Phytochemistry and Toxicity Studies on Aqueous Extracts of Leaf and Stem of Mistletoe (Viscum album) in Albino Rats

John Wasagwa¹, Buratai Bala Lawan¹, Biu Abubakar Abdullahi², Luka Joshua², Ngulde Ibrahim Saidu³, Onyiche Emmanuel Thank God², *

¹Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
²Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
³Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria

Email address: eonyiche@yahoo.com (O. E. T. God)
*Corresponding author

To cite this article:

Received: December 19, 2017; Accepted: January 4, 2018; Published: January 19, 2018

Abstract: Phytochemistry and acute toxicity studies on the aqueous extracts of leaves and stem of mistletoe (Viscum album) in albino rats was carried out. Phytochemical screening of leaves and stem of Viscum album from Azadirachta indica, Acacia albida and Psidium guajava trees revealed the presence of tannins, alkaloids, saponins, glycosides, flavonoids, phenols, combined anthraquinones, reducing sugars and combined sugars. Saponins had the highest scores (+++) in all the extracts followed by phenols and carbohydrates with moderate scores (++), while lower concentrations (+) was observed for reducing and combined sugars. The calculated median lethal dose (LD₅₀) values following the intraperitoneal administration of graded doses of these extracts in albino rats were 1440mg/kg/bw and 600mg/kg/bw for A. indica leaf and stem; 2400mg/kg/bw each for A. albida leaf and stem, and 2400mg/kg/bw and 2880mg/kg/bw for P. guajava leaf and stem aqueous extracts respectively. The clinical signs associated with acute toxicity testing using graded doses of Viscum album aqueous extracts administered to albino rats were arched back, bulging eyes, weakness, depression, unsteady movement, lack of appetite, dizziness, dyspnoea, sleep, coma and death.

Keywords: Mistletoe, Phytochemistry, Toxicity, Intra-Peritoneal, LD₅₀

1. Introduction

Viscum album is a parasitic plant which grows on the stem of other tree species. Mistletoe originally so named and also known as European mistletoe or common mistletoe to distinguish it from other related species. Viscum album grows on various deciduous trees, occasionally it grows on pines, apple, ash and hawthorn trees [1]; [2].

Mistletoe is used as a treatment for degenerating and inflamed joints and as palliative for malignant tumors [3] and the leaves are helpful in the treatment of diabetes [4]. In local application, it eases rheumatic aches and is very effective for acute attacks of lumbago. It is employed in disorders like excessive menstruation and uterine haemorrhage due to homeostatic effect [5]. It is also used to treat high blood pressure in man, epilepsy and other nervous conditions [6]. Mistletoe has been used in Nigerian folk medicine for many generations as remedies for various ailments including inflammation, infection and fever [7]. In view of the wide medicinal usage of the plant Viscum album, this study was carried out to assess the phytochemical components and its toxicity to provide a safe reference for its use.

2. Materials and Methods

2.1. Collection, Preparation and Aqueous Extraction of Viscum album

Fresh leaves and stems of Viscum album from three
different host plants viz: Azadirachta indica (Neem), Psidium guajava (guava) and Acacia albida were collected from within the University of Maiduguri Campus and authenticated by a botanist from the Department of Biological Sciences, University of Maiduguri, Nigeria. Voucher specimen has been kept in the herbarium of Faculty of Science, University of Maiduguri, Nigeria.

The leaves and stems of Viscum album collected were rinsed with clean water and dried under shade for a period of one week. The dried leaves and stems were then ground, using mortar and pestle to obtain a fine powder of each sample which was extracted with 1000mls of distilled water for 8 hours at 60°C using a Soxhlet extractor (Quickfit, England) as described by [8]. The Viscum album extract was concentrated on an aluminium tray, placed into an oven and maintained overnight at 60°C. The drying process removed the water, leaving only the extract of Viscum album from Azadirachta indica, Psidium guajava and Acacia albida. The extracts were stored at room temperature (27°C) until required.

