

International Journal of Intelligent Information Systems
2014; 3(6-1): 1-9

Published online September 26, 2014 (http://www.sciencepublishinggroup.com/j/ijiis)

doi: 10.11648/j.ijiis.s.2014030601.11

ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

Effective load balancing in cloud computing

Zeinab Goudarzi
*
, Ahmad Faraahi

Department of Computer Engineering and Information Technology, Payame Noor University, PO BOX 19395-3697 Tehran, Iran

Email address:
z1990_good@yahoo.com (Z. Goudarzi), afaraahi@pnu.ac.ir (A. Faraahi)

To cite this article:
Zeinab Goudarzi, Ahmad Faraahi. Effective Load Balancing in Cloud Computing. International Journal of Intelligent Information Systems.

Special Issue: Research and Practices in Information Systems and Technologies in Developing Countries. Vol. 3, No. 6-1, 2014, pp. 1-9.

doi: 10.11648/j.ijiis.s.2014030601.11

Abstract: Internet, from its beginning so far, has undergone a lot of changes which some of them has changed human’s

lifestyle in recent decades. One of the latest changes in the functionality of the Internet has been the introduction of Cloud

Computing. Cloud Computing is a new internet service, which involves virtualization, distributed computing, networking,

software etc. This technology is becoming popular to provide various services to users. Naturally, any changes and new concepts

in the world of technology have its own problems and complexities. Using Cloud Computing is no exception and has many

challenges facing the authorities in this area such as load balancing, security, reliability, ownership, data backup and data

portability. Load balancing is one of the essential factors to enhance the working performance of the Cloud service provider by

shifting of workload among the processors. Proper load balancing aids in minimizing resource consumption, implementing

fail-over, enabling scalability, avoiding bottlenecks and over- provisioning etc. Given the importance of the process of load

balancing in Cloud Computing, the aim of this paper is to review the process and to compare techniques in this field.

Keywords: Cloud Computing, Load Balancing, Metrics

1. Introduction

Cloud Computing is a new technology, which provides

on-demand network access to a shared pool of computing

resources. Cloud is a pay-go model where the consumers pay

for the resources utilized instantly, which necessitates having

highly available resources to service the requests on demand

[1]. It was intended to enable computing across widespread

and diverse resources, rather than on local machines or at

remote server farms [2].

Services in a Cloud are of 3 types as given in [3]: (1)

Software as a Service (SaaS): with SaaS, the users don’t need

to install the software on their machines. SaaS provider

maintains and manages software, supplies the hardware

facilities and the users can use software directly from the

cloud. For small business, SaaS is the best way to use

advanced technology. (2) Platform as a Service (PaaS): PaaS

provides a platform on which users can directly develop and

deploy their own applications and transfer to other customers

through their server and internet. Microsoft Azure is one

example of PaaS. (3) Infrastructure as a Service (IaaS): IaaS

offers the hardware as a service to the customers and provides

an environment for deploying, running and managing virtual

machines and storage.

Cloud Computing by using the resources, information,

software and shared equipment provides a client’s service

within a specific time. Of course, regarding the time which is

spent on the Internet, the whole Internet can be considered as a

Cloud. Operating and capital costs can be reduced by using

Cloud Computing [4]. Due to the spread of Cloud Computing

in recent years, from the perspective of market presence,

understanding the effect of load balancing in the Cloud is

important. Cloud Computing Platform, is a fully automated

service platform that allows users to buy, create distance,

dynamic scalability, and management of the system [5].

The load measuring is mechanized so as to avoid disruption

in delivery of a service when one or more components of the

system are in trouble. In this case, the system components are

constantly monitored, and when a component fails to respond,

load balancing comes up and do not sent traffic on it. Often,

problems can be minimized with proper load balancing that

not only reduce costs and create green computing, but keeps

the pressure minimum on the unique circuits that makes them

potentially longer life [6].

Load balancing in Cloud Computing systems is really a

challenge now. It is a mechanism that distributes the dynamic

local workload evenly across all the nodes in the whole Cloud

to avoid a condition in which some of the nodes are over

2 Zeinab Goudarzi and Ahmad Faraahi: Effective Load Balancing in Cloud Computing

loaded while some others are idle or under loaded. It helps to

achieve a high user satisfaction and resource utility of the

system. It also ensures that every computing resource is

distributed efficiently and fairly [7].

The load considered here can be in terms of CPU load,

amount of memory used, delay or network load [8]. Load

balancing ensures that all the processor in the system or every

node in the network does approximately the equal amount of

work at any instant of time [9]. Load balancing algorithms are

placed in three categories on the basis of who starts the

process of load balancing: sender initiated, receiver initiated,

symmetric (combination of sender initiated, receiver initiated

types) and are placed in two categories based on the current

state of the system: static and dynamic [6].

