1, !�

� = 0, !�
� = 1, 

and !<
� = 1 with the total minimum cost 195.95. Its optimal 

sequence is o/� → o�w → o�x → o<�. 

5. Conclusion 

In this paper, we described a two-product two-region 

production and transportation model. Using a network flow 

approach, properties of extreme points were identified. Then, 

they were used to develop an efficient solution search 

procedure for each independent subproblem, based upon 

which a dynamic programming algorithm was constructed for 

an optimal solution search. However, the computational 

efficiency of the algorithm is closely dependent on the number 

of nodes associated with the demand size in each period as 

well as the planning horizon �. Thus, our attention is paid to 

further research effort on decreasing the number of such nodes 

for a better algorithm development. And also the model can 

be extended to the case in which capacity bounds on 

transportation are allowed. 
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