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Abstract: Aiming at properties of remote sensing image data such as high-dimension, nonlinearity and massive unlabeled 

samples, a kind of probability least squares support vector machine (PLSSVM) classification method based on hybrid entropy 

and L1 norm was proposed. Firstly, hybrid entropy was designed by combining quasi-entropy with entropy difference, which was 

used to select the most “valuable” samples to be labeled from massive unlabeled sample set. Secondly, a L1 norm distance 

measuring was used to further select and remove outliers and redundant data from the sample set to be labeled. Finally, based on 

originally labeled samples and screened samples, PLSSVM was gained through training. Experimental results on classification 

of ROSIS hyperspectral remote sensing images show that the overall accuracy and Kappa coefficient of the proposed 

classification method reach 89.90% and 0.8685 respectively. The proposed method can obtain higher classification accuracy with 

few training samples, which is much applicable to classification problem of remote sensing images. 

Keywords: Remote Sensing Image, L1 Norm, Active Learning,  
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1. Introduction 

Classification of remote sensing images means to make 

each pixel point region in the image belong to a category in 

several categories or one among several special elements. The 

classification results is to divide image space into several 

sub-regions, and each sub-region presents a practical land 

object 
[1-2]

. In actual classification of remote sensing images, 

there are usually massive unlabeled samples, while the 

proportion of labeled samples is very small. Thus, it is very 

difficult to look for the information in need of labeling from 

these massive unlabeled samples. Besides, the cist used to 

label these samples is very high. Active learning algorithm is a 

new method for sample training. It is different from passive 

learning algorithm where samples are selected randomly 
[3-4]

. 

In the process of machine learning, learners can actively 

choose the data most beneficial to improving properties of a 

classifier, automatically mark and add them in training 

samples for learning so as to effectively avoid excessive 

manual intervention and reduce the number of labeled 

samples. 

The core of active learning algorithm is that which strategic 

selection function is used to select the most “valuable” sample 

for labeling from unlabeled samples. Since the evaluation 

criteria for “value” are different, multiple active learning 

algorithms appear. Literature [4] selects the samples for 

labeling which current classifier cannot confirm the category 

mostly. Generally, this is called uncertain sampling. This 

method can fully select the samples beneficial to the classifier, 

and gain better results than random algorithm. But it has large 

randomness, so only sub-superior samples set can be picked 

out. In addition, outliers and redundant data may be easily 

chosen 
[7]

. The introduction of quasi-entropy can reduce 

sampling randomness to some extent. Literature 
[8]

 proposes a 

heuristic active learning algorithm which selects the most 

possible misclassified samples based on committee. This 

algorithm chooses the most possible misclassified samples of 

current classifier during every sampling and eliminates the 

samples more than a half in the space so as to gain faster 

convergence speed than mainstream selection algorithm. 

Literature [9] randomly selects unlabeled samples from 

uncertain misclassified samples on the verification set for 

labeling. This algorithm owns better accuracy rate than 

standard algorithm. But, these algorithms still probably 
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choose outliers and redundant data, and calculation 

complexity is high. The introduction of entropy difference can 

help pick up misclassified samples more conveniently. In 

order to get more refined sample set, hybrid entropy is gained 

through fusing quasi-entropy and entropy difference. Since 

the algorithm may result in selecting outliers and redundant 

data, L1 norm distance measurement is used to choose these 

data and eliminate them. 

This paper proposes an active learning algorithm based on 

hybrid entropy and L1 norm. This algorithm improves 

selection function from two aspects: 1) the most “valuable’ 

samples are selected with hybrid entropy, and a rough sample 

set to be labeled is gained; L1 norm distance measurement is 

used to choose and eliminate possible outliers and redundant 

data; 2) remote sensing image data usually own such features 

as high dimension, nonlinearity and massive data, so support 

vector machine ca be used to analyze and treat them. But 

traditional support vector machine classification method only 

takes into account of two extreme cases during deciding 

sample classification, i.e. the label for the sample belonging to 

the category is +1 and the label for the sample which does not 

belong to the category is -1. However, in practical application, 

due to the existence of uncertainty and influence of external 

factors, every sample has different division methods. 

