Doppler Evaluation of Esophageal Variceal Bleeding in Patients with Cirrhosis

Gyong-Hui Ri*, Hak-Chol Ju, Gyang-Il Kim, Un-Gyong Ri, Un-Hua Ri

Pyongyang Medical College, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea

Email address:
ryongnam2@yahoo.com (Gyong-Hui Ri)

*Corresponding author

To cite this article:

Received: February 1, 2017; Accepted: March 30, 2017; Published: May 3, 2017

Abstract: Esophageal Varices develops by the changes in portal hemodynamics. So, characterizing both the qualitative and quantitative changes in hemodynamics in the portal system is important in patients with Esophageal Variceal Bleeding caused by liver cirrhosis. We undertook this study to investigate the discriminant for estimate of esophageal variceal bleeding by significant Doppler parameters. The purpose of our study was to evaluate the significant Doppler parameters in patients with cirrhosis and to make a discriminant for estimate of esophageal variceal bleeding, and to predict the dangers of bleeding. Significant differences were found in main portal vein diameter(MPVD), MPV velocity max(MPV Vmax), blood flow rate of MPV and spleen vein, MPV congestion index(MPVCI), Right Portal Vein Vmax(RPVVmax), reflux of MPV, flat pattern of MPV between control group, none of varices group, EVB positive group and EVB negative group. MPVD, MPV Vmax in EVB(+) group were significantly higher than in EVB(-) group(P<0.01). Any significant differences were not found in SV:MPV blood flow ratio between control group and no varices group. Significant differences were found in MPVCI, RPVVmax between no varices group and EVB(-) group, EVB(+) group and EVB(+) group. MPVCI in EVB(+) group were higher than the EVB(-) group(p<0.05) and RPVVmax in EVB(+) group were lower than EVB(-) group. We had found the significant color and pulse Doppler parameters to evaluate the esophageal varices and predicted danger of esophageal variceal bleeding by discriminant. In the patient with portal hypertension caused by cirrhosis significant Doppler parameters for evaluation of esophageal varices were MPVD, MPV Vmax, CI, SV/MPV, RPV Vmax, reflux of MPV, flat pattern of EVB. We made discriminant by 7 parameters and predicted dangers of EVB. Reliability of discriminant was 90% and 91.2% respectively in EVB positive group, EVB negative group.

Keywords: Esophageal Variceal Bleeding, Doppler Evaluation, Portal Hemodynamics

1. Introduction

Cirrhotic portal hypertension has got complex course, from beginning of Esophageal Varices and one of the reason of death is Esophageal Variceal Bleeding. Esophageal Varices develops by the changes in portal hemodynamics [14, 15]. So, characterizing both the qualitative and quantitative changes in hemodynamics in the portal system is important in patients with Esophageal Variceal Bleeding caused by liver cirrhosis. We undertook this study to investigate the discriminant for estimate of esophageal variceal bleeding by significant Doppler parameters. [15, 16].

2. Purpose

The purpose of our study was to evaluate the significant Doppler parameters in patients with cirrhosis and to make a discriminant for estimate of esophageal variceal bleeding, and to predict the dangers of bleeding.

3. Patients and Method

The study group included patients with cirrhosis diagnosed on the basis of clinical, biochemical, endoscopic and sonographic findings. All of the patients had undergone liver biopsy, and the diagnosis had been verified histopathologically.
A control group of healthy volunteers with no liver diseases was also included. Informed consent was obtained from all individual participants included in the study.

Sonographic Examinations. All patients were examined after an overnight fast. All sonographic examinations were performed using a HDI-5000 SONO-CT Doppler ultrasound scanner equipped with a 3.5MHz curved-array transducer. For Doppler examinations, the vessel to be evaluated was visualized along its longitudinal axis, and the sampling gate was placed at the center of the vessel, keeping the angle to less than 60° [1-7, 12-15]. The diameter of the MPV was measured from 1cm proximal to the hilum in the extrahepatic portion; the diameter of the RPV and LPV branches, from 2cm distal to the bifurcation of the MPV; and the diameter of the SV, from 1cm proximal to the splenic hilum in the extrasplenic portion. For all diameter measurements, enlarged B-mode images were used, and diameters were measured from the inner anterior wall to the inner posterior wall [15].

4. Results

107 patients (36 women and 71 men) with cirrhosis were enrolled, 50 healthy volunteers (20 women and 30 men) served as the control group. Patients were grouped according to formation of esophageal varices into F_0, F_1, F_2, F_3.

