The Preventive Approach of Biocompoundactives (2): A Review in Recent Advances in Common Fruits

Abdelkarim Guâdaoui1, *, Fatma Bouhtit2, Mounir Cherfi3, Abdellah Hamal1

1Department of Biology, Laboratory of Genetics & Biotechnology (LGB), Faculty of Science - Oujda (FSO), University Mohammed Premier (UMP) Oujda, Morocco
2Department biological analysis, Laboratory for Analysis & Quality Control (LACQ), University Mohammed Premier (UMP) Oujda, Morocco
3Medical Analysis Laboratory, Provincial Medical Center of Taourirt, Health Provincial Delegation of Taourirt, Ministry of Health, Morocco

Email address: abdelkarim119@gmail.com (A. Guâdaoui)

To cite this article:

Abstract: Biocompoundactives contain chemicals that are found in small quantities in plants and certain foods (such as fruits, vegetables, nuts, oils and whole grains), they have actions in the body that can promote good health. The importance attached to benefits of food on health has never been so high before. All scientific studies confirm that a varied and balanced diet is factor of protection against cancer, cardiovascular disease (CVD), osteoporosis, diabetes, obesity and high cholesterol. In this second part of the review, we focus on studies that have been conducted on biocompoundactives of common fruits, and opportunities that present bioactivity of these phytochemicals to prevent many chronic diseases. As well, we discuss some challenges that face the good investissment of biocompoundactives, especially that related to bioavailability and bioefficacy, on the horizon to discuss the limits of experiments interpretation, mentioned here, in the third part of this review.

Keywords: Biocompoundactives, Bioactive Compound, Phytochemicals, Functional Foods, Healthy Diet, Nutraceuticals, Fruits

1. Introduction

Biocompoundactives are compounds which have the capability and the ability to interact with one or more component(s) of the living tissue by presenting a wide range of probable effects [1-3]. They are non-essential natural ingredients in, or derived from, plant, animal or marine sources, which have the ability to modulate biochemical, physiological and metabolic processes in the human body, while exerting beneficial effects beyond basic nutritional functions [4-6]. Generally, there is no difference in biological activity between the bioactive compounds derived from nature and synthetic products [1, 7].

Biocompoundactives are experiencing a growing interest in wide range of applications: geo-medicine, plant science, modern pharmacology, agrochemicals, cosmetics, food industry, nano-bio-science... etc. This is a very promising area in full development, which has resulted in research works more and more numerous, designed to diversify the resources of bioactive compounds and improve their salvage pathways or synthesis [1, 2].

The importance attached to benefits of food on health has never been so high before [8], and if we except the genetic, ecological, physiological and botanical studies on food; research on the bioactive potential has experienced a veritable boom during the first decade of the twenty-first century, and took an accelerated rates over the beginning of the second decade, in a way that the research carried out during the past five years (2010-2014) on the majority of foods are equal or superior to the work done during all the previous decade (2000-2009) [3].

Biocompoundactives contain chemicals that are found in small quantities in plants and certain foods (such as fruits, vegetables, nuts, oils and whole grains), they have actions in the body that can promote good health [9].

In this work, we continue on preventive approach of biocompoundactives (part 2), and opportunities that present bioactivity of common fruits phytochemicals to prevent many chronic diseases. As well, we discuss some challenges that
face the good investissment of biocompounactives.

2. Food Biocompounactives Opportunities

Noting that prevention is a more effective strategy than is treatment of chronic diseases [10]; the philosophy that food can be health promoting beyond its nutritional value is gaining acceptance within the public arena and among the scientific community as mounting research links diet/food components to disease prevention and treatment [11, 12].

Recent trends in the functional food market suggest that products with multiple health benefits become more and more popular [13] and dietary bioactive compounds have become another quality indication [14].

Over the past two decades, there has been a growing interest in the potential benefits of natural compounds on human health [15]. Interest in food composition has expanded beyond the nutrients to include bioactive compounds consumed in the traditional foods, which may help to prevent many chronic diseases that can coexist with malnutrition and undernutrition [16].

