Study for determining the presence of *Brucella* spp, *Salmonella* spp, *E. coli O157* and some other gram negative microorganisms in fresh cow's cheeses

Mehmet Emin Erkan¹,*, Simten Yesilmen², Aydin Vural¹, Havin Bilgetekin³

¹University of Dicle, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Diyarbakir, Turkey
²University of Dicle, Faculty of Veterinary Medicine, Department of Microbiology, Diyarbakir, Turkey
³University of Rhenish Friedrich-Wilhelms, Faculty of Agriculture Department of Food Engineering, Bonn, Germany

Email address: eminerkan@dicle.edu.tr (M. E. Erkan)

To cite this article:

Abstract: This study was conducted to determine the presence of *Brucella* spp, *Salmonella* spp, *E. coli O157* and some other gram negative microorganisms in fresh cow's cheeses (n:100). *E. coli* was determined in all of the samples, *E. coli O157* was found in 8 samples and *Aeromonas hydrophila* was found in 12 samples. In the analyzed cheeses the prevalences of *Klebsiella pneumonia*, *Proteus mirabilis*, *Proteus vulgaris*, *Pseudomonas aeruginosa*, *Citrobacter freundii* and *Morganella morganni spp. siboni* were 16%, 16%, 7%, 16%, 12%, and 10% respectively. Neither *Salmonella* spp. nor *Brucella* spp. were determined in any of the samples. In conclusion, it is our opinion that the hygienic qualities of fresh cow cheeses are low and they may constitute a public health risk.

Keywords: *Brucella* spp, *E. coli O157*, Fresh Cheese, Microbiological Quality, Gram Negative Microorganism

1. Introduction

Brucellosis commonly seen in human beings and animals in the Mediterranean countries, Middle East, Central Asia and South America [1,2] is a zoonotic disease which is also called undulant fever, Mediterranean fever, Maltese fever and Bang's disease [3]. The disease causes abortions, loss of milk productivity and infertility in animals which are causes of economic losses [4]. Brucellosis causes symptoms such as undulant fever, joint pain, muscle pain, abdominal pain, and headache [1,5] which also leads physical ailments and loss of labor in human beings[3]. The most dangerous strain for human beings is *Brucella melitensis*; however *B. suis*, *B. abortus*, *B. canis*, *B. pinnipedialis*, *B. ceti* and *B. inopinata* are also known to cause infection. [1]. Infection spreads via direct contact with infected animals, laboratory accidents, consumption of infected food or inhalation of infectious particles [6]. 63.6% of human cases are reported to be due to the consumption of fresh milk and fresh milk products. [5] Brucellosis has a high morbidity but low mortality [3]. The prevalence of Brucella is reported between 0.6-22% in different regions of Turkey [4,7,8].

Fresh cheeses are produced with traditional methods in rural areas, either in small establishments or in households. The milk might be the potential source of the *Brucella* spp. and other pathogenic microorganisms due to lack of pasteurization and salt treatment. The presence of pathogenic organisms such as *Salmonella* spp., *E. coli*, *E.coli O157* in food is a sign of direct or indirect fecal contamination and thusly poor hygienic conditions [9,10]. *Aeromonas spp.* are considered as an important food borne pathogenic organisms which can cause gastroenteritis [11] meningitis, wound infections and bacteremia in human beings [12]. *Klebsiella spp.* is an important opportunistic pathogenic organism. It can cause infections in the respiratory system, the nasal mucosa and the urinary tract [13]. Opportunistic pathogen bacteria such as *Morganella morganni spp. siboni* and *Proteus mirabilis* can be dangerous for immunocompromised persons, the elderly
and children [14, 15, 16].

In this study the presence of Brucella spp, Salmonella spp, E. coli O157 and some other gram negative microorganisms was determined in fresh cow's cheeses to find out possible dangers in terms of public health and food quality.

2. Material and Methods

2.1. Collecting the Samples

In this study, 100 fresh cow's cheeses which were on the market in Diyarbakir/Turkey were examined. The sampled cheeses were produced by adding commercial rennet to fresh cow's milk at the temperature of milking. Heat treatment or suppression in brine was not utilized. 250 grams of samples were obtained under aseptically conditions from the cheeses which were on sale with no packaging and were brought to our laboratory with cold containers immediately.

2.2. Isolation and Identification of Brucella spp

10 gr of cheese sample were added in 90 ml Farrell's broth and homogenized with a stomacher. Two 0.5 ml dilute material obtaining from the homogenized samples were inoculated onto Farrell Broth in which Brucella Selective Supplement (Oxoid SR83) was added. One of the inoculated tubes was incubated in aerobic oven and another one in 10% CO₂ for 5 days at 37°C. The tubes were vortexed everyday throughout the incubation period. At the end of the incubation periods, 0.1 ml of enriched samples were obtained from each tube and inoculated onto Brucella Medium Base (Oxoid CM169). The aerobically inoculated samples were incubated in aerobic conditions and microaerophilically inoculated samples were incubated in microaerophilic conditions for 5 days at 37°C. At the end of this period, 1-2 mm in diameter, pale yellow colored, transparent, round colonies on the Brucella Selective Agar were considered suspicious [17]. Brucella suspicious colonies were purified with Tryptic Soy Agar (Merck-1.05458).The identification of colonies was carried out with a VITEK II automatic system device.