With load balancing, the load can be balanced by active

transferring of local workload from a machine to the machine

in the remote node or machine that is used less [10]. Load

balancing is also required in the Clouds to meet the Green

Computing. In this way, it can reduce the amount of energy by

avoiding excessive interaction or virtual machines considering

the workload, and by reducing the energy consumption,

carbon emissions are reduced and, we thus achieve the Green

Computing. As given in [7], [11] and [12] the goals of load

balancing are:

i Have a backup plan to build a fault tolerant system

ii Substantial improvement in performance

iii Stability maintain the system

iv Accommodate future modification in the system

When a given workload is applied on any cluster’s node,

this given load can be efficiently executed if the available

resources are efficiently used. So that, there must be a

mechanism for choosing the nodes that have these resources.

Scheduling is a component or a mechanism, which is

responsible for the selection of a cluster node, to which a

particular process will be placed. This mechanism will

investigate the load balancing state. Hence, scheduling needs

algorithms to solve such problems [9].

2. Important Resources and Metrics of

Load Balancing

Important resources in load balancing as discussed by

Hamo and Saeed [13] include:

i Computer processor time: it is the most important

resource in operating system. When distributed system is

used this resource need to be balanced.

ii Computer memory: another important resource in the

computer is memory. When these computers are

connected across the grid, memory resources, need to be

balanced.

iii Computer I/O: I/O resources, which is depends on the

effective usage of storage, in addition to that of CPU and

memory, need to be balanced.

In Cloud Computing, load balancing is a necessary

mechanism to increase the service level agreement (SLA) and

better uses of the resources [8].

Various metrics in load balancing Techniques in Cloud

Computing are discussed in Table 1.

Table 1. Metrics of Load Balancing [6], [9], [10]

Metric Illustration

Throughput
It is used to calculate the no. of tasks whose execution has been completed. This metric should be high to achieve good load

balancing and improve the performance of the system.

Overhead
It determines the amount of overhead involved while implementing a load balancing algorithm. It is composed of overhead due

to movement of tasks, inter-processor and inter-process communication. This metric should be minimized so that a load

balancing technique can work efficiently.

Fault Tolerance
Is the ability of an algorithm to perform uniform load balancing in case of link failure. The load balancing should be a good

fault-tolerant technique, in order to achieve a high user satisfaction and improve the performance of the system.

Response Time It is the amount of time taken to respond by a particular load balancing algorithm in a distributed system. It should be minimized.

Resource Utilization It is used to check the utilization of resources. It should be optimized for an efficient load balancing.

Scalability
It is the ability of an algorithm to perform load balancing for a system with any finite number of nodes. This metric should be

improved for load balancing.

Performance
It is used to check the efficiency of the system. This has to be improved at a reasonable cost, e.g., reduce task response time

while keeping acceptable delays.

Migration Time
Is the time to migrate the jobs or resources from one node to other. It should be minimized in order to enhance the performance

of the system.

Energy Consumption
Determines the energy consumption of all the resources in the system. Load balancing helps in avoiding overheating by

balancing the workload across all the nodes of a Cloud, hence reducing energy consumption.

 International Journal of Intelligent Information Systems 2014; 3(6-1): 1-9 3

3. Load Balancing Algorithms

3.1. Static Load Balancing

Static load balancing algorithms allocate the tasks to a node

only based on the node’s ability for processing the new request.

This process is based solely on prior knowledge of the

properties of nodes, which can include the node processing

power, memory, and storage capacity and so on. Static load

balancing algorithms usually do not consider the changes that

occur at run time for these attributes and cannot adapt to

changes in runtime. Their goal is to minimize execution time

and limit the communication overhead and delay [10].

In fact, static load balancing allocates a work that enters the

system to a processor or a fixed node, and each time the

system is restarted, the same processor will be responsible for

executing the work. It is possible that the allocated task to the

same processor does not work, but allocating the new coming

tasks is in a fixed order or model. The static load balancing is

either Deterministic or Probabilistic. In the Deterministic load

balancing, tasks are connected to the smallest queue of work

stations since routing decisions are based on the state of the

system. In Probabilistic load balancing, tasks are randomly

sent to the stations with equal probability [13].

3.2. Dynamic Load Balancing

Dynamic load balancing algorithms take into account the

various features of nodes, capabilities and network bandwidth.

Most of these algorithms rely on a combination of information

about the nodes in the cloud which have already been

collected and properties of collection time. The algorithm may

actively re-allocate the tasks to the nodes based on the

information gathered just after allocating the tasks to the

nodes. So they need constant monitoring over the nodes and

tasks stream, and are usually more difficult to implement. But

on the other hand, they enjoy a higher accuracy and can

produce a more efficient load balancing results [15].
An important advantage to dynamic load balancing is that

load balancing decisions are based on the current state of the

system which contribute to better overall performance of

system with dynamic migration of loads [10]. A dynamic

strategy is usually performed several times and may

re-allocate a scheduled task to a new node based on the

dynamic state of the system environment [13].