Biocompanctives are members of a large class of organic molecules that are widely distributed in the plant kingdom and, as such, are an integral part of the daily diet of humans [17].

Until 2013, it was estimated that more than 8000 phytochemicals have been identified in foods [18]. All these bioactive food components are mostly found in whole grains, fruits and vegetables [19, 20], but a large percentage still remain unknown and need to be identified before we can fully understand the health benefits of phytochemicals in whole foods [19].

The phytochemicals may be classified into carotenoids, phenolic compounds, alkaloids, nitrogen compounds and organosulfur compounds. But the most studied of these biocompounactives are phenolics and carotenoids [21].

Recent investigations show that food biomolecules that contribute to human health can be found particularly in glycosylated, esterified, thiolated or hydroxy forms. These bioactive compounds display their health benefits in metabolic activity associated with several diseases [20].

So the important role that biocompounactives can have in health is related to the intake of these compounds, which, in turn, strongly linked to the high consumption of fruits, vegetables and unrefined grains [22]. Indeed, several studies have shown that a high intake of fruits and vegetables reduces the risk of cardiovascular disease, certain cancers, and other chronic diseases [21, 23-26].

The concept of a healthy diet is considered an aspect of good and healthy practices. The observations in social behavior and archaeological discoveries lead researchers to notice that the longevity and healthy life, away from the high incidence of myocardial infarction and cancer, are caused by good habits of feeding [27].

The table (1) present bioactivities studied on some most common fruits, with their major biocompounactives.