Especially form some problems, due to sample randomness 

and fuzziness, they cannot be classified into a class explicitly, 

but can only classified into a class according to certain 

probability or certain membership degree. So, it is improper to 

empress class information only with { }1, 1− +  

[10]

. Thus, for 

the samples selected on the basis of active learning algorithm, 

PLSSVM is adopted as the classifier to classify and identity 

hyperspectral remote sensing images. 

2. Plssvm 

Aiming at classification inaccuracy and uncertainty of 

traditional support vector machine as well as defects of 

interference samples, Literature [10] designs PLSSVM to 

classify the samples which cannot be explicitly classified into 

a class according to certain probability. In this way, sample 

classification has qualitative interpretation and quantitative 

evaluation. Posterior probability of sample x belonging to 

each class is: 

1 2

1 (1 | 2) (1| )

(2 |1) 1 (2 | )

( |1) ( | 2) 1

( , , ) (0,0, ,0) ,T T

c

p p c
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p c p c

p p p

− − 
 − −  ⋅
 
 − − 

=

⋯
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⋮ ⋮ ⋮
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           (1) 

Where, c is the number of classes; ( |1)p c  is posterior 

probability that sample x belongs to the cth class under the 

condition where sample x belongs to the first class. Similarly, 

(1| )p c ； m
p  is posterior probability that sample x belongs to 

the mth class ( 1, 2, , )m c= ⋯ . 

Formula (1) can be regarded as c equation sets used to solve 

c unknown variables m
p . Through solving Formula (1), in 

output probability modeling of multi-classification problem, 

decision function of m
p of sample x in each class can be 

gained, i.e. take the class with the largest posterior probability 

as the sample. The class that x belongs to is as follows: 

1,2, ,

( ) arg max( ).m
m c

y x p
=

=
⋯

                 (2) 

3. Active Learning Based on Hybrid 

Entropy and L1 Norm 

Labeled sample set 1 1 2 2
{( , ), ( , ), , ( , )}

l l
L x y x y x y= ⋯  from 

unknown distribution and an unlabelled sample 

set 1 2
{ , , }

l l n
U x x x+ += ⋯  are given. Overall sample set is 

L Uχ = ∪ . There are c classes. R d

i
x ∈ ( 1,2, , ;i n= ⋯ d 

refers to the number of dimensions of samples) and 

{1, 2, , }
i

y c∈ ⋯ is the label of sample i
x . The system adopts 

labeled sample set L as the training set to gain initial PLSSVM 

classifier, and actively selects some samples with large 

information quantity from unlabelled sample set U according 

to a strategy. Then, experts label them and add them in the 

training set. Thus, new PLSSVM classifier is obtained. After 

repeated cycles, classification results will finally reach the 

threshold value of an evaluation index or specified cycle 

times. 

A. Sample selection strategy based on hybrid entropy 

The classifier may easily make mistakes during judging the 

most uncertain sample classification, thus leading to low 

classification accuracy rate. Therefore, uncertainty is an 

important factor that experts should consider when selecting 

the samples to be labeled. Sample uncertainty algorithms can 

be based on Shannon entropy, posterior probability and the 

nearest boundary etc. The algorithm based on Shannon 

entropy has gained good results in many applications, but it 

cannot select the optimal samples so that calculation 

complexity is high during training the set. Thus, optimization 

selection standard (i.e. quasi-entropy with high quality factor) 

is needed to measure sample uncertainty. Literature [11] 

points out that quality factor of (0 1)ap a− < <  convex 

function is higher than that of logp p . If the quality factor is 

larger, quasi-entropy is more sensitive to probability 

distribution evenness near the minimum value, and the shape 

of minimum value of quasi-entropy is shaper. So, 

quasi-entropy surpasses Shannon entropy in terms of 

significance index of minimum value. Therefore, 

quasi-entropy with high quality factor replaces Shannon 

entropy. Assuming posterior probabilities that sample i
x  

belongs to every class are 1 2
, ,

c
p p p⋯ , and 

1

1
c

im

m

p
=

=∑  is 

met, uncertainty measure of sample i
x can be expressed as  

1

( )
c

i im

m

f pλ
=

=∑                       (3) 
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Where, ( ) a

im im
f p p= − ; i

λ  has the following properties:  

Property 1: when posterior probability distribution is most 

even (i.e. all m
p  are equal), i

λ  is the minimum and equal to 

(1/ )cf c . This is also the situation where uncertainty is the 

largest.  