2.3. Isolation and Identification of Aeromonas spp

Preliminary enrichment process of 25 gram cheese samples was performed in sterile bags with 225 ml of buffered peptone water (BPW, LAB204). After incubation at 37°C for 24 h. one loop of the enriched fluid was inoculated with the streak method onto Aeromonas Agar (Oxoid CM 83) containing 5 mg/l Ampicilin (Oxoid SR136). The plates were then incubated at 30°C for 24 h. At the end of the incubation period, green opaque colonies with dark green centres on the Aeromonas Agar were considered suspicious. Suspicious colonies were purified with Tryptic Soy Agar (Merck-1.05458) and identification was carried out with a VITEK II automatic system device [18].

2.4. Isolation and Identification of Pseudomonas spp

The samples were inoculated on a Pseudomonas Agar Base (Merck 1.10989) and the petri dishes were incubated at 35°C for 5-7 days. The resulting colonies were purified with Tryptic Soy Agar (Merck-1.05458) and identification was carried out with a VITEK II automatic system device [19].

2.5. Isolation and Identification of Salmonella spp

Preliminary enrichment process was applied to 25 grams of cheese samples in sterile bags with 225 ml of buffered peptone water (BPW, LAB204). 0.1 ml of enriched fluid was obtained after incubation at 37°C for 24 h and selective enrichment was carried out in 10 ml Rappaport-Vassiliadis Broth (RVS, LAB086). RVS tubes were incubated at 37°C for 24 h. At the end of the incubation period, samples from these tubes were inoculated onto Xylose Lysine Deoxycholate Agar (XLD, LAB032) and incubated at 37°C for 24 h. Pink colored and black centered colonies on the XLD agar were identified after the purification using Tryptic Soy Agar (Merck-1.05458) with a VITEK II automatic system device [20].

2.6. Isolation and Identification of E. coli and E. coli O157

For the isolation of E. coli, 10 grams of cheese samples were homogenized with 90 ml of 0.09% sodium chloride and inoculated onto TBX (Tryptone Bile X-glucuronide) Agar (Merck-1.16122-0500). Colonies with the typical green color were processed with the Vitek 2 compact 15 device for identification. For the identification of E. coli O157, suspicious colonies were also verified with the latex agglutination test (oxoid E.coli DR 0620M ) [21].

2.7. Isolation and Identification of Enterobacteriaceae

VRBG (Violet Red Bile Glucose) Agar (Merck 1.10275) was used for the analysis of enterobacteriaceae and the typical colonies obtained were passaged with EMB (Eosin Methylene-blue) Agar (Merck 1.01347). Positive samples were purified with Tryptic Soy Agar (Merck-1.05458) and identification was carried out with a VITEK II automatic system device [22].

2.8. Determination of Antimicrobial Susceptibility

Antibiogram testing was planned for pathogens (Brucella spp., Salmonella spp. and E. coli O157) which have the potential to cause serious disease in human beings. Since only E. coli O157 was isolated, antibiogram testing was done only for this bacterium.

Antimicrobial susceptibility testing of the isolates was done by the Kirby–Bauer disc diffusion method, according to Clinical Laboratory Standard Institute (CLSI M100-S20, 2012) protocol. All isolates were cultured on Muller Hinton agar added with 5% defibrinated sheep blood, and then all of them incubated microaerobically at 30°C for 48 h.
Bacterial colonies from fresh pure culture were mixed with Muller Hinton broth to prepare the turbidity of each inoculums was adjusted to McFarland 0.5 standards. Bacteria from each suspension were inoculated onto Muller Hinton agar using a sterile cotton-tipped swab. The plates were kept at 37°C for 1–2 min, to get them dry, before antibiotic discs were dispensed. Incubation of the plates took place in a microaerobic atmosphere at 30°C for 48 h and the diameter of the inhibition zones was measured with calipers. The susceptibility patterns (resistance/sensitivity) of the strains were determined according to the National Committee for Clinical Laboratory Standards [23].

3. Results and Discussion

The presence of Brucella spp., Salmonella spp., E. coli and E. coli O157 was given in Table 1, the gram negative microorganisms detected were given in Table 2 and the antimicrobial susceptibility results of E. coli O157 were given in Table 3. E. coli was found in every sample (100%) whereas E. coli O157 was found in 8% of the samples. No cases of Brucella spp or Salmonella spp. were detected. A. hydrophila was found in 5 samples.

All of the E. coli O157 isolates obtained from fresh cheeses were resistant to ampicillin, erythromycin, penicillin G and spiramycin, on the other hand they were susceptible to cefotiofur, cefoperazone, gentamicin+amoxicillin, amoxicillin/clavulanic acid, enrofloxacin, nalidixic acid and streptomycin.