<table>
<thead>
<tr>
<th>Common Fruits</th>
<th>Bioactivities studied</th>
<th>Biocompounactives</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almond Prunus amygdalus (Rosaceae)</td>
<td>Reduce the risk of: • Cardiovascular disease • Type 2 diabetes • gallstones and ablation of the gallbladder • colon cancer in women Prevent against cancer (colorectal, colon, breast & lung) Reduce the risk of neurodegenerative diseases (such as Alzheimer's) Activities: antioxidant, anti-inflammatory & anti-proliferative Extend the life of Caenorhabditis elegans</td>
<td>Polyphenols Phytosterols (squalenes) Soluble fiber Monounsaturated fatty acids</td>
<td>[28-33]</td>
</tr>
<tr>
<td>Apple Malus domestica Borkh. Malus pumila Mill. (Rosaceae)</td>
<td>Prevent lipid oxidation & reduce blood cholesterol Reduce the risk of cerebrovascular accidents (CVA) Reduce the incidence of acute coronary syndrome (ACS) Reduce the incidence of asthma and respiratory diseases Activities: antioxidant, anti-inflammatory & anti-proliferative</td>
<td>Flavonoids (queretin, procyanidins, catechin & epicatechin) Chlorogenic acids Soluble fiber</td>
<td>[34-54]</td>
</tr>
<tr>
<td>Apricot Prunus armeniaca (Rosaceae)</td>
<td>Reduce the risk of colon cancer Control of type 2 diabetes Reduce chronic gastritis Reduce the proliferation of cancer cells Control of type 2 diabetes Ability to repair liver damage Reduce the risk of neurodegenerative diseases (such as Alzheimer's)</td>
<td>Flavonoids Carotenoids (Lycopene) Polyunsaturated fatty acids Proanthocyanidins lycopene phytoestrogens Fiber</td>
<td>[55-59] [60-64]</td>
</tr>
<tr>
<td>Avocado Persea americana (Lauraceae)</td>
<td>Prevent cardiovascular diseases & constipation Control of type 2 diabetes Ability to repair liver damage Reduce the risk of neurodegenerative diseases (such as Alzheimer's)</td>
<td>Flavonoids / leucocyanidin β & α-carotene Fiber</td>
<td>[65-70]</td>
</tr>
<tr>
<td>Banana Musa spp. (Musaceae)</td>
<td>Reduce cardiovascular & glycemia Protect the lining of the stomach against ulcers Relieve symptoms of diarrhea Antioxidant, antiproliferative and anti-inflammatory activities</td>
<td>Flavonoids / leucocyanidin β & α-carotene Fiber Phenolic acids (chlorogenic & hydroxycinnamic) Flavonoids (anthocyanins, flavanols and flavonols)</td>
<td>[65-70] [71-83]</td>
</tr>
<tr>
<td>Cherry Prunus avium or cerasus (Rosaceae)</td>
<td>Effects pain & muscle recovery Regulate sleep Vasodilator activity</td>
<td>Flavonoids (anthocyanins, flavanols and flavonols)</td>
<td>[71-83]</td>
</tr>
<tr>
<td>Common Fruits</td>
<td>Bioactivities studied</td>
<td>Biocompounds/studied</td>
<td>References</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Clementine</td>
<td>Reduce the risk of certain cancers (lung, liver)</td>
<td>Melatonin & Serotonin</td>
<td></td>
</tr>
<tr>
<td>Tangerine</td>
<td>Cause apoptosis of cancer neuroblastoma cells</td>
<td>Flavonoids (isoflavones, hesperetin, nobiletin & tangeretin)</td>
<td></td>
</tr>
<tr>
<td>Citrus reticulata (Rutaceae)</td>
<td>Antioxidant activities</td>
<td>Limonoids (limonine & nomilene)</td>
<td>[84-92]</td>
</tr>
<tr>
<td>Date</td>
<td>Protect the integrity of neuronal cells</td>
<td>Carotenoids (β-cryptoxanthin)</td>
<td></td>
</tr>
<tr>
<td>Phoenix dactylifera L. (Areccaceae)</td>
<td>Anti-inflammatory</td>
<td>Soluble fiber</td>
<td>Vitamin C</td>
</tr>
<tr>
<td>Fig</td>
<td>Reduce the risk of breast cancer</td>
<td>Flavonoids (anthocyanins, luteolin, quercetin & rutin)</td>
<td>[93-101]</td>
</tr>
<tr>
<td>Ficus carica (Moraceae)</td>
<td>Potentially against human melanoma</td>
<td>Phenolic acids (gallic, caffeic & coumaric)</td>
<td>Carotenoids (β-carotene)</td>
</tr>
<tr>
<td>Grapefruit & Pomelo Citrus grandis (L.) Osbeck Citrus maxima (Burn.)Merr. (Rutaceae)</td>
<td>Inhibit apoptosis in colon cancer cell lines</td>
<td>Flavonoids (rhofolin, cosmosiin, naringin & hesperetin)</td>
<td>Carotenoids (lycopene & β-carotene)</td>
</tr>
<tr>
<td>Grapes</td>
<td>Reduce the risk of cancer of the white blood cells</td>
<td>Flavonoids: quercetin, myricetin, kaempferol, catechin, epicatechin, proanthocyanidins anthocyanins & stilbenes Trans-Resveratrol & viniferin</td>
<td></td>
</tr>
<tr>
<td>Hazelnut</td>
<td>Induce apoptosis in colon cancer cell lines</td>
<td>Flavonoids (eriocitrin, hesperetin & nobiletin)</td>
