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Abstract: Fault detection of rotating machinery under heavy noise background, is a significant but difficult issue, and 

traditional fault detection approaches are difficult to apply. To address this problem, a novel approach that combines variational 

mode decomposition (VMD), L-Kurtosis and random decrement technique (RDT) is proposed, which procedures are 

summarized as follows. First, the raw vibration signal collected from the rotating component is decomposed using VMD into a 

set of intrinsic mode functions (IMFs), and the noise components can be separated from the raw signal. Second, the L-Kurtosis 

indicator is introduced to solve the problem that the fault information is difficult to track, and the optimal intrinsic mode function 

(IMF) can be determined according to the maximum L-Kurtosis value. Then, RDT is further employed to purify the optimal IMF 

to eliminate the other unknown interference sources. Finally, a Hilbert envelope spectrum analysis is used for detecting the fault 

type. In order to validate the proposed approach, the numerical simulations and real experimental investigations about rolling 

element bearing and gear are conducted. The results illustrate that the proposed approach can effectively detect faults of rotating 

components. 

Keywords: Rotating Machinery, Fault Detection, Variational Mode Decomposition, L-Kurtosis,  

Random Decrement Technique 

 

1. Introduction 

Rolling element bearing and gear are the key components 

used in modern rotating machinery and play the increasingly 

important role. Once the breakdowns of these key rotating 

components occur and with the development of fault, may 

lead to high economic loss, huge security problems, even 

heavy casualties. Due to the importance, the detection of the 

faults in rotating components has attracted wide attention, and 

it is of particular importance to expand related research to 

guarantee the safety of machine operations and staffs [1-6]. 

Proven as the most effective technique for condition 

monitoring and fault diagnosis through lots of experimental 

researches, vibration analysis [7, 8] has developed vigorously. 

The vibration signals collected from faulty bearing and gear 

carry enormous faulty information, which is manifested as a 

series of periodic impact impulses, but usually contaminated 

by noise, and the extracted feature frequency can not 

characterize the faulty type. Nowadays, plenty of signal 

processing techniques has been proposed, and mainly divided 

into two categories [9], i.e., the intelligent classification and 

faulty feature frequency extraction. For the first category, it 

relies on intelligent technique to distinguish whether the state 

of the rotating component is healthy or faulty, such as deep 

belief network (DBN) [10], hidden Markov model (HMM) 

[11] and convolutional neural network (CNN) [12], etc. 

However, the number of samples for different fault types is far 

below the demand, which has largely limited the development 

of such techniques. The main core of the another category is to 

eliminate the noise and other unknown interference sources, 
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and extract the faulty feature frequency. The Hilbert envelope 

analysis [13, 14] is one of the beneficial tools for identifying 

vibration impact, given such benefit, it has been applied in 

detecting the fault type for mechanical system. However, its 

performance depends greatly on the selection of the denoising 

technique. 

Among the available denoising techniques, variational 

mode decomposition (VMD) [15] has been developed rapidly 

due to its potential in detecting faults. VMD is an adaptive 

technique that can decompose the non-stationary vibration 

signal into a series of independent intrinsic mode functions 

(IMFs) that represent the natural oscillatory modes of the raw 

signal. Recently, many researchers has investigated its 

performance. Zheng et al. [16] optimized VMD technique and 

applied it to detect faults in rotating machinery, and the results 

shows that the optimized technique can extract the knocking 

abnormal noise component effectively. Gu et al. [17] proposed 

a hybird approach combining VMD and Teager energy 

operator, and successfully applied to the early fault detection 

of the rolling element bearing. Du et al. [18] proposed a novel 

technique named fractional iterative variational mode 

decomposition based on VMD, and the result verify its 

obvious advantage in processing the noisy signals and even 

signals containing weak components. Yang et al. [19] 

combined VMD and phase space parallel factor analysis 

technique, and the result indicate that the combination has 

good performance in detecting weak fault signal of the 

rotating components. 