Table 1. Presence of Brucella spp., Salmonella spp., E. coli and E. coli O157 in Fresh Cheese Samples

<table>
<thead>
<tr>
<th>Antimicrobial Agents, concentration (µg/disk)</th>
<th>E. coli O157 (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin (5)</td>
<td>-</td>
</tr>
<tr>
<td>Penicillin G (10)</td>
<td>-</td>
</tr>
<tr>
<td>Spiramycin (100)</td>
<td>8</td>
</tr>
<tr>
<td>Doxycycline (30)</td>
<td>-</td>
</tr>
<tr>
<td>Nalidixic acid (30)</td>
<td>-</td>
</tr>
<tr>
<td>Streptomycin (25)</td>
<td>-</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole (25)</td>
<td>2</td>
</tr>
</tbody>
</table>

In scientific studies the presence of a wide variety of bacteria such as Brucella spp., Salmonella spp., E. coli, E. coli O157, H7, Klebsiella spp., Proteus spp. in cheeses was reported. [24, 25, 26, 27, 28]. The presence of these bacteria indicates that cheese can be contaminated with human or animal sourced enteric bacteria. [10].

Brucellosis is a widespread [6] zoonotic infection which leads to economic losses due to abortion, loss of milk productivity and infertility [4]. Unpasteurized milk and milk products are important reasons in its spread [5, 9, 29]. There are differing results in studies which investigated the presence of Brucella spp. in cheeses. These differences in studies may depend on many factors such as regional differences, type of the cheese, production method or the utilization of heat treatment. In studies undertaken in Turkey, the presence of Brucella spp. was found to be 3.33-19.33% [28, 29, 30, 32] for feta cheese, 1.81-20.5% for tulum cheese [28, 29, 31] and 17.5% [9] for herbed cheese. In our study, Brucella spp. was not isolated in any of the cheese samples.

It is thought that the source of the milk, the vaccination status of the animals, the geographic region, heat treatment and the usage of salt in the production might influence the presence of Brucella spp. in cheeses. In the present study, the absence of Brucella spp. might be explained by the use of cow’s milk, the vaccinated animals and the low incidence of Brucella spp. by cows in the region from where the cheese samples were obtained.

In this study, E. coli was detected in every sample investigated (100%). These results are in accordance with the results obtained by Ordiales et al. [24] and Baz et al. [26]. On the other hand Keskin et al. [32] notified the presence of E. coli in feta cheese samples as 86%. In our study the mean number of E. coli was 1.6x10^7 cfu/g (1.2x10^5-3.7x10^7); whereas Ordiales et al. [24] detected the E. coli number in cheeses which were produced with fresh milk, on the second day as 1.1x10^6 - 4.6 x10^6 cfu/g. Akkaya and Alişarlı [34] detected E. coli O157:H7 in 1% of feta cheese samples obtained from street markets in Afyonkarahisar city centre. Gümlüşoy, Gönlüalan [35] and Baz et al. [26] did not detect any E. coli O157:H7 in fresh feta cheeses which they sampled. In our study, the presence of E. coli O157 was determined at rate of 8%. The presence of E. coli and E. coli O157:H7 is thought to be directly related to the hygienic conditions during milking, storage, processing of the milk and the production of the cheese. The cheeses examined in this study are considered to be exposed to fecal contamination in various stages of production.
Salmonella spp. was not found in any of the sampled fresh cheeses. This result is in accordance with the findings of Keskin et al. [33], Gülmez and Güven [35]. Akkaya and Alişarlı [26] found a 2% prevalence of Salmonella spp. in feta cheese samples in their study. Uraz et al. [36] reported an 8.13% incidence of Salmonella spp. out of 81 samples of feta cheeses. Primary and secondary contaminations might have played a role in the results of Salmonella spp.

In the present study, in fresh cheese samples, gram negative bacteria which could be opportunistic pathogens were also isolated. It was reported in the study of Dülger and Gücin [25] that out of 264 isolates of fresh white cheese samples were found Klebsiella pneumoniae and Citrobacter spp at the rates of 5.69% and 11.75% respectively. In their study, Uraz et al. [36] reported out of 81 isolates that were obtained from fresh white cheese samples, were determined Klebsiella pneumoniae and 1 case of E. coli. In the present study the rates of gram negative bacteria were found to be higher. The variety and numbers of gram negative bacteria in cheeses could be related to hygienic conditions during production. These microorganisms have the potential of negatively influencing the quality and shelf life of cheeses.

4. Conclusion

In conclusion, it was detected that fresh cheeses did not contain Brucella spp. and Salmonella spp. but they were the sources for E. coli 0157 and other opportunistic gram negative bacteria. The presence of gram negative microorganisms indicates poor hygienic quality. The necessity of complying with hygiene rules at all stages from production to sales must be supported with training, legislation and inspection.

References