Dynamic load balancing algorithms fall into two categories:

distributed and Non-distributed. In distributed type, the task of

balancing the load is for all the nodes in the system.

Interaction between nodes to achieve load balancing can be in

two forms: cooperation and non-cooperative. In the first form,

the nodes cooperate with each other to reach a common goal

such as improving the time of the total response. And in the

second form, each node works independently toward a local

target like improving the response time of a local work [9].

However, in Non-distributed form, one node or a group of

nodes are doing load balancing task. The Non-distributed

dynamic load balancing algorithms can be classified into two

types of Centralized and Semi-Distributed. In Centralized type,

the load balancing algorithm is performed only over one node

of system, so called central node. This node solely has the duty

of load balancing of the entire system. The other nodes only

have interactions with the central node. In the type of

Semi-Distributed, the nodes of system have been divided into

clusters in which load balancing of each cluster is centralized.

By using appropriate techniques for each cluster, a node can

be selected to look after the load balancing in cluster. Hence,

the total load balancing of system is done by the central nodes

of each cluster [4].

The distributed dynamic load balancing algorithms produce

more messages than their Non-Distributed counterparts since

each node within the system needs to communicate with any

other node. The advantage of this method is lack of bottleneck

in the system, which in turn affect the system performance

partly. The distributed dynamic load balancing can put an

enormous pressure on a system in which each node needs to

exchange situational information with any other node. This

method is more effective when most of the nodes work

independently with little interaction with other nodes. Since

the centralized dynamic load balancing receive fewer

messages, the total number of interactions within the system is

diminished as compared to the semi distributed type. However,

the centralized algorithms can create bottleneck on the central

node, and also the load balancing pattern become useless

when the central node crashes. So this algorithm is more

suitable for small-sized networks [10].

4. Load Balancing Techniques

4.1. Honeybee Foraging Algorithm

The main idea behind the algorithm is derived from the

behavior of honey bees for finding and reaping food. There is

a class of bees called the forager bees which forage for food

sources, upon finding one, they come back to the beehive to

advertise this using a dance called waggle dance. The display

of this dance, gives the idea of the quality or quantity of food

and also its distance from the beehive. Scout bees then follow

the foragers to the location of food and then began to reap it.

They then return to the beehive and do a waggle dance, which

gives an idea of how much food is left and hence results in

more exploitation or abandonment of the food source.

In case of load balancing, as the webservers demand

increases or decreases, the services are assigned dynamically

to regulate the changing demands of the user. The servers are

grouped under virtual servers (VS), each VS having its own

virtual service queues. Each server processing a request from

its queue calculates a profit or reward, which is analogous to

the quality that the bees show in their waggle dance. One

measure of this reward can be the amount of time that the CPU

spends on the processing of a request. The dance floor in case

of honey bees is analogous to an advert board here. This board

is also used to advertise the profit of the entire colony. Each of

the servers takes the role of either a forager or a scout. The

server after processing a request can post their profit on the

advert boards with a probability of pr. A server can choose a

4 Zeinab Goudarzi and Ahmad Faraahi: Effective Load Balancing in Cloud Computing

queue of a VS by a probability of px showing forage/explore

behavior, or it can check for advertisements (see dance) and

serve it, thus showing scout behavior. A server serving a

request, calculates its profit and compare it with the colony

profit and then sets its px. If this profit was high, then the

server stays at the current virtual server; posting an

advertisement for it by probability pr. If it was low, then the

server returns to the forage or scout behavior [4].

4.2. Based Random Sampling

Biased Random Sampling is a distributed and scalable load

balancing approach that uses random sampling of the system

domain to achieve self-organization thus balancing the load

across all nodes of the system. Here a virtual graph is

constructed, with the connectivity of each node (a server is

treated as a node) representing the load on the server. Each

server is symbolized as a node in the graph, with each in

degree directed to the free resources of the server each server

is symbolized as a node in the graph, with each in degree

directed to the free resources of the server. Regarding job

execution and completion,

i Whenever a node does or executes a job, it deletes an

incoming edge, which indicates reduction in the

availability of free resource.

ii After completion of a job, the node creates an incoming

edge, which indicates an increase in the availability of

free resource.

The addition and deletion of processes is done by the

process of random sampling. The walk starts at any one node

and at every step a neighbor is chosen randomly. The last node

is selected for allocation for load. Alternatively, another

method can be used for selection of a node for load allocation,

that being selecting a node based on certain criteria like

computing efficiency, etc. Yet another method can be selecting

that node for load allocation which is under loaded i.e. having

highest in degree. If b is the walk length, then, as b increases,

the efficiency of load allocation increases. We define a

threshold value of b, which is generally equal to log n

experimentally. A node upon receiving a job, will execute it

only if its current walk length is equal to or greater than the

threshold value. Else, the walk length of the job under

consideration is incremented and another neighbor node is

selected randomly. When, a job is executed by a node then in

the graph, an incoming edge of that node is deleted. After

completion of the job, an edge is created from the node

initiating the load allocation process to the node which was

executing the job. Finally what we get is a directed graph. The

load balancing scheme used here is fully decentralized, thus

making it apt for large network systems like that in a Cloud

[4].

