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Abstract: In allusion to similarity calculation difficulty caused by high maintenance of image data, this paper introduces 

sparse principal component algorithm to figure out embedded subspace after dimensionality reduction of image visual words on 

the basis of traditional spectral hashing image index method so that image high-dimension index results can be explained overall. 

This method is called sparse spectral hashing index. The experiments demonstrate the method proposed in this paper superior to 

LSH, RBM and spectral hashing index methods. 
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1. Introduction 

There are often hundreds of visual features extracted from 

images. These high-dimension features give rise to huge 

difficulties for machine learning algorithms such as image 

similarity study and semantic analysis. To solve this problem, 

index technology of image high-dimension features becomes 

a research hotspot in recent years.  

Although multi-dimension technology represented by R 

Tree and KD Tree have gained certain progress, the researches 

show that time expenditure of most multi-dimension index 

structures is exponential order, unsuitable for high-dimension 

situation (such as dozens of dimensions). Besides, the query 

efficiency is even lower than that of sequential scanning of 

original data. Meanwhile, how to guarantee data Semantic 

Hashing [8] (i.e. similarity calculated in index space keeps 

consistent with original high-dimension space) becomes a hot 

issue. 

In this aspect, LSH(Locality Sensitive Hash) index method 

[5,6] is proposed. LSH maps high-dimension features into 

embedded subsapce through a group of hash functions to 

reach high-dimension index purpose. In LSH, hash functions 

must meet the following conditions: after harsh function 

mapping, conflict probability of any two high-dimension data 

is in direct proportion to the distance of data points among 

original high-dimension space. Since LSH generates index 

coding based on probability model, it is hard to gain stable 

results in actual applications. In addition, with the rise in 

coding digits, LSH accuracy rate improves slowly. Different 

from random index of LSH, some index technologies based on 

machine learning are put forward, such as RBM (restricted 

Boltzmann machine RBM) [8] and stump Boosting SSC[9]. 

RBM utilizes two-layer unoriented graphics model to generate 

RBM random index and present exponentially distributed data. 

Researches show RBM will gain better index properties than 

LSH[11]. But, due to complexity of RBM, accuracy and 

efficiency cannot be ensured at the same time, “Boosting” is a 

technique to enhance generalization ability of machine 

learning method. It repeatedly constructs weak classifiers 

through giving training data different distribution weight, and 

then weak learning devices are combined to generate strong 

classifiers to gain machine learning results. Researches show 

Boosting-based index method is also more effective than LSH 

index coding, but slightly weaker than RBM[11]. But, 

Boosting is still faced with the problems of high complexity 

and low high-dimension index efficiency. 

To overcome the above problems, Spectral Hashing (SH) 

index technology based on spectral analysis is proposed [11]. 

SH introduces eigenfunction for high-dimension data sample. 

Binary coding is directly conducted for high-dimension data 

dimension reduction through Principle Component Analysis 

(PCA). SH can not just improve index efficiency, but also can 

keep consistent between sample distance calculated in index 

space and original high-dimension space. But, SH method 

applies PAC to reduce dimension for original space in index 

coding process so that all high-dimension features (or visual 

words) participate in coding. In practice, generally semantics 

implied in an image is represented only with several 

distinctive features, rather than introducing other unrelated 

features in image expression 
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Based on such consideration, this paper introduces Sparse 

Principle Component Analysis (SPCA) in SH index coding 

process and puts forward corresponding global optimization 

solution to establish explainable binary coding for large-scale 

image data and fulfill image index. This paper calls such 

method Sparse Spectral Hashing (SSH) index. 

2. SSH 

2.1. Relevant Definitions and Hypotheses 

A training set composed of N images {( ) : i 1,2,...N)}
i

x =  

is given, where i
x  means d-dimension eigenvector of the ith 

image, and d means the number of visual words in the training 

set. Θ is the index function of d-dimension vector i
x  

mapped to m-dimension Hamming space vector i
y  from 

Euclidean space. Θ  can be defined as follows:  

: { 1, 1}d m

i i
x R yΘ ∈ → ∈ − −            (1) 

A good index function Θ  must have the following 

characteristics: 1) Θ  is semantic hash function. In other 

words, if Euclidean distance between vector 
i

x  representing 

the ith image and vector 
j

x  representing the jth image is 

very close, corresponding result after they pass Θ  index is 

also very close to Hamming distance; 2) the index result 

gained by Θ is efficient. In other words, original data of the 

whole image data set are mapped by Θ , relatively few coding 

digits are needed to express original high-dimension image 

data; 3) the mapping process of Θ index coding can be 

explained. For every image, just a few visual words used to 

distinguish semantics are needed for expression.  