However, the selection of the intrinsic mode function (IMF) 

usually depends on human experience, and a inappropriate 

selection strongly influences the implementation 1 of the 

subsequent steps. In order to accurately analyze an IMF 

containing the faulty information and avoid the problem of 

selection, the L-Kurtosis indicator is introduced. L-Kurtosis is 

a fourth-order L-moment, which has obvious advantage in 

parameter estimation and robustness to outliers compared 

with kurtosis. Withers CS and Nadarajah S [20] made a 

comparison of several indicators and proved that the 

superiority of the L-Kurtosis indicator. Liu et al. applied 

L-Kurtosis into the fault detection of rolling element bearing 

and achieve good results [21]. 

For the optimal IMF, it mainly consists of two parts, i.e., the 

random part and deterministic part. The random part 

represents the noise and other unknown interference sources, 

and the deterministic part represents the periodic impact 

impulse signal containing faulty information. As a 

time-domain technique, Random decrement technique (RDT) 

is usually used to extract the structure modal properties from 

the vibration signal [22-27]. Huang et al. [28] introduced RDT 

to identify the Vortex-induced vibration response 

automatically from the massive acceleration response and 

achieved good result. Here, RDT is used to remove the 

random part from the optimal IMF through averaging enough 

sample responses, and the purified signal (periodic impulse 

signal) containing the faulty information can be extracted 

[29-30]. In view of the limitations of the traditional fault 

detection approaches, combining VMD, L-Kurtosis and RDT 

might be suitable to detect the faults of rotating components. 

In this paper, VMD is employed to decompose the vibration 

signal into a set of IMFs, L-Kurtosis is introduced to select the 

optimal IMF, RDT is applied to further extract the purified 

signal containing the faulty information, which is 

demodulated using a Hilbert envelope analysis to extract the 

faulty feature frequency. Therefore, the remainder pare of this 

paper is compiled as follows. Section II introduces the 

proposed approach and reviews the bases of VMD, L-Kurtosis 

and RDT in details, respectively. Section III indicates the 

proposed approach by simulated data. In Section IV, the real 

experimental data collected from the faulty bearings and gears 

are further analyzed to verify the proposed approach. The 

whole paper has been concluded in Section V. 

2. The Proposed Approach 

2.1. Variational Mode Decomposition 

In terms of signal decomposition, VMD [15] has the 

obvious advantage, which can decompose the complex and 

multi-component signal into a set of IMFs. Based on the signal 

analysis theory, the vibration signal y(t) can be represented by 

a series of IMFs uk preserving the natural oscillatory modes of 

the raw signal. The signal y(t) can be expressed as follows 

[15]: 

∑=
k kuty )(                 (1) 

The most critical aspect of VMD is the problem of solving 

the constrained variational model [31-32], which is given by: 
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where {uk} and {ωk} contain all IMFs and corresponding 

center frequencies. ||-||2, δ and * represent the Euclid norm, 

Dirac distribution and convolution operator, respectively. 

The key to solve the problem is that how to convert the 

constrained problem into an unconstrained problem, therefore 

a quadratic penalty term α and Lagrangian multipliers λ(t) are 

introduced. The model (show in (2)) is updated to the 

following form: 
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Meanwhile, the equations of uk, ωk and λ(t) are updated as 

follows: 
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where τ represents the update parameter and the mark ∧  

represents the updated value. 

2.2. L-Kurtosis 

L-Kurtosis is more accurate in parameter estimation and 

more robust to outliers compared with kurtosis. Here, 

L-Kurtosis is introduced [21] to track the faulty information. 

{uq}={u1,…, uq} represents the continuous independent 

sample with the cumulative distribution F(u), 

{uq:q}={u1:q,…uq:q} represents corresponding order statistics. 