4.3. Active Clustering

Active Clustering works on the principle of grouping

similar nodes together and working on these groups. The

process involved is:

i A node initiates the process and selects another node

called the matchmaker node from its neighbors satisfying

the criteria that it should be of a different type than the

former one.

ii The so called matchmaker node then forms a connection

between neighbors of it which is of the same type as the

initial node.

iii The matchmaker node then detaches the connection

between itself and the initial node.

The above set of processes is followed iteratively [4].

The performance of the system is enhanced with high

resources thereby in-creasing the throughput by using these

resources effectively. It is degraded with an increase in system

diversity. This algorithm optimizes job assignment by

connecting similar services by local re-wiring and performs

better with high resources.

4.4. Carton

This technique is used to equally distribute the load

balancing tasks among different servers. Therefore, the

corresponding costs can be reduced and limited distribution

rates are used to ensure a fair allocation of resources [15].

4.5. Event-Driven

A load balancing algorithm has suggested an event-driven

method for the real time Massively Multiple Player Online

Games. This algorithm after receiving the incoming capacity

as input analyzes its own components in the context of

resources and the overall state of play settlement. As a result,

the activities of load balancing produce the game session [16].

4.6. Server-Based Load Balancing for Distributed Internet

Services

A new service-based load balancing policy for Web servers

that are distributed throughout the world has been suggested.

This policy helps to reduce the time of service through

limiting the number of deviances of a request to the closest

server of remote path without making them the overhead. A

middleware has been described for the implementation of this

protocol which uses a discovery method for helping the Web

servers to bear the load [17].

4.7. Black-Box and Gray-Box Strategies

Wood et. al, [18] adopt Black-Box and Gray-Box strategies

for Virtual Machine (VM) migration in large data centers.

Black-Box technique has been designed to monitor the system

resource usage, detect hotspots and initiate the necessary

migrations, that can make these decisions by simply observing

each Virtual Machine from the outside and without any

knowledge of the application resident within each Virtual

Machine, and Gray-Box technique has been designed to

access a small amount of OS level statistics to better inform

the migration algorithm. The authors have designed the

Sandpiper system to support techniques. Sandpiper imposes

negligible overheads and that Gray-Box statistics enable

Sandpiper to make better migration decisions when alleviating

memory hotspots.

 International Journal of Intelligent Information Systems 2014; 3(6-1): 1-9 5

4.8. Min-Min

This algorithm work by considering the execution and

completion time of each task and begins with a set of all

unassigned tasks. First, minimum execution time for all tasks

is found. Then, the task with the least execution time among

all the tasks on any resources is selected. The algorithm

assigned the task to the resource that produces the minimum

completion time. Until all tasks are scheduled the same

procedure is repeated [19].

4.9. Max-Min

This algorithm is almost same as the Min-Min algorithm

but, it schedules larger tasks first of all i.e. After finding out

minimum execution times, the maximum value is selected

which is the maximum time among all the tasks on any

resources. Until all tasks are scheduled the same procedure is

repeated [19].

4.10. The Message Oriented Model

Clusters offer the opportunity of using the distributed

applied programs by different computers on the networks.

This is associated with the introduced clusters in the network

performance. If the total load in distribution network is loaded

by a computer, it makes the network slower. To prevent this

situation, the resource management can be used as software

metrics for traffic distribution between stations to keep the

network performance in a high level. The Web services are

mainly used in the "quick online message programs". This

technology is for the real time communication between

different sides; however, the availability of functional

program is important. One model has been presented that uses

XMPP for load balancing. The clients of XMPP send the

prepared information to the prepared server of XMPP and

XML flows contain the details of the prepared information of

the customers generated by these servers. Using a load

balancing on top of a XMPP server allows incoming requests

from public services to be prioritized and applied [20].

4.11. OLB + LBMM

This method uses a combination of two algorithms for a

better implementation and maintaining the load balancing of

system. The OLB scheduling algorithm, keeps each node in

the mode of work to reach the goal of load balancing, and

LBMM scheduling algorithm is used to reduce the time each

task is run on a node which leads to reduction in total run time.

The usage environment of this algorithm is three dimensional

cloud computing networks [21]. This combination algorithm

makes better use of the resources, increases productivity and

provides better results compared to honeybees exploration,

random sampling and active clustering.

4.12. Fuzzy Logic

The paper in [22] proposes the novel load equalization

technique using Fuzzy Logic in Cloud Computing, within

which load equalization could be a core and difficult issue in

Cloud Computing. In this work, the authors have designed a

new load balancing algorithm based on Round Robin in

Virtual Machine environment of Cloud Computing in order to

achieve better response time and processing time. The load

balancing algorithm is done before it reaches the processing

servers the job is scheduled based on various parameters like

processor speed and assigned load of Virtual Machine and etc.