It can be known from Property 1 that when posterior 

probabilities m
p  that sample i

x  belongs to every class are 

equal, sample uncertainty is the largest, and the value of 

quasi-entropy i
λ is the smallest. So, quasi-entropy can be 

sued to figure out uncertainty measurement value of each 

sample. If quasi-entropy value of samples is smaller, the 

information quantity is larger.  

In information entropy, the samples which may be easily 

misclassified can be expressed with the absolute value of 

differences of two absolute values:  

max sec

max max max

sec sec sec

( ) ( ) ,

( ) log ,

( ) log ,

i
d H p H p

H p p p

H p p p

= −
= −

= −
                (4) 

Where, max
p  is the maximum posterior probability that 

sample i
x  belongs to every class; sec

p is the second largest 

posterior probability that sample i
x  belongs to every class. 

Entropy difference distance metric function of density 

functions max
p  and sec

p of the two posterior probabilities 

have the following characteristic [12]  

1
max sec max sec

1

2L
p p p p− = − ≤∑          (5) 

Where, 
1

max sec L
p p− is standard Minkowski L1 norm 

distance measurement, then 

1
max sec max sec( ) ( )

L
H p H p p p− ≤ −         (6) 

This characteristic shows retrieval results of Entropy 

difference distance metric is included in retrieval results of L1 

norm distance measurement, and the retrieval range narrows.  

It can be seen from Formula (4), when posterior probability 

of samples changes slightly, and the change in entropy value 

will also be small. When entropy difference value is smaller, 

the possibility that sample 
i

x belongs to some two classes is 

close, i.e. this sample may be misclassified most easily, and 

the information quantity is also the largest.  

According to analysis of quasi-entropy and entropy 

difference, the following conclusions can be drawn: if 

quasi-entropy value is smaller, sample uncertainty is larger; 

entropy difference value is smaller, the sample may be 

misclassified more easily. If the values of quasi-entropy and 

entropy difference are smaller, information quantity is larger 

and there are larger impacts in classification effects. In 

massive data sets, the sample size selected purely by 

quasi-entropy or entropy difference strategy is also large. In 

order to pick out more refined samples and reduce labeling 

cost, quasi-entropy and entropy difference are fused to gain a 

new sample selection measurement strategy - hybrid entropy. 

i i i
u dλ= .                         (7) 

M samples with the highest information quantity are 

worked out according to Formula (7), i.e. M samples with the 

smallest i
u  value. 

B. Sample similarity measurement based on L1 norm 

The samples selected by hybrid entropy may have outliers 

and redundant data. These data make little contributions to 

classification accuracy of the classifier and even will affect its 

classification accuracy. Therefore, L1 norm distance 

measurement will be adopted to work out similarity among 

samples. Outliers and redundant data will be removed 

according to similarity value.  

Literature [13] adopts L1 norm, L2 norm and quadric 

expression to compare data retrieval properties. The testing 

results show these distance measurement methods differ little 

in retrieval property. L1 norm distance measurement is more 

robust than L2 norm distance measurement, and L1 norm 

distance measurement is the most simplest in calculation. So, 

L1 norm distance measurement is adopted to calculate 

similarity among samples to be labeled. 

1

,

( , 1, 2, , ),

d

hj hk jk

k

s x x

h j v

=

= −

=

∑

⋯

                    (8) 

Where, hk
x  and jk

x are the kth attribute in the hth and jth 

samples; v is the number of samples.  