The rth L-mocment ηr is given by: 
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E(ur-k:r) can be described as follows: 
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And the first four order L-moment can be obtained: 
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in which ( ) ( ) 3,2,1,0,
1
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i

i
 is the ith order 

weighted moment. 

The calculation equation of the L-Kurtosis value LK is 

presented as follows: 
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2.3. Random Decrement Technique 

In order to further eliminate other unknown interference 

sources, RDT is employed to the optimal IMF [29, 30]. Here, a 

suitable threshold level is applied to divide equally the optimal 

IMF into a series of segments H with the same initial condition 

(ui(ti)=us =const., i=1, 2,..., H), and the length of division is µ. 

By averaging all the segments H, the random decrement can 

be extracted and it can be expressed by: 
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Figure 1 shows the flowchart of the proposed approach, 

which mainly consists of the following three steps: 

 

Figure 1. The flowchart of the proposed approach. 
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(1) Decompose the raw signal using VMD. 

For the simulated and real experimental signal, the VMD 

technique is employed and the signal is decomposed into a set 

of IMFs. In this step, the effect of the noise can be almost 

removed. 

(2) Track the faulty information using L-Kurtosis. 

An unsuitable IMF strongly influences the detection results 

and the selection of the optimal IMF is not easily possible. 

Aiming at this problem, the L-Kurtosis indicator is introduced 

in this work and the optimal IMF can be determined through 

the maximum L-Kurtosis value. 

(3) Purify the optimal IMF using RDT and obtain the detect 

result. 

For the optimal IMF, a Hilbert envelope spectrum analysis 

is used to demodulate the faulty feature frequency. If the 

demodulated frequency matches theoretical faulty feature 

frequency, the fault type of the rotating components (rolling 

element bearing and gear) can be determined. If not, RDT is 

further applied to purify the optimal IMF, the other unknown 

interference sources can be eliminated, and the detect result 

can be obtained by repeating Hilbert envelope spectrum 

analysis. 

3. Numerical Simulation 

To verify the capability of the proposed approach in 

analyzing the low signal-to-noise ratio signal, a vibration 

signal y(t) corresponding to the rotating component is 

simulated in this section and its mathematical model is given 

as follows: 

)()()()( tntzTtxty +++=        (15) 

where x(t) and T represent the impulse response signal and 

impulse period, z(t) represents the interference signal related 

to the rotating frequency, n(t) represents the noise interference 

component. 

The impulse response signal x(t) is expressed by: 

)2cos()( tfetx n

St π−=           (16) 

where S and fn represent the attenuation coefficient and natural 

frequency of rotating component, respectively. The 

attenuation coefficient S is defined as follow: 

γπ nfS 2=                (17) 

in which γ represents the damping ratio. 

The signal z(t) is defined as 

0 0 0
( ) 5sin(2 ) 1.5sin(4 ) 0.5sin(6 )zt ft ft ftπ π π= + +    (18) 

where f0 represent the shaft rotating frequency, respectively. 

The relevant parameters of the simulated signal are 

supposed as follows: T=0.01s, S=500, fn=4000Hz, 

γ=0.019894, P=0.01, f0=30Hz, and the corresponding faulty 

feature frequency is 100Hz. The noise component n(t) is a 

standard normal distribution with standard deviation 3, the 

sampling frequency fs is set to 20480Hz and the sampling 

points N is 13824. 

The time domain waveform of the simulated signal and its 

Hilbert envelope spectrum is presented in Figure 2. From 

Figure 2, it can be seen that the periodic impulses of the fault 

are mixed with the heavy noise, and the faulty feature 

frequency is submerged. In order to eliminate the noise 

interference, VMD is employed and the decomposition result 

of the simulated signal is shows in Figure 3. As shown in 

Figure 3, none of the decomposed IMFs exhibit the periodic 

impact characteristic clearly. The selection of the IMF 

containing the faulty information depends on manual 

experience in a general way and an unsuitable IMF strongly 

influences the implementation 1 of the subsequent steps. 