It maintains the information in each VM and numbers of

request currently allocated to VM of the system. It identify the

least loaded machine, when a request come to allocate and it

identified the first one if there are more than one least loaded

machine. In this architecture, the fuzzifier performs the

fuzzification process that converts two types of input data like

processor speed and assigned load of Virtual Machine and one

output like balanced load which are needed in the inference

system. The design also considers the processor speed and

load in Virtual Machine as two input parameters to make the

better value to balance the load in Cloud using Fuzzy Logic.

These parameters are taking as inputs to the fuzzifier, which

are used to measure the balanced load as the output. Two

parameters named as the processor speed and assigned load of

virtual Machine of the system are jointly used to evaluate the

balanced load on data centers of Cloud Computing

environment through Fuzzy Logic.

4.13. Join-Idle-Queue Algorithm

This algorithm suggests a load balancing algorithm for

active scalability of Web services. This algorithm provides

load balancing in large-scale with distributors of the

dispatchers. First, the load balancing of idle processors is done

across the dispatchers for access of any idle processor to each

dispatcher and then allocation of tasks to processors is

performed to reduce the average queue length of each

processor [23]. By removing the load balancing work of the

vital routes of processing requests, this algorithm effectively

reduces the system load in which no communicative overhead

is occurred while entering tasks, and real response time is not

raised as well.

4.14. The Central Load Balancing Policy for Virtual

Machines

This policy balances the load evenly in a computing cloud or

distributed virtual machine and increases the overall performance

of the system by about 20%, but does not take into account those

systems that have a fault tolerance. This method uses information

of general mode for load balancing decisions [24].

4.15. Power Aware Load Balancing Strategy

The strategy proposed in [25] is an energy conscious, power

aware load balancing strategy based on adaptive migration of

Virtual Machines. This strategy will be applied to Virtual

Machines on Cloud, considering higher and lower thresholds

for migration of Virtual Machines on the servers. If the load is

greater or lower then defined upper & lower thresholds, VMs

will be migrated respectively, boosting resource utilization of

the Cloud data center and reducing their energy consumption.

6 Zeinab Goudarzi and Ahmad Faraahi: Effective Load Balancing in Cloud Computing

The system models that used in this paper consist of global

and local manager. The local managers, which are part of VM

monitor, resides on each node and are responsible for keeping

continuous observation on when to migrate a VM and

utilization of the node. The end-user refers its service request

along with some CPU performance parameters to a global

manager which in turns intimates the VM monitor for VM

Allocation. The local manager reports the global manager

about the utilization check of its node. And thus, global

manager keeps the check of overall utilization of the resource.

To reduce number of migration they integrate minimum

migration time policy.

4.16. Dynamic Load Balancing Approach

The paper in [26] proposes the load balancing method based

on the remaining storage capacity. The method considers the

load and the node’s remaining storage capacity of the node.

The method uses a hybrid structure model using two layers of

load balancing strategies. The lower layer manages the local

load information. The upper layer manages the compressed

load information. Each level uses the different balance

strategy. This will not only be able to timely balance local load,

the scheduler can balance the global load in the upper. This

model is not a bottleneck. It spends small resources to improve

overall system performance. According to the different

hotspots of the data, it uses two strategies that include

migrating and replicating data to reduce the load.

4.17. Efficient Load Balancing Approach

Zuhori [27] presented Round Robin Algorithm for efficient

load balancing in Cloud Environment. This algorithm is

Round Robin to reschedule the CPUs. Here at first consumer’s

request submitted into the Service Accepter and Service

Accepter search for free VMs. When it finds one it starts to

serve the services to those VMs using Round Robin

Algorithm .In Round Robin algorithm the time is divided into

multiple slices and each node is given a particular time slice or

time interval. The decision of a service acceptation or

rejection is taken by the service accepter. The total work of

this thesis work is done for ten servers. Here, the real Cloud

environment has not used and the procedure of the process

scheduled is not dynamic.

4.18. Cost and Energy Optimization

The paper in [28] proposes an Optimized Load Balancing

algorithm (OLB) which not only balances the load among the

servers but also reduces energy consumption and SLA

violation. This paper uses Local regression (LR) for deciding

whether host is overloaded or not and uses Minimum

Migration Time policy to select the VMs to be migrated away

from that host. In this paper under loaded Host Detection has

been used to move VMs to other hosts so that this under

loaded host can be put to sleep thus saving energy.

4.19. GFTLBS

Yao [29] presented a novel guaranteeing fault-tolerant

requirement load balancing scheme (GFTLBS) to guarantee the

fault-tolerant level of all services provided by the data center

while balancing the load based on VM migration among the

hosts. With GFTLBS, by moving CPU state, memory content,

storage content and network connections of VM, VMs can be

migrated from the host with the heaviest load to the lightest one

while not violating the fault-tolerant requirements of all the

services. Based on VM migration, the hardware utilization,

power savings, availability, security and scalability can be

increased without disrupting the customer applications running

in the VMs. In this article all the VMs of different services are

assumed to have the same capacity and the same load level.