Favorable index coding should be efficient and keep 

similarity of the data indexed in original space [11]. In other 

words, the probability that the result of a bit in index coding is 

1 and -1, and each bit is not correlated. SH coding defines the 

following objective function and constraint conditions to gain 

the index results:  

min : ( )Timize trace Y LY  

: Y(i, j) { 1, 1}

1 0
T

T

subject

Y

Y Y I

∈ − −

=
=

             (2) 

Where, L D W= −  is Laplacian matrix; *N NW R∈ is 

similarity matrix, 
2

(i, j) exp( || || / )
i j

W x x ε= − − ; D is 

diagonal matrix, with diagonal element of 

( , ) ( , )
N

j
D i i W i j=∑ . { }( , ) 1,1Y i j ∈ −  makes sure index 

coding is binary coding; 1 0TY =  makes sure the probability 

that index coding is 1 and -1 is 50%, while TY Y I=  make sure 

every bit of index coding is not correlated. 

Solving Equation (2) is a NP problem. SH relaxing index 

coding result is binary condition so that Equation (2) is 

solvable. That is, SH converts solving Equation (2) to solving 

the minimum eigenvalue of Laplacian matrix L. After solving 

Equation (2) is converted to dimensionality reduction problem 

of Laplacian eigenmap, PCA is directly introduced in SH to 

carry out dimensionality reduction for original data.  

However, in PCA dimensionality reduction process, every 

dimension of original data participates in dimensionality 

reduction in the form of linear combination. It is hard to gain 

physical interpretation of this process. For given image 

training set, over-completed visual words can be usually 

gained. An image can be fully expressed only with several 

visual words, i.e. an image is usually related to a limited 

number of visual words. For example, visual words related to 

colors may be more suitable for expressing rainbow, while 

visual words related to shapes are more suitable for 

expressing automobile.  

This paper uses SPCA[12] in SH index to replace PCA, 

transforms traditional PCA to non-convex regression form to 

gain SPC so that index coding is more interpretable. This 

algorithm in this paper is called SSH index. Since SPCA is a 

non-convex algorithm, convex optimization algorithm is thus 

adopted to gain globally optimal solution of SPC.[4] 

Assuming SPC p of Laplacian matrix L is a d-dimension 

vector, the following optimization problem can be gained 

through giving a constraint to cardinality of p and removing 

unrelated limiting conditions [12]:  

{ }
2

min : ( )

: ( ) 1,1

1 0

T

T

imize p Lp Card p

subjectto p i

p

ρ+
∈ −

=

          (3) 

Where, ( )Card p  means cardinality of p; parameter 

ρcontrols sparse degree. Solving Equation (3) is still a NP 

problem. However, we can find out corresponding positive 

semidefinite convex optimization problem [4]: 

{ }
min : ( ) 1 1)

: ( ) 1,1

1 0

T

T

imize trace LP P

subjectto p i

p

ρ+

∈ −

=

         (4) 

Where, 
TP pp= , every element of P is the absolute 

value of corresponding elements in matrix P. Equation (4) can 

be solved through recursion [4]. 

The above paper gives SSH solving process. The vector 

after Euclidean space dimensionality reduction can be 

transformed to vector of Hamming space through directly 

taking threshold value. But, a problem is still not solved, i.e. 

how does the images outside training set index and code? In 

recent years, there have been some methods to solve this 

problem [2]. Main thought is to transform the eigenvector to 

eigenequation. Through assuming every original eigenvector 

belongs to a manifold subspace and obeys multi-dimension 

even distribution, this problem can be solved through 

eigenequation of weighted Laplace-Beltrami operators [11]. 

2.2. Binary Index Coding of SSH 

For given training set including N images NxdX R∈ , 



 International Journal of Intelligent Information Systems 2015; 4(2-2): 1-4  3 

 

mapping function Θ maps d-dimension X of Euclidean space 

to m-dimension Y of Hamming space. The process of 

solvingΘis divided into two steps: 

1) Solve m sparse principle vectors through Formula (4), 

and map NxdX R∈ to NxmB R∈ . 

Calculate covariance matrixΣ of X. its SPC p can be solved 

through convex optimization stated previously. Update 

Σaccording to Formula (5). 

( )T Tp p pp∑ = ∑− ∑               (5) 

Repeat this process for m times and gain m SPC 

{ }1
, ,

m
p p⋯ . These principal component vectors serve as 

column vectors of the matrix and gain matrix M. eigenmatrix 

B after dimensionality reduction of N m×  is thus gained 

through B X M= × . 

2) Map Euclidean space matrix B to Hamming space 

matrix Y. 