Table 1. Sex and age composition of patients with cirrhosis according to formation of esophageal varices.

<table>
<thead>
<tr>
<th>Division</th>
<th>Number of cases</th>
<th>Female</th>
<th>Male</th>
<th>15-19</th>
<th>20-29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>60+</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_0</td>
<td>20</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F_1</td>
<td>28</td>
<td>20</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>F_2</td>
<td>27</td>
<td>17</td>
<td>11</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>F_3</td>
<td>32</td>
<td>18</td>
<td>13</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Sum</td>
<td>107</td>
<td>71</td>
<td>36</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td>40</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>Mary</td>
<td>(100.0)</td>
<td>(66.4)</td>
<td>(33.6)</td>
<td>(0.9)</td>
<td>(7.5)</td>
<td>(22.4)</td>
<td>(37.4)</td>
<td>(24.3)</td>
<td>(7.5)</td>
</tr>
</tbody>
</table>

(%) %

Patients with esophageal varices were 20, the remnant were divided into esophageal variceal bleeding positive groups (EVB+) and esophageal variceal bleeding negative group (EVB-) by following level.

$<EVB^+>$; history of esophageal variceal bleeding, Esophageal varices of F_2, F_3, and red color sign positive (RC+).

$<EVB^->$; none of history of esophageal variceal bleeding, varices of F_1, F_2 and RC(-)

Table 1 shows sex and age composition of patients with cirrhosis according to formation of esophageal varices. The age ranges between 40 and 49 were 40(37.4%), were the most largest group.

Table 2 shows sex and age composition of significant check patients of esophageal variceal bleeding discriminant. The patients with esophageal varices of age range of 40-49 were the most biggest, 14 cases (31.1%).

Table 3 summerizes the various doppler parameters in patient groups and control groups. Significant differences were found in main portal vein diameter (MPDV), MPV velocity (max), blood flow rate of MPV and spleen vein, MPV congestion index (MPVCI), Right Potal Vein Vmax(RPVVmax), reflux of MPV, flat pattern of MPV between control group, none of varices group, EVB positive group and EVB negative group.

MPVD, MPVVmax in EVB(+) group were significantly higher than in EVB(-) group ($P<0.01$). Any significant differences were not found in SV:MPV blood flow ratio between control group and no varices group. Significant differences were found in MPVCI, RPVVmax between no varices group and EVB(-) group, EVB(+) group and EVB(+) group. MPVCI in EVB(+) group were higher than the EVB(-) group ($p<0.05$) and RPVVmax in EVB(+) group were lower than EVB(-) group.

There were not reflux of MPV and flat pattern in control group and no varices group. But reflux of MPV in EVB(+) group were 12.3%, 40.0%, flat pattern of MPV were 42.1%, 86.7% respectively. Using previous 7 parameters, we made a discriminant to estimate the Esophageal variceal bleeding.

$Y=2.53X_1-0.36X_2-6.46X_3-85.96X_4+0.08X_5+3.3X_6-0.28X_7+18.38$

$Y=0$: none of dangers of esophageal variceal bleeding $Y>0$: dangers of esophageal variceal bleeding X_1: MPVD, X_2: MPVVmax, X_3: BF SV/MPV X_4: MPVCI, X_5: RPVVmax X_6: reflux of MPV X_7: flat pattern of MPV (Positive of reflux of MPV: $X_6=1$) (Negative of reflux of MPV: $X_6=0$) (Positive flat pattern of MPV $X_7=1$) (Negative flat pattern of MPV $X_7=0$)

Table 4 shows reliability of discriminant by Doppler sonographic parameters.

Diagnosis rate of EVB positive group and EVB negative group were 90.0%, 91.2% respectively.

5. Discussion

Evaluating the splenic hemodynamic is very important in patients with cirrhosis.

The presence of extensive fibrosis and numerous regenerative nodules replacing the normal liver parenchyma is characteristic of cirrhosis. [8, 9, 10]

Two principal mechanisms – elevated vascular resistance, which is an initiating factor, and increased portal blood inflow, which plays an important role in maintaining a chronic portal hypertensive state have been reported to be involved in the development of portal hypertension.
secondary to cirrhosis. [4, 14, 15].

Portal blood flow changes are generally the result rather than the cause of hepatic dysfunction and structural changes. [5, 11, 13].