GFTLBS can balance the load among all the hosts in the data

center and also guarantee the fault-tolerant level of all services

provided in the data center and works well with various groups

of the number of VMs and hosts.

4.20. Avoid Deadlocks

Rashmi [1] presented a load balancing algorithm to avoid

deadlocks among the Virtual Machines while processing the

requests received from the users by VM migration. The

proposed algorithm avoids the deadlock by providing the

resources on demand resulting in increased number of job

executions. In this paper, hop time and wait time may be

considered. Hop time is the duration involved in migration of

the job from the overloaded VM to the underutilized VM for

providing the service. Wait time is the time after which the

VMs become available to service the request. Various users

submit their diverse applications to the Cloud service provider

through a communication channel. The Cloud Manager in the

Cloud service provider’s datacenter is the prime entity to

distribute the execution load among all the VMs by keeping

track of the status of the VM. The Cloud Manager maintains a

data structure containing the VM ID, Job ID and VM Status to

keep track of the load distribution. The VM Status represents

the percentage of utilization. The Cloud Manager allocates the

resources and distributes the load as per the data structure and

analyzes the VM status routinely to distribute the execution

load evenly. In processing, if any VM is overloaded then the

jobs are migrated to the VM which is underutilized by tracking

the data structure. If there are more than one available VM

then the assignment is based on the least hop time. The Cloud

Manager automatically updates the data structure on

completion of the execution.

5. Discussion and Conclusion

In this section we discuss the different techniques that were

discussed in Section 4. We also compare these techniques

based on the Metrics discussed in Section 2.

Table 2 shows a comparison among the reviewed

techniques. The comparison shows the positives and negative

points of each technique. For example, The Honeybee

Foraging Algorithm achieves global load balancing through

local serve actions and does not increase the throughput as the

system size increases. However Performs well as system

diversity increases. Furthermore, Active Clustering and Based

 International Journal of Intelligent Information Systems 2014; 3(6-1): 1-9 7

Random Sampling perform better with high and similar

population of resources, but have not good performance when

system diversity increases. Based Random Sampling achieves

load balancing across all system nodes using random sampling

of the system domain. In addition, OLB + LBMM algorithm

makes better use of the resources, increases productivity and

provides better results compared to Honeybee Foraging

Algorithm, Based Random Sampling and Active Clustering.

As for the Carton approach, we can see that this approach with

very low computation and communication overhead is simple

and easy to implement. Event-driven is able to either increase

or decrease the scale of the play in several resources based on

the variable load of the user, while violation of the quality of

service is happened every now and then. Message oriented

architecture as a middleware model has been pointed out to

improve load balancing in distributed networks. Based on

messaging techniques XMPP allowed resources to be

monitored and provide availability of cloud resources. This

technology is open for real time communication between

various parties.

Table 2. Advantages and Disadvantages of Load Balancing Techniques

Techniques Advantages and Disadvantages

Honeybee Foraging Algorithm
Performs well as system diversity increases.

Does not increase the throughput as the system size increases.

Based Random Sampling
Performs better as the number of processing nodes is increased.

Performs not well as system diversity increases.

Active Clustering
Performs better as the number of processing nodes is increased.

Performs not well as system diversity increases.

Carton With Very low computation and communication overhead is Simple and easy to implement.

Event-driven
Is able to either increase or decrease the scale of the play in several resources based on the variable load of the user.

Quality of services (QOS) breaches.

Server-based load balancing Reduces service response time.

Black-Box & Gray-Box Has a drawback in the migration phase.

Min-Min Algorithm
Has a major drawback that it chooses smaller tasks first which makes use of resource with high computational power.

Thus, this scheduler when number of smaller tasks exceeds the large ones is not optimal and it can lead to starvation.

Max-Min Algorithm The waiting time of smaller tasks and the make-span may increase in this scheduler.

Message Oriented Model
As a middleware model has been pointed out to improve load balancing in distributed networks. This technology is open

for real time communication between various parties.

OLB + LBMM
Efficient utilization of resources.

Enhances system performance.

Fuzzy Logic
Can balance the load with decreases the processing time as well as improvement of overall response time, which are

leads to maximum use of resources.

Join-Idle-Queue algorithm
Reduces the system load in which no communicative overhead is occurred while entering tasks, and real response time

is not raised as well.

Central Load Balancing
Achieves high performance.

Does not consider fault tolerance.

Power Aware LB Strategy Reduces number of migrations.

Dynamic LB Approach
Is not a bottleneck.

Improves overall system performance.

Efficient LB Approach
Tries to reduce response time.

Is not dynamic.