Assuming mean space distance of samples of the same class 

is θ, /100a θ= , β θ= . If hj
s a< , sample j

x  is judged to 

be redundant information and eliminated; if min
hj

s β> , 

sample j
x  is judged to be an outlier and deleted. Then, the 

remaining samples are selected and submitted to experts for 

labeling. This deletes outliers, eliminates redundant data, 

further narrows scale of sample set to be labeled and reduces 

cost of manual labeling. 

4. Algorithm Steps 

Input: labeled sample set is expressed as L and unlabelled 

sample set is expressed as U; the number of samples is 

expressed as M; ending condition is expressed as S; the 

parameter is expressed as a. 

Algorithm process:  

1) Train classifier PLSSVM with labeled sample set; 

2) Carry out a~g repeatedly until ending condition S is met;  

a) Posterior probability that unlabeled sample set U 

belongs to each class is calculated with classifier 

PLSSVM; 

b) Calculate quasi-entropy
i

λ  and entropy difference 
i

d  

of unlabeled samples according to posterior 

probability gained, Formula (3) and (4); 

c) Calculate hybrid entropy
i

u  according to Formula 

(7);  
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d) Select m samples with the smallest 
i

u value and add 

them in the sample set to be labeled;  

e) Calculate similarity of M samples according to 

Formula (8), eliminate the samples meeting
hj

s a<  

and min
hj

s β> , and make the remaining samples 

form new sample subset A; 

f) Submit A to experts for labeling and add labeled 

samples in L;  

g) PLSSVM. Utilize L to train classifier PLSSVM again. 

Output: train sample set L finally labeled and gain classifier 

PLSSVM. 

5. Experiment and Analysis 

A. ROSIS hyperspectral experimental data 

ROSIS hyperspectral experimental data come from 

Literature [14]. Spectral region is 0.43~0.86 µm, with 

610×340 pixel, 103 wave bands and 1.3 spatial resolution. 

Besides, training region and testing region actually measured 

synchronously are provided. The training samples include 9 

classes of land objects: bituminous pavement (548 pixel), tree 

(524 pixel), brick (514 pixel), shadow (231 pixel), pitch roof 

(375 pixel), bare land (532 pixel), metal plate (265 pixel), grit 

(392 pixel) and grassland (540 pixel). Testing samples include 

9 classes of land objects: bituminous pavement (6592 pixel), 

tree (3064 pixel), brick (3682 pixel), shadow (942 pixel), pitch 

roof (1330 pixel), bare land (5029 pixel), metal plate (1345 

pixel), grit (2099 pixel) and grassland (18675 pixel).  

ENVI4.7 software is utilized to transform original data 

corresponding to the regions ROSIS hyperspectral image 

training sample and testing sample are interested in to ASCII 

data so as to process data in Matlab 7.8 environment.  

B. Calcification results of remote sensing image and 

analysis of results  

Active learning algorithm is adopted to select training 

samples for the classifier and to construct two types of 

APLSSVM, expressed as APLSSVM1 and APLSSVM2 in 

this paper. In the experiment process, parameter setting is as 

follows: kernel function of PLSSVM adopts polynomial 

kernel function; the optimal values of penalty parameter C and 

kernel parameter γ are confirmed with cross validation method, 

a=0.6 and M=100.  

1) Based on the same initial sample set, change the number 

of newly-added training samples, evaluate effects of the 

number of newly-added training samples on 

classification accuracy of two type of APLSSVM; the 

ending condition S is that the difference between 

adjacent two classification accuracies is less than 0.002 

or the number of iteration times reaches 15. This 

indicates high classification accuracy can be gained 

when PLSSVM is used to process remote sensing images; 

when the number of newly-added training samples is less 

than 300, classification accuracy of APLSSVM1 boots 

rapidly with the rise in the number of labeled samples; 

when the number of newly-added training samples 

exceeds 300, classification accuracy of APLSSVM1 

basically tends to be stable and maintains about 90% 

with the rise in the number of labeled samples; for 

APLSSVM2, its classification accuracy increases slowly 

with the rise in the number of labeled samples; to reach 

the same classification accuracy with APLSSVM1, 

APLSSVM2 needs more labeled samples, which will 

consumes more time and energy of experts. So, the cost 

is expensive. 