2.2. Phytochemical Studies

Standard procedures as described by Trease and Evans [9] were used to determine the bioactive constituents of the Viscum album extracts in this study.

2.3. Acute Toxicity Testing

The modified arithmetic method of Karber as described by Aliu and Nwude [10] was used to evaluate the median lethal dose (LD$_{50}$) of the aqueous extracts of stem bark and leaves of Viscum album (sourced from 3 host plants) in albino rats.

Twenty five (25) adult albino rats of both sexes weighing between 110 and 220 grams were used for each extract, giving a total of 150 rats. The experimental albino rats were divided into five (5) groups (A-E) of 5 rats each and kept within ambient conditions (temperature: 27±1°C, photoperiod: 12 hours natural light and 12 hour dark, humidity 40±5%). They were fed with standard feed (Grant Cereal Ltd, UAC Nigeria PIC, Jos, Nigeria) and portable water was provided ad libitum. The rats were allowed for 4 weeks to acclimatize to the laboratory conditions before the toxicity study. Groups A, B, C and D were each administered intraperitoneally with graded doses of 100, 200, 400 and 800mg/kg of extract respectively at an extract concentration of 10g/100ml, while group E rats received only distilled water intraperitoneally and served as control. All rats were observed over a period of 24hours for clinical signs of toxicity and death. All experimental albino rats were handled according to the international guiding principles for biomedical research involving animal use and care [11].

3. Results

Table 1 shows the phytochemistry of Viscum album leaf and stem extracts from A. indica, A. albida and P. guajava, containing tannins, alkaloid, saponins, glycosides, flavonoids, phenols, combined anthraquinones, carbohydrates, reducing sugar and combined sugar. Alkaloids was absent in leaf of Viscum album obtained from P. guajava. Saponins had the highest scores (+++) in all the extracts followed by phenols and carbohydrates with moderate scores (++), while reducing and combined sugars had the lowest concentrations (+) (Table 1).

Table 2 shows the calculated median lethal dose (LD$_{50}$) values of Viscum album leaf and stem from A. indica. The calculated value for the leaf and stem are 1440mg/kg/bw and 600mg/kg/bw respectively. The calculated median lethal dose (LD$_{50}$) value of Viscum album leaf and stem from P. guajava was 2400mg/kg (table 3). Finally, table 4 shows the LD$_{50}$ values of Viscum album leaf and stem from A. albida, to be 2400mg/kg/bw and 2880mg/kg/bw respectively.
phlabotannins was only present in guava. Meanwhile, saponins, glycosides, flavonoids, phenols, combined anthraquinones, carbohydrates, reducing sugars and these compounds from *A. albida*, *Psidium guajava*, *Viscum album* and *P. guajava* exhibited clinical signs of weakness, depression, arched back, gait, anorexia, insomnia, dizziness and dyspnoea. Terminally, there were coma and death after a 2 hour period. These findings agree with Ohaeri and Agaoru, [32] who observed similar signs, and attested that death could be due to intravascular obstruction of the circulatory system resulting into asphyxia.

The results on acute toxicity testing indicated an LD₅₀ for *Viscum album* Leaf and stem extract from *A. Indica* for albino rats. Table 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose of extract (mg/kg bw)</th>
<th>Dose difference (Dd)</th>
<th>Death</th>
<th>Mean dead (md)</th>
<th>Md x Dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>400</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>800</td>
<td>400</td>
<td>0</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>E</td>
<td>1600</td>
<td>800</td>
<td>4</td>
<td>-</td>
<td>1600</td>
</tr>
<tr>
<td>F</td>
<td>3200</td>
<td>1600</td>
<td>5</td>
<td>-</td>
<td>8000</td>
</tr>
</tbody>
</table>

Table 2. *LD₅₀* Values of *Viscum album* Leaf and stem extract from *A. Indica* for albino rats.