Cost and Energy Optimization
Reduces energy consumption.

Reduces SLA violation.

GFTLBS Balance the load and guarantee the fault-tolerant level of all services.

Avoid Deadlocks Enhances the number of jobs to be serviced Improving working performance.

Based on the Discussed metrics, the reviewed techniques have been compared in Table 3.

8 Zeinab Goudarzi and Ahmad Faraahi: Effective Load Balancing in Cloud Computing

Table 3. Comparison of reviewed Load Balancing Techniques Based on Discussed Metrics

Techniques Considered Metrics in each Technique

Honeybee Foraging Algorithm Throughput, Performance & Scalability

Based Random Sampling Throughput, Performance & Scalability

Active Clustering Throughput, Performance & Scalability

Carton Performance, Overhead &Resource Utilization

Event-driven Resource Utilization

Server-based load balancing Performance & Response Time

Black-Box & Gray-Box Overhead & Response Time

Min-Min Algorithm Throughput, Overhead, Response Time, Resource Utilization & Performance

Max-Min Algorithm Throughput, Overhead, Response Time, Resource Utilization & Performance

Message Oriented Model Response Time & Performance

OLB + LBMM Performance & Resource Utilization

Fuzzy Logic Response Time & Resource Utilization

Join-Idle-Queue algorithm Response Time, Performance & Overhead

Central Load Balancing Response Time, Performance, Throughput

Power Aware LB Strategy Resource Utilization, Performance & Energy Consumption

Dynamic LB Approach Response Time, Performance

Efficient LB Approach Response Time, Performance

Cost and Energy Optimization Performance, Migration Time & Energy Consumption

GFTLBS Fault Tolerance, Resource Utilization & Scalability

Avoid Deadlocks Response Time, Performance & Overhead

Load balancing is one of the main challenges in Cloud

Computing. It is required to distribute the load evenly at every

node to achieve a high user satisfaction and resource

utilization ratio by making sure that every computing resource

is distributed efficiently and fairly. So in this paper we

compared different load balancing algorithms in Cloud

Computing and concluded that we can use a special algorithm

based on our needs. However Cloud Computing covers wide

areas and as already stated, none of the above algorithms do

not satisfy all the criteria. Therefore, the need to develop an

adaptive method is necessary which is suitable for

heterogeneous environments.

References

[1] K. S. Rashmi, V. Suma and M. Vaidehi, “Enhanced Load
Balancing Approch to Avoid Deadlocks in Cloud,” Special
Issue of International Journal of Computer Applications (0975
– 8887) on Advanced Computing and Communication
Technologies for HPC Applications (ACCTHPCA), June 2012,
pp. 31–35.

[2] M. Randles, D. Lamb and A. Taleb-Bendiab, “A Comparative
Study into Distributed Load Balancing Algorithms for Cloud
Computing,” 24th International Conference on Advanced
Information Networking and Applications Workshops,
Liverpool, 2010, pp. 1-6.

[3] S. Zhang, H. Yan and X. Chen, “Research on Key Technologies
of Cloud Computing, ” International Conference on Medical
Physics and Biomedical Engineering(2012), Hebei Province,
China, pp. 1791–1797.

[4] R. P. Padhy and G. P. Rao, “Load Balancing in cloud computing
Systems,” Bachelor Thesis, Department of Computer Science
and Engineering National Institute of Technology, Rourkela
Rourkela-769 008, Orissa, India May 2011, pp. 1-46.

[5] P. Membrey, D. Hows and E. Plugge, “Load Balancing in the
Cloud,” pp.211 – 224, 2012.

[6] S. Begum and C.S.R. Prashanth, “Review of Load Balancing in
Cloud Computing, ” IJCSI International Journal of Computer
Science Issues , Vol.10, Issue 1,2013.

[7] A. M. Alakeel, “A Guide to dynamic Load balancing in
Distributed Computer Systems,” International Journal of
Computer Science and Network Security (IJCSNS), vol. 10, No.
6, June 2010, pp. 153–160.

[8] T. Sharma, V.K. Banga, “Proposed Efficient and Enhanced
Algorithm in Cloud Computing,” International Journal of
Engineering Research & Technology (IJERT), vol. 2, Issue 2,
2013, pp. 1-6.

[9] Y. Ranjith Kumar, M. Madhu Priya and K. Shahu Chatrapati,
“Effective Distributed Dynamic Load Balancing For The
Clouds,” International Journal of Engineering Research &
Technology, vol. 2, 2013, pp. 1-6.

[10] A. Khetan, V. Bhushan and S. Ch. Gupta, “A Novel Survey on
Load Balancing in Cloud Computing,” International Journal of
Engineering Research & Technology (IJERT) , Vol.2, Issue
2 ,2013.

[11] D. Escalnte and A. J. Korty, “Cloud Services: Policy and
Assessment”, EDUCAUSE Review, vol. 46, July/August 2011.