<td>Tocopherols & tocotrienols</td>
</tr>
<tr>
<td>Corylus avellana (Betulaceae)</td>
<td>Prevent skin cancer</td>
<td>Carotenoids (β-carotene)</td>
<td>[155-159]</td>
</tr>
<tr>
<td>Kiwifruit Actinidia delicosa (Actinidiaceae)</td>
<td>Inhibit the activity of HIV protease</td>
<td>Tannins</td>
<td>Phytosterols (β-c-sitosterol)</td>
</tr>
<tr>
<td>Lemon</td>
<td>Induce apoptosis of leukemic & pancreatic cancer cells</td>
<td>Flavan (epicatechin, catechin, epicatechin, proanthocyanidins)</td>
<td>Flavonols (quercetin & kaempferol)</td>
</tr>
<tr>
<td>Citrus limon Lime</td>
<td>Reduce the risk of the digestive tract cancers</td>
<td>Flavonols (quercetin & kaempferol)</td>
<td>Vitamin C</td>
</tr>
<tr>
<td>Citrus aurantifolia (Rutaceae)</td>
<td>Slow the growth of tumors and metastases (angiogenic properties)</td>
<td>Flavonoids (erioicin, hesperetin & nobiletin)</td>
<td>[160-167]</td>
</tr>
<tr>
<td>Mango</td>
<td>Reduce cholesterol.</td>
<td>Limonoids (limonine, nomilene & obacunone)</td>
<td>Fiber</td>
</tr>
<tr>
<td>Mangifera indica (Anacardiaceae)</td>
<td>Anti-inflammatory & anti-coagulant</td>
<td>Carotenoids (β-carotene & β-cryptoxanthin)</td>
<td>[168-178]</td>
</tr>
<tr>
<td>Loquat</td>
<td>Antihyperglycemic</td>
<td>Phenolic acids</td>
<td>Fiber</td>
</tr>
<tr>
<td>Eriobotrya japonica (Rosaceae)</td>
<td>Hepatoprotective & gastroprotective activities</td>
<td>Flavonoids (quercetin)</td>
<td>Flavonoids (quercetin)</td>
</tr>
<tr>
<td>Mango</td>
<td>Anticancer activity (prostate, colon, blood, breast) in vivo & in vitro</td>
<td>Mangoferin & galloartannins</td>
<td>Carotenoids (β-carotene, β-cryptoxanthin & violaxanthine)</td>
</tr>
<tr>
<td>Mango</td>
<td>Repair and modulate DNA damage</td>
<td>Soluble fiber</td>
<td>[179-184]</td>
</tr>
<tr>
<td>Common Fruits</td>
<td>Bioactivities studied</td>
<td>Biocompounactives</td>
<td>References</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Melon</td>
<td>Activities: immunomodulatory, anti-inflammatory & anti-bacterial</td>
<td>Carotenoids (β-carotene)</td>
<td>[185-192]</td>
</tr>
<tr>
<td>Cucumis melo</td>
<td>Antimutagenic & antioxidants effects</td>
<td>Sulfur compounds (MTAE, PETM, MTPA ...)</td>
<td></td>
</tr>
<tr>
<td>(Cucurbitaceae)</td>
<td>Prevent colon cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory property</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevent breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts</td>
<td>Induce apoptosis of prostate cancer</td>
<td>Flavonoids (tocopherols & tocotrienols)</td>
<td>[196-204]</td>
</tr>
<tr>
<td>Juglans spp.</td>
<td>Antiproliferative activity of human cancer cells</td>
<td>Ellagic acid & α-linolenic acid</td>
<td></td>
</tr>
<tr>
<td>(Juglandaceae)</td>
<td>Prevent coronary heart disease</td>
<td>Phytosterols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower blood cholesterol</td>
<td>Fiber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection against oxidative stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory, antibacterial & antiviral activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce oxidative stress in the body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive</td>
<td>Risk Reduction:</td>
<td>Hydroxytyrosol & Oleuropein</td>
<td>[205-211]</td>
</tr>
<tr>
<td>(Olive oil)</td>
<td>• myocardial infarction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>• mortality from coronary heart disease</td>
<td>Monounsaturated fatty acids</td>
<td></td>
</tr>
<tr>
<td>(Oleaceae)</td>
<td>control of blood pressure</td>
<td>vitamin E</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>Prevent atherosclerosis</td>
<td>Anti-inflammatory, antibacterial & antiviral activities</td>
<td></td>
</tr>
<tr>
<td>Citrus sinensis</td>
<td>Cause apoptosis of cancer neuroblastoma cells</td>
<td>Flavonoids (hesperetin, naringenin & eriocitrin)</td>
<td></td>
</tr>
<tr>
<td>Bitter orange</td>
<td>Reduce the proliferation of cancer cells (breast, stomach, lung, mouth & colon)</td>
<td>Carotenoids (β-carotene, lutein, zeaxanthin & β-cryptoxanthine)</td>
<td>[212-224]</td>
</tr>
<tr>
<td>Citrus aurantium</td>
<td>Inhibit the activity of HIV protease</td>
<td>Limonoids (limonine & nonlime)</td>
<td></td>
</tr>
<tr>
<td>(Rutaceae)</td>
<td>Reduce the incidence of cerebrovascular disease</td>
<td>Fiber</td>
<td></td>
</tr>
<tr>
<td>Peach</td>
<td>Prevent breast cancer</td>