2) In the experiment, given training samples serve as the 

initial sample set. Under the condition where the number 

of newly-added training samples is the same, 

classification effects of two APLSSVM classifiers and 

passive PLSSVM classifier are compared. APLSSVM1 

and APLSSVM2 selects newly-added training samples 

for labeling through iteration of active learning algorithm; 

passive PLSSVM directly selects samples of the same 

number as newly-added samples for training. The 

number of training samples the three classifiers select is: 

original sample set + 300 newly-added samples. The 

ending condition S is that the number of iterations 

reaches 3. Table 1, Table 2 and Table 3 are confusion 

matrix and Kappa coefficient corresponding to each 

figure. 

It can be seen that APLSSVM2 and passive PLSSVM 

classify most grassland into bare land, and the 

misclassification phenomenon is serious; APLSSVM1 

performs relatively well in this aspect and can well classify the 

two types of land objects; misclassification accuracy of other 

land objects approaches for the three classifiers. 

The following can be gained according to Table 1-3: 

User’s accuracy: among all kinds of land objects, user’s 

accuracy differs mostly for bare land. User’s accuracy of 

APLSSVM1 is 80.04%, up over 30% compared with user’s 

accuracy of APLSSVM2 and passive PLSSVM. According to 

confusion matrix in Table 2 and Table 3, APLSSVM2 and 

passive PLSSVM misclassify most grassland into bare land. 

Thus, the proportion of grassland in bare land samples exceeds 

a half. For pitch roof, the largest user’s accuracy of 

APLSSVM2 is 83.90%, followed by APLSSVM1 (70.29%), 

and passive PLSSVM has the smallest user’s accuracy 

(65.58%). For the three classifiers, user’s accuracy differs 

little among other land objects.  

Table 1. Confusion matrix obtained by APLSSVM 1 

 
Bituminous 

pavement 
Tree 

Bric

k 
Shadow Pitch roof 

Bare 

land 

Metal 

plate 
Grit Grassland User’s accuracy/%  

Bituminous 

pavement 
5416 5 166 0 115 9 0 25 11 94.24 

Tree 0 2747 3 0 0 13 0 0 465 85.10 

Brick 273 0 3196 0 11 50 5 379 41 80.81 

Shadow 26 1 0 942 0 0 2 0 0 97.01 
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Bituminous 

pavement 
Tree 

Bric

k 
Shadow Pitch roof 

Bare 

land 

Metal 

plate 
Grit Grassland User’s accuracy/%  

Pitch roof 418 0 36 0 1201 2 53 5 0 70.29 

Bare land 23 201 0 0 0 4799 0 0 973 80.04 

Metal plate 0 2 0 0 0 35 1281 0 0 97.19 

Grit 405 0 251 0 3 0 2 1687 0 71.85 

Grassland 31 94 28 0 0 121 2 3 16901 98.38 

Producer’s 

accuracy/%  
82.16 

90.0

7 

86.8

5 
100 90.30 95.43 95.24 

80.3

7 
91.90 

Overall accuracy=89.90% 

Kappa=0.8685 

Table 2. Confusion matrix obtained by APLSSVM 2 

 
Bituminous 

pavement 
Tree Brick 

Shado

w 

Pitch 

roof 

Bare 

land 

Metal 

plate 

Gr

it  

Grassla

nd  
User’s accuracy/%  

Bituminous 

pavement 
5717 0 240 0 129 4 0 31 13 93.20 

Tree 0 2889 0 0 0 12 0 0 703 80.16 

Brick 135 0 3172 0 3 18 0 
38

0 
30 84.86 

Shadow 27 0 0 942 0 0 1 0 0 97.11 

Pitch roof 209 0 17 0 1193 0 0 3 0 83.90 

Bare land 10 59 3 0 0 4958 1 0 5115 48.87 

Metal plate 0 1 0 0 0 0 1287 0 0 99.92 

Grit 345 0 206 0 1 0 0 
16

75 
0 75.21 

Grassland 19 76 24 0 0 9 1 4 12796 98.97 

Producer’s 

accuracy/%  
88.47 95.50 86.62 100 89.97 99.14 99.77 

80.