Define the jth vector of matrix B as (:, )j
B , and k

j
δ can be 

defined as follows:  

2
2

max min
(:, ) (:, )

2

1 j j

k

B Bk

j e

ε π

δ
−

−= −
              (6) 

Where, 1,...k N= ;
max

(:, )j
B  and 

min

(:, )j
B  refer to the maximum 

value and the minimum value of (:, )j
B ;ε is a constant. For 

each column vector (:, )j
B , N 

k

j
δ can be solved. Thus, 

N m× ( 1,... ; 1,... )
k

j
k N j mδ = = can be gained. Sort 

k

j
δ , take 

the first m 
k

j
δ  and express them as { }min min

1 ,..., mδ δ . 

Assuming binary coding corresponding to i
x is 

{ }1,1
m

i
y ∈ − , the jth mapping value ( , )y i j can be solved 

according to the following function:   

min

max min

(:, ) (:, )

( , ) ( , ( , )) sin( ( , ))
2

j

t t

k
y i j B i t B i t

B B

π πδ= Θ − +
−

  (7) 

Where, 
min

j
δ  is the jth minimum value of { }min min

1 ,..., mδ δ , 

which is solved through the t column of k and B; 
max

(:, )j
B  and 

min

(:, )j
B  refer to the maximum value and the minimum value of 

(:, )t
B , ( ,... ), (1,... )i i N j m= = . Transform it to binary coding 

through regarding 0 as the threshold value. 

3. Experiment 

Before you begin to format your paper, first write and save 

the content as a separate text file. Keep your text and graphic 

files separate until after the text has been formatted and styled. 

Do not use hard tabs, and limit use of hard returns to only one 

return at the end of a paragraph. Do not add any kind of 

pagination anywhere in the paper. Do not number text 

heads-the template will do that for you. 

Finally, complete content and organizational editing before 

formatting. Please take note of the following items when 

proofreading spelling and grammar: 

3.1. Experimental Data set and Feature Expression 

This paper compares properties of SSH index algorithm on 

two image data sets (Oxford5k and MCG-WEBV) as well as 

E2LSH, RBM and SH.) 

Oxford5k: including 5062 11 landmark images of 

University of Oxford. This data set provides the standard 

answer of artificial labeling. In this experiment, after SIFT 

local features are extracted from each image, K-means 

clustering algorithm is used to gain 300 visual words to 

express original image data.  

MCG-WEBV: this data set contains 80031 videos of 

YouTube website with the highest click rate from December 

2008 to February 2009. This data set provides 828-dimension 

vectors extracted from key frames of videos. 3814 images are 

drawn randomly in this experiment.  

This paper takes 1.5% of original mean Euclidean distance 

as neighbor threshold value which serves as the standard [11]. 

F1 and AUC serve as measurement standards. 

3.2. Experimental Results 

Table 1 and Table 2 show index results of two data sets. m 

means digits of index coding. The boldface means the best 

result under each index coding digit. It can be seen that as a 

random mapping index algorithm, index property of E2LSH 

changes little as the rise in the number of index digits. SSH 

obtains the best results on F1 and AUC measurement 

standards. 

Table 1. Experimental results of Oxford5k data set 

m 
F1 AUC 

SSH SH E2LSH RBM SSH SH E2LSH RBM 

2 0.2135 0.2134 0.1055 0.2088 0.5088 0.5085 0.5085 0.5085 

4 0.2135 0.2135 0.1055 0.1791 0.5088 0.5088 0.5085 0.5043 

8 0.2136 0.2136 0.1055 0.1595 0.5097 0.5097 0.5085 0.4933 

16 0.2493 0.2286 0.1055 0.1649 0.5980 0.5520 0.5085 0.4991 

32 0.3579 0.3273 0.1046 0.1054 0.7246 0.6928 0.5085 0.4812 
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Table 2. Experimental results of MCG-WEBV data set 

M 
F1 AUC 

SSH SH E2LSH RBM SSH SH E2LSH RBM 

2 0.4003 0.3826 0.0664 0.3255 0.6312 0.6117 0.6073 0.5971 

4 0.4960 0.4688 0.0664 0.3227 0.7299 0.7197 0.6073 0.5482 

8 0.5652 0.4481 0.0664 0.3161 0.7671 0.6998 0.6073 0.5475 

16 0.5489 0.0611 0.0664 0.3112 0.7432 0.6075 0.6073 0.5486 

32 0.3706 0.0027 0.0664 0.3040 0.6792 0.5975 0.6073 0.5503 

 

4. Conclusions 

This paper introduces SPCA in traditional SH and designs 

global optimal solution so that high-dimension image index 

coding become more effective and interpretable. Besides, this 

paper also discusses image index coding mode outside the 

training set. Experimental results show SSH is superior to 

other similar algorithms. 
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