Aiming at this problem, the L-Kurtosis indicator is introduced 

and the relevant L-Kurtosis values is shown in Table 1. 

From Table 1, the L-Kurtosis values for the decomposed 

IMFs are 2.2334, 3.0476, 3.0989, 2.8546 and 3.0301, 

respectively. The maximum L-Kurtosis value corresponds to 

IMF3 and its Hilbert envelope spectrum is shown in Figure 4 

(a). As shown in Figure 4 (a), the faulty feature frequency 

(100Hz) and its harmonics are submerged by other unknown 

frequency components, such as 91.86Hz and 171.7Hz, etc. 

Therefore, RDT is performed to IMF3 for further purifying. 

 

Figure 2. The time domain waveform of the simulated signal and corresponding Hilbert envelope spectrum. 
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Figure 3. The decomposition result using VMD. 

Table 1. The corresponding L-Kurtosis values. 

IMF IMF1 IMF2 IMF3 IMF4 IMF5 

L-Kurtosis value 2.2334 3.0476 3.0989 2.8546 3.0301 

 

Figure 4. The Hilbert envelope spectrum of the (a) the optimal IMF, (b) the purified signal, (c) the combination of IITD, L-kurtosis and RDT. 

The Hilbert envelope spectrum of the purified signal is 

shown in Figure 4 (b). In addition, in order to further 

verify the validity of the proposed approach, improved 

intrinsic time-scale decomposition (IITD) technique is 

introduced and the result of the combination of IITD, 

L-kurtosis and RDT is shown in Figure 4 (c). Comparing 

Figure 4 (a), Figure 4 (b) and Figure 4 (c), it can be seen 

that the faulty feature frequency (100Hz) and its 2-4 

harmonics (200Hz, 300Hz, 400Hz) are more clearly 

extracted in Figure 4 (b), the fault is detected successfully. 

Through the above analysis, the performance and the 

necessity of the combination of VMD, L-Kurtosis and 

RDT is indicated. 

4. Experimental Investigations 

In this section, real experimental investigations on the 

rolling element bearings and gear are conducted to further 

evaluate the ability of the proposed approach. The schematic 

of the machinery fault simulator test rig [6] is shown in 

Figure 5, which mainly includes the speed monitor, manual 

speed governor, speed sensors, motors, spindles, a computer 

with VQ data acquisition software and acceleration sensors. 

In order to simulate the inner race fault, outer race fault and 

the broken teeth fault, the single point defects are produced 

by electro-discharge machining on the corresponding 

positions in the bearings and gear, which are shown in 

Figures 6 (a), (b) and (c), respectively. The sampling 

frequency fs is set to 25.6kHz and the vibration signal points 

collected is 8192. 

The rotating components used in the experiment are the 

rolling element bearings of type ER-12K and bevel gear, 

respectively. The geometric parameters of the rolling element 

bearing are listed in Table 2. 

The shaft rotating frequency fshaft in the inner race fault 

experiment is set to 29.87Hz and the ball pass frequency of 

inner race (BPFI) [33] is calculated using the following 

equation: 
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2
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B
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d
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b =







+= α    (19) 

The shaft rotating frequency fshaft in the outer race fault 
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experiment is set to 29.87Hz and the ball pass frequency of the 

outer race (BPFO) [33] is calculated using the following 

equation: 

Hz
P

B
f

N
BPFO

d

d
shaft

b 15.91cos)1(
2

=−= α    (20) 

The shaft rotating frequency fshaft in the broken teeth 

experiment is set to 29.40Hz and the gear broken teeth fault 

manifests the shaft rotating frequency fshaft and its harmonics 

[34]. The number of gear teeth z is 18, and the mesh frequency 

fm is calculated using the following equation: 

Hzfzf shaftm 2.52929.4018 =×=×=      (21) 

4.1. Bearing Inner Race Fault Detection 

The time domain waveform of the raw vibration signal and 

corresponding Hilbert envelope spectrum are presented in 

Figure 7. As shown in Figure 7, the periodic impulse signal 

and the faulty feature frequency which can manifest the faulty 

type are submerged due to the heavy noise and other unknown 

interference sources, only the shaft rotating frequency and its 

2-3 harmonics (29.63Hz, 59.26Hz, 88.89Hz) appear. Hence, 

the proposed approach is performed. 