Table 3.

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose of extract (mg/kg bw)</th>
<th>Dose difference (Dd)</th>
<th>Death</th>
<th>Mean dead (md)</th>
<th>Md x Dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>400</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>800</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>1600</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>3200</td>
<td>1600</td>
<td>5</td>
<td>2.5</td>
<td>4000</td>
</tr>
</tbody>
</table>

Table 3. *LD₅₀* Values of *Viscum album* Leaf and stem extract from *P. guajava* for albino rats.

Table 4.

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose of extract (mg/kg bw)</th>
<th>Dose difference (Dd)</th>
<th>Death</th>
<th>Mean dead (md)</th>
<th>Md x Dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>400</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>800</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>1600</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>3200</td>
<td>1600</td>
<td>5</td>
<td>2.5</td>
<td>3200</td>
</tr>
</tbody>
</table>

Table 4. *LD₅₀* Values of *Viscum album* Leaf and stem extract from *A. albida* for albino rats.

4. Discussion

The results of the phytochemical screening in this study has shown that the aqueous extracts from the leaf and stem of *Viscum album* species from *Azadirachta indica*, *Acacia albida* and *Psidium guajava* contained tannins, alkaloids, saponins, glycosides, flavonoids, phenols, combined anthraquinones, carbohydrates, reducing sugars and combined sugars. This agrees with the findings by Hass *et al.*, [12]; [13] and Taiga, [14] who expressed the presence of these compounds from *Viscum album* species from apple, guava, kolanut, orange, pear and cocoa trees. However, Yusuf *et al.*, [15] also reported the presence of terpenoids, phytates, oxalates and cardiac glycosides from *Viscum album* from cocoa and cola trees in Nigeria. Furthermore, Florence and Olawoye, [16] reported the presence of saponins, tannins, anthraquinones, cardinolides in the stem and leaves of *Viscum album* of orange and guava but observed that phlabotannins was only present in guava. Meanwhile Luczkiewicz *et al.*, [17]; [18] and Vicas *et al.*, [19] emphasized that the phytochemical profile of *Viscum album* species depends on the harvesting time and the host trees of the plant.

Phytochemicals are compounds that are also known as secondary plant metabolites and have biological properties such as antioxidant activity [20]; [21]; [19]; [22], antimicrobial effects [23], modulation and detoxification enzymes, stimulation of the immune system [23]; [22], modulation and hormone metabolism and anti-cancer properties [24]; [25]; [26]; [22], and also are oxygen free radical quenchers and inhibit lipid peroxidation [22].

Following the administration in the extract, the animals exhibited clinical signs of weakness, depression, arched back, gait, anorexia, insomnia, dizziness and dyspnoea. Terminally, there were coma and death after a 2 hour period. These findings agree with Ohaeri and Agaoru, [32] who observed similar signs, and attested that death could be due to intravascular obstruction of the circulatory system resulting into asphyxia.

The results on acute toxicity testing indicated an LD₅₀ of 1440, 2400 and 2400mg/kg for the leaf aqueous extracts, and...
600, 2400 and 2880mg/kg for the stem aqueous extracts of *Viscum album* from Azadirachta indica, *Psidium guajava* and *Acacia albida* *Viscum album* species respectively. These values agree with the findings of Eno et al., [27] that *Viscum album* species in Nigeria had a very wide safety margin due to its high LD$_{50}$ value of 417.5mg/kg in mice. Also, according to Clarke and Clarke, [28]; [29]; [30]; [31]. Substances with LD$_{50}$ values between 500mg/kg and 5000mg/kg are moderately or less toxic and could be administered with some degree of safety especially through the oral route where absorption might not be complete due to inherent factors limiting absorption in the gastrointestinal tract.

5. Conclusion

Conclusively, intra-peritoneal administration of graded doses of *Viscum album* extracts from different plants appears to be safe and validate its folkloric application in the management of various conditions in humans and animals.

References