Various quantitative doppler parameters(portal flow velocity, blood flow rate, and CI) have been evaluated in the literature for diagnosing and grading the severity of cirrhosis. [8, 9, 10].

However, there was no case using the discriminant by these parameters.

So, we have made discriminant by these parameters to evaluate the danger of esophageal variceal bleeding rapidly and clearly.

In Conclusion, We had found the significant color and impulse Doppler parameters to evaluate the esophageal varices and predicted danger of esophageal variceal bleeding by discriminant. In the patient with portal hypertension caused by cirrhosis significant Doppler parameters for evaluation of esophageal varices were MPVD, MPVVmax, CI, SV/MPV, RPVVmax, reflux of MPV, flat pattern of EVB.

We made discriminant by 7 parameters and predicted dangers of EVB. Reliability of discriminant was 90% and 91.2% respectively in EVB positive group, EVB negative group.

Table 2. Sex and age composition of significant check patients of esophageal variceal bleeding discriminant.

<table>
<thead>
<tr>
<th>e</th>
<th>Number of cases</th>
<th>male</th>
<th>Female</th>
<th>15-19</th>
<th>20-29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVB (+)</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EVB (-)</td>
<td>31</td>
<td>21</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>45 (100.0)</td>
<td>30 (66.7)</td>
<td>15 (33.3)</td>
<td>2 (4.4)</td>
<td>5 (11.1)</td>
<td>12 (26.7)</td>
<td>14 (31.1)</td>
<td>9 (20.0)</td>
<td>3 (6.7)</td>
</tr>
</tbody>
</table>

(%)%

Table 3. Predictable index of Esophageal Variceal Bleeding by Color and Impulse Doppler Ultrasonography.

<table>
<thead>
<tr>
<th>e</th>
<th>Unit</th>
<th>Normal (n1=50)</th>
<th>With no varices (n2=20)</th>
<th>EVB(-) (n3=57)</th>
<th>EVB(+) (n4=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPVD</td>
<td>cm</td>
<td>1.01±0.01</td>
<td>1.18±0.04***1</td>
<td>1.36±0.03**2</td>
<td>1.52±0.03***3</td>
</tr>
<tr>
<td>MPV Vmax</td>
<td>cm/s</td>
<td>26.13±0.7</td>
<td>19.7±0.98***1</td>
<td>15.9±0.54**2</td>
<td>13.7±0.61***3</td>
</tr>
<tr>
<td>SV/MPV</td>
<td></td>
<td>0.49±0.03</td>
<td>0.54±0.06</td>
<td>0.78±0.05**2</td>
<td>1.12±0.07***3</td>
</tr>
<tr>
<td>MPVCI</td>
<td></td>
<td>0.03±0.001</td>
<td>0.06±0.007***1</td>
<td>0.09±0.006**2</td>
<td>0.15±0.001***3</td>
</tr>
<tr>
<td>RPV Vmax</td>
<td>cm/s</td>
<td>21.89±0.66</td>
<td>16.3±0.93**1</td>
<td>14.3±0.42**2</td>
<td>12.8±0.43**3</td>
</tr>
<tr>
<td>Reflux MPV</td>
<td></td>
<td>0</td>
<td>0</td>
<td>12.3**2</td>
<td>40.0**3</td>
</tr>
<tr>
<td>Flat pattern MPV</td>
<td></td>
<td>0</td>
<td>10(0)</td>
<td>42.1(0**2)</td>
<td>86.7(0**3)</td>
</tr>
</tbody>
</table>

***1; p<0.01 **1; p=0.01 *1; p=0.05 (comparison normal with no variceal group)
***2; p<0.01 **2; p=0.01 *2; p=0.05 (comparison EVB(-)group with no variceal group)
***3; p<0.01 **3; p=0.01 *3; p=0.05 (comparison EVB(+) with EVB(-)) () ; %

Table 4. Reliability of discriminant by Doppler sonographic parameters.

<table>
<thead>
<tr>
<th>Division</th>
<th>Number of cases</th>
<th>Correct diagnosis</th>
<th>Missed diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVB(+)</td>
<td>30</td>
<td>27(90.0)</td>
<td>3(10.0)</td>
</tr>
<tr>
<td>EVB(-)</td>
<td>57</td>
<td>52(91.2)</td>
<td>5(8.8)</td>
</tr>
</tbody>
</table>

(%)%

References

[5] Li X. et al.; A Randomized Controlled Study of Liquistazine in Combination with Propranolol for Prevention of Recurrent Esophageal Varices Bleeding,