VMD is employed to remove the noise component and the 

decomposition result of the raw vibration signal is shown in 

Figure 8. From Figure 8, it can be seen that the arrangement of 

the decomposed IMFs is disorderly and it is difficult to 

determine the optimal IMF containing the faulty information. 

 

Figure 5. The schematic of the test rig. 

 

Figure 6. The bearing with (a) inner race fault, (b) outer race fault, (c) the gear with broken teeth fault. 

Table 2. Geometric parameters of ER-12K bearing. 

Parameter Rolling element number Nb Ball diameter Bd Pitch diameter Pd Contact angle α 

Value 8 0.3125 inch 1.318 inch 0 rad 

 

Figure 7. The time domain waveform of the raw vibration signal and corresponding Hilbert envelope spectrum. 
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Aiming at this problem, the L-Kurtosis indicator is 

introduced and used for each decomposed IMF, and the 

corresponding L-Kurtosis value is shown in Table 3. From 

Table 3, it can be seen that the optimal IMF is IMF3 and the 

corresponding Hilbert envelope spectrum is shown in Figure 9 

(a). From Figure 9 (a), the shaft rotating frequency (29.63Hz) 

and its 2-4 harmonics (63.59Hz, 88.89Hz, 118.5Hz) is appear, 

but the faulty feature frequency is heavily submerged and can 

not be extracted effectively. For this, RDT is further employed 

to eliminate the other interference sources from the optimal 

IMF and Figure 9 (b) shows the Hilbert envelope spectrum of 

the purified signal. And the result of the combination of IITD, 

L-kurtosis, RDT is shown in Figure 9 (c). Comparing Figure 9 

(a), Figure 9 (b) and Figure 9 (c), the faulty feature frequency 

(148.7Hz) are extracted effectively in Figure 9 (b). Meanwhile, 

the extracted frequency (148.7Hz) is matched with the 

theoretical calculation value (show in (19)). Based on the 

above analysis, the inner race fault of the bearing is 

successfully detected and the performance of the proposed 

approach is indicated. 

 

Figure 8. The decomposition result using VMD. 

Table 3. The corresponding L-Kurtosis values. 

IMF IMF1 IMF2 IMF3 IMF4 IMF5 

L-Kurtosis value 3.0615 5.2203 3.0928 3.4851 3.8042 

 

Figure 9. The Hilbert envelope spectrum of (a) the optimal IMF, (b) the purified signal, (c) the combination of IITD, L-kurtosis and RDT. 

4.2. Bearing Outer Race Fault Detection 

The time domain waveform of the raw vibration signal and 

corresponding Hilbert envelope spectrum are presented in 

Figure 10. From Figure 10 (b), the faulty feature frequency 

(87.04Hz) is extracted but it is submerged by numerous 

frequency components, such as 29.63Hz, 64.81Hz and 

116.7Hz, etc. Therefore, the proposed approach is applied. 

Figure 11 shows the decomposition result using VMD and 

the relative L-Kurtosis values of the decomposed IMFs are 

shown in Table 4. From Table 4, the optimal IMF is IMF4 

according to the maximum L-Kurtosis value and its Hilbert 
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envelope spectrum is shown in Figure 12 (b). 

 

Figure 10. The time domain waveform of the raw vibration signal and corresponding Hilbert envelope spectrum. 

 

Figure 11. The decomposition result using VMD. 