03 
68.59 

Overall 

accuracy=81.56% 

Kappa=0.7691 

Table 3. Confusion matrix obtained by passive PLSSVM 

 Bituminous pavement 
Tre

e 

Bric

k 
Shadow 

Pitch 

roof 

Bare 

land 

Metal 

plate 

Gr

it 

Grasslan

d  
User’s accuracy/% 

Bituminous 

pavement 
5341 5 146 1 111 5 0 24 21 94.46 

Tree 0 
28

05 
2 0 0 15 0 1 981 73.74 

Brick 284 0 3174 0 9 51 9 
37

3 
79 79.77 

Shadow 3 1 0 841 0 0 2 0 100 88.81 

Pitch roof 411 0 24 0 1107 4 51 3 88 65.58 

Bare land 19 84 2 0 0 4801 0 0 5253 47.26 

Metal plate 0 2 0 0 0 35 1181 0 98 89.74 

Grit 402 0 208 0 3 0 1 
15

96 
78 69.76 

Grassland 32 67 26 0 0 18 1 2 12477 98.84 

Producer’s 

accuracy/%  
82.27 

94.

63 
88.61 99.88 90 97.40 94.86 

79.

84 
65.07 

Overall 

accuracy=78.48% 

Kappa=0.7305 

 

Producer’s accuracy: producer’s accuracy of grassland 

differs most greatly. Producer’s accuracy of APLSSVM1 is 

91.90%, up over 20% compared with producer’s accuracy of 

APLSSVM2 and passive PLSSVM. According to confusion 

matrixes in Table 2 and Table 3, nearly 1/3 grassland samples 

are misclassified into bare land. Producer’s accuracy of other 

land objects approaches for the three classifiers. Overall 

accuracy and Kappa coefficient: since overall accuracy takes 

into account of corresponding weight relationship of each 

class, it is relatively objective; since Kappa coefficient 

considers the prelateship between user’s accuracy and 

producer’s accuracy, it has become classification accuracy 

evaluation index of remote sensing images together with 

overall accuracy. Based on analysis of Table 1-3, overall 

accuracy and Kappa coefficient of APLSSVM1 are the 

highest, followed by APLSSVM2. Passive PLSSVM 

performs most poorly.  

Experiment results show, APLSSVM1 over considers 

sample uncertainty and samples which may be easily 

misclassified, and eliminates outliers and redundant data from 

samples to be selected. Finally, more refined training sample 

set is gained. Therefore, under the same number of training 

samples, APLSSVM1 has higher classification accuracy than 

other classifiers.  

6. Conclusions 

a) Hybrid entropy gained through fusing quasi-entropy and 
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entropy difference can measure sample uncertainty and 

avoid sample misclassification. Sample selection 

strategy based on hybrid entropy can choose more 

refined samples and reduce the cost of manual labeling. 

b) Sample similarity measurement method based on L1 

norm can screen out outliers and redundant data, which 

further reduces the scale of sample set to be labeled and 

cost of manual labeling. 

c) Compared with heuristic active learning algorithm which 

selects the most possible misclassified samples based on 

committee, active learning algorithm based on hybrid 

entropy and L1 norm can pick out more valuable samples 

to be labeled and gain high classification accuracy with 

few training samples. 

d) PLSSVM owns both qualitative explanation and 

quantitative evaluation during classifying uncertain 

samples, suitable for classifying remote sensing image 

data. 

e) For remote sensing image data with massive unlabelled 

samples, active learning can help find out the most 

valuable information from massive unlabeled samples. 

Compared with passive PLSSVM which selects samples 

randomly, APLSSVM owns higher classification 

accuracy. 
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