[12] P. V. Patel, H. D. Patel and P. J. Patel, “A Survey on Load
Balancing in Cloud Computing” IJERT, vol. 1, November 2012.

 International Journal of Intelligent Information Systems 2014; 3(6-1): 1-9 9

[13] A. Hamo, A. Saeed, “Towards a Reference Model for
Surveying a Load Balancing,” IJCSNS International Journal of
Computer Science and Network Security, vol. 13, No. 2, 2013,
pp. 42-47.

[14] K. Nuaimi, N. Mohamed, M. Nuaimi and J. Al-Jaroodi, “A
Survey of Load Balancing in Cloud Computing: Challenes and
Algorithmsg,” 2012 IEEE Second Symposium on Network
Cloud Computing and Applications, 2012.

[15] R. Stanojevic and R. Shorten, “Load balancing vs. distributed rate
limiting: a unifying framework for cloud control”, Proceedings of
IEEE ICC, Dresden, Germany, August 2009, pp. 1-6.

[16] V. Nae, R. Prodan, and T. Fahringer, “Cost-Efficient Hosting
and Load Balancing of Massively Multiplayer Online Games”,
Proceedings of the 11th IEEE/ACM International Conference
on Grid Computing (Grid), IEEE Computer Society, October
2010, pp. 9-17.

[17] A. M. Nakai, E. Madeira and L. E. Buzato, “Load Balancing for
Internet Distributed Services Using Limited Redirection Rates”,
5th IEEE Latin-American Symposium on Dependable
Computing (LADC), 2011, pp. 156-165.

[18] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif,
“Black-Box and Gray-Box Strategies for Virtual Machine
Migration,” Proc. 4th USENIX Symposium on Networked
Systems Design; Implementation, Cambridge, April 11–13,
2007, pp. 229–242.

[19] T. Kokilavani and G. Amalarethinam, “Load Balanced
Min-Min Algorithm for Static Meta-Task Scheduling in Grid
Computing” International Journal of Computer Applications,
vol. 20, No. 2, April 2011, pp. 43-49.

[20] Z. Chaczko, V. Mahadevan, Sh. Aslanzadeh and Ch. Mcdermid,
“ Availability and Load Balancing in Cloud Computing, ” 2011
International Conference on Computer and Software Modeling,
IACSIT Press, Singapore, vol.14, pp. 134-140.

[21] S. Wang, K. Yan, W. Liao, and S. Wang, “Towards a Load
Balancing in a Three-level Cloud Computing Network",
Proceedings of the 3rd IEEE International Conference on

Computer Science and Information Technology (ICCSIT),
Chengdu, China, September 2010, pp. 108-113.

[22] S. Sethi, A. Sahu and S. K. Jena, “Efficient load Balancing in
Cloud Computing using Fuzzy Logic,” IOSR Journal of
Engineering (IOSRJEN), vol. 2, 2012, pp. 65-71.

[23] Y. Lua, Q. Xiea, G. Kliotb, A. Gellerb, J. R. Larusb and A.
Greenber, “Join-Idle-Queue: A novel load balancing algorithm
for dynamically scalable web services”, An international
Journal on Performance evaluation, In Press, Accepted
Manuscript, Available online 3 August 2011.

[24] A. Bhadani and S. Chaudhary, “Performance evaluation of web
servers using central load balancing policy over virtual
machines on cloud”, Proceedings of the Third Annual ACM
Bangalore Conference (COMPUTE), January 2010.

[25] Kh. Maurya and R. Sinha, “Energy Conscious Dynamic
Provisioning of Virtual Machines using Adaptive Migration
Thresholds in Cloud Data Center,” International Journal of
Computer Science and Mobile Computing, IJCSMC, vol. 2,
March 2013, pp.74-82.

[26] J. Zhang, S. Zhang, X. Zhang, Y. Lu, S.Wu, “A Dynamic Load
Balancing Approach Based on the Remaining Storage Capacity
for Mass Storage Systems,” Proceedings of the International
Conference on Information Engineering and Applications (IEA)
2012, Springer-Verlag London 2013, pp. 1-7.

[27] T. Zuhori, T. Shamrin, R. Tanbin and F. Mahmud, “An Efficient
Load Balancing Approach in Cloud Environment by using
Round Robin Algorithm,” International Journal of Artificial
Intelligence and Mechatronics, vol. 1, 2013, pp. 1-4.

[28] J. Bodele and A.Sarje, “Dyanamic Load Balancing With Cost
And Energy Optimization In Cloud Computing,“ International
Journal of Engineering Research & Technology (IJERT) , vol. 2,
Issue 4, 2013, pp. 1006-1010.

[29] L. Yao, G. Wu, J. Ren, Y. Zhu and V. Li, “Guaranteeing
Fault-Tolerant Load Requirement Balancing Scheme,”
Published by Oxford University Press on behalf of The British
Computer Society, 2013, pp. 1-8.