Figure 12 (c) shows the result of the combination of IITD 

L-kurtosis and RDT. By comparing Figure 10 (a) and Figure 

12 (a), the periodic impact characteristic is more pronounced 

in the latter graphic. Meanwhile, by comparing Figure 12 (b) 

and Figure 12 (c), it can be seen that the faulty feature 

frequency (87.04Hz) and its 2-5 harmonics (174.1Hz, 261.1Hz, 

351.9Hz, 437Hz) are clearly extracted in the former graphic, 

which is matched the theoretical calculation value (show in 

(20)) and the out race fault is successfully detected. 

Table 4. The corresponding L-Kurtosis values. 

IMF IMF1 IMF2 IMF3 IMF4 IMF5 

L-Kurtosis value 3.7599 7.8067 3.9540 5.7734 4.5223 

 

Figure 12. The time domain waveform of the optimal IMF and corresponding Hilbert envelope spectrum, (c) the combination of IITD, L-kurtosis and RDT. 
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4.3. Gear Broken Teeth Fault Detection 

The time domain waveform of the raw vibration signal and 

corresponding Hilbert envelope spectrum are presented in 

Figure 13. From Figure 13 (b), the shafting frequency 

(29.63Hz) and its 2-3 harmonics (59.26Hz, 88.89Hz) are 

shown clearly, but the other harmonics are submerged. 

The next procedures are the same as the part 4.1 and the 

relative L-Kurtosis values of decomposed IMFs are shown in 

Table 5. For the optimal IMF, its time domain waveform is 

shown in Figure 14 (a) and the periodic impact characteristic 

is clearer. The Hilbert envelope spectrum of the optimal IMF 

is shown in Figure 14 (b). As shown in Figure 14 (b), the shaft 

rotating frequency (29.63Hz) and its 2 to 9 harmonics 

(59.26Hz, 88.89Hz, 118.5Hz, 146.3Hz, 175.9Hz, 205.6Hz, 

235.2Hz, 264.8Hz) are all extracted clearly compared with 

Figure 13 (b), which are matched the shaft rotating frequency. 

From Figure 13 (b) and Figure 14 (b), it can be seen that the 

gear mesh frequency (show in (21)) are not shown. 

In order to further indicate the performance of the proposed 

approach, Figure 14 (c) shows the result of the combination of 

IITD, L-kurtosis and RDT, and the faulty feature frequency can 

not been extracted effectively. Based on the above analysis, the 

teeth fault is successfully detected and the necessity of the 

combination of three techniques is further indicated. 

 

Figure 13. The time domain waveform of the raw vibration signal and corresponding Hilbert envelope spectrum. 

Table 5. The corresponding L-Kurtosis values. 

IMF IMF1 IMF2 IMF3 IMF4 IMF5 

L-Kurtosis value 2.6050 5.9214 5.6149 6.5065 11.2665 

 

Figure 14. The time domain waveform of the optimal IMF and corresponding Hilbert envelope spectrum, (c) the combination of IITD, L-kurtosis and RDT. 

5. Conclusion 

In this paper, a novel hybrid approach is proposed for 

detecting the faults for rotating machinery. The non-stationary 

signal decomposition capability of VMD is explored in fault 

detection. However, aiming at the rotating machinery like 

rolling element bearing and gear, the faulty information is 

commonly located at the high frequency band, it is difficult to 

determine which decomposed IMF the faulty information 

exists in. The introduction of L-Kurtosis overcomes the 

problem that the selection of the optimal IMF depends on 

human experience. Meanwhile, L-Kurtosis combines the 

signal decomposition advantages of VMD and signal 

purification ability of RDT, and the faulty feature frequency is 

extracted by Hilbert envelope analysis. 

Through analyzing the simulated data and real experimental 

data collected from the bearings and gear with different types 

of faults, the accuracy of the proposed approach is 

demonstrated. Therefore, this approach has promising 

applications in condition detecting of mechanical system. 
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