<td>Flavonoids (flavan-3-ols, flavonols & anthocyanins)</td>
<td>[225-234]</td>
</tr>
<tr>
<td>Prunus persica (L.) Batsch</td>
<td>Inhibition of proliferation of liver cancer cells</td>
<td>Carotenoids (β-carotene, lutein, zeaxanthin)</td>
<td></td>
</tr>
<tr>
<td>Prunus vulgaris</td>
<td>Improve the chemotherapeutic efficacy and protection against nephotoxicin in mice</td>
<td>Hydroxycinnamates</td>
<td></td>
</tr>
<tr>
<td>Nectarin</td>
<td>Prevent oxidation of LDL cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus persica nucipersica</td>
<td>Promote longevity in Drosophila melanogaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Rosaceae)</td>
<td>Anti-phototoxing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce the growth of breast, colon and prostate cancer cells</td>
<td>Resveratrol / Piceatannol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower risk of colorectal cancer in women</td>
<td>Hydroxy-benzoic acid</td>
<td></td>
</tr>
<tr>
<td>Peanut</td>
<td>Reduction of blood cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>Decreased risk of:</td>
<td>Coumaric acid</td>
<td>[235-238]</td>
</tr>
<tr>
<td>(Fabaceae)</td>
<td>• cardiovascular disease</td>
<td>Phytosterols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• gallstones in humans</td>
<td>Fiber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• removal of the gall bladder in women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pear</td>
<td>Reduce the risk cerebrovascular accidents (CVA)</td>
<td>Flavonoids (Procyanidins)</td>
<td>[239-242]</td>
</tr>
<tr>
<td>Pyrus communis L.</td>
<td>Antimicrobial activity</td>
<td>hydroxycinnamic acid</td>
<td></td>
</tr>
<tr>
<td>(Rosaceae)</td>
<td>Antithulcer capacity (in rats)</td>
<td>Insoluble fibers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activities: anti-tumor, anti-inflammatory, anti-edematous & help digestion</td>
<td>Polyphenols</td>
<td>[243-246]</td>
</tr>
<tr>
<td>Pineapple</td>
<td>Improve circulatory and cardiovascular systems</td>
<td>Bromelain</td>
<td></td>
</tr>
<tr>
<td>Ananas comosus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bromeliaceae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistachio</td>
<td>Flavonoids (Anthocyanins)</td>
<td>γ-tocopherol</td>
<td>[247-255]</td>
</tr>
<tr>
<td>Pistacia vera L.</td>
<td>Decrease the rate of LDL cholesterol</td>
<td>Carotenoids (β-carotene)</td>
<td></td>
</tr>
<tr>
<td>(Anacardiaceae)</td>
<td>Antimutagenic, neuro-protective & hepato-protective activities</td>
<td>Stibene (resveratrol)</td>
<td></td>
</tr>
<tr>
<td>Prickly pear</td>
<td>Decrease rate of LDL cholesterol</td>
<td>Phytosterols (squalene)</td>
<td></td>
</tr>
<tr>
<td>Opuntia ficus-indica</td>
<td>Decrease of atherosclerotic lesions & cholesterol (LDL)</td>
<td>Soluble fiber</td>
<td></td>
</tr>
<tr>
<td>(Cactaceae)</td>
<td>Activities: anti-nociceptive anti-inflammatory & anti-hyperlipidemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomegranate</td>
<td>Flavonoids (anthocyanins & procyanidins)</td>
<td>Ellagic acid</td>
<td>[256-273]</td>
</tr>
<tr>
<td>Punica granatum</td>
<td>Neuro-protective effect</td>
<td>Tannins (punicalagin)</td>
<td></td>
</tr>
<tr>
<td>(Punicaceae or Lythraceae)</td>
<td>Decrease of atherosclerotic lesions & cholesterol (LDL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory, anti-obesity, anti-bacterial (caries ...) & antiviral (influenza ...) properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Induce apoptosis of human leukemia cells / Anti-genotoxicity</td>
<td>Flavonoids (kaempferol, quercetin & narcissin)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease blood pressure / effect on atherosclerosis (in rabbits)</td>
<td>Alkaloids (indicaxantin neo-betanin & mescaline)</td>
<td>[274-285]</td>
</tr>
<tr>
<td></td>
<td>Activities: neuroprotective, anti-inflammatory & anti-hyperlipidemia</td>
<td>Betalain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delay the progression of certain cancers (prostate, blood, colon & breast) in vitro</td>
<td>β-cyanine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve memory (long term)</td>
<td>Fiber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flavonoids (anthocyanins, catechins,</td>
<td></td>
<td>[286-292]</td>
</tr>
</tbody>
</table>
3. Challenges of Biocompounds & Bioefficacy Studies

It is true that many phytochemicals such as polyphenols, carotenoids and organosulfur and nitrogen compounds, are thought to be involved in the prevention and treatment of many diseases, including some cancers, cardiovascular diseases, diabetes, degenerative diseases, inflammation, infections, psychotc diseases, ulcers, macular degeneration, etc. [352-354]. But, how manifest this mutual interaction between the different bioactive compounds and biological systems? and what are the main factors that can affect the physicochemical properties of bioactive compounds in biological systems?

In the following, we will discuss the main challenges encountered in the study of bioactive compounds; knowing that the mechanisms of action, in general, are not well understood and often difficult to identify [355, 356], which makes determining the mode of action of bioactive compounds, including natural products, central problem in chemical biology [357].

3.1. Bioavailability & Bioefficacy

3.1.1. Variation Factors of Bioavailability and Bioefficacy

Bioactive compounds from a variety of sources (plant or animal) must be bioavailable to exert beneficial effects [358]. Bioavailability reflects the rate and extent to which a bioactive compound is absorbed and becomes available at the site of action in a biological system. This is a complex process involving several steps: liberation, absorption, distribution, metabolism and elimination phases (LADME).

This process, of course, can vary considerably between individuals, and this variation depends on several key factors, including diet, genetic inheritance, composition and activity of the intestinal microbiota [359, 360]. In addition to the variations between individuals; many factors may be involved in the same person and affect the quality of bioavailability and consequently affect the bio-efficacy. Among these factors are briefly cited [2, 16, 359-361]:

- **Bioavailability**

Bioaccessibility: This is the fraction of a compound that is released from the matrix (food) in the gastrointestinal...
lumen and thus made available for intestinal absorption.

- Molecular structure and isomeric configuration of biocompoundactives: High molecular weight compounds do not pass through the intestinal cells unless they are first broken (glycosylated flavonoids, for example) and a different stereochemistry has a bioavailability and bioefficacy different (for example cis-lycopene more bioavailable comparably to the all-trans isomer). Slight variations in chemical structure result in extreme variations in biological activities.

- Transport mechanisms: Since many biocompoundactives have no optimal physicochemical properties required for passive diffusion, transmembrane transporters are necessary to improve their permeability. The activity of different transporters affects biocompoundactives by several different mechanisms, such as limiting the absorption, facilitating the elimination and limiting distribution to target tissues. This limitation may be due to the selectivity and affinity of intestinal transport systems towards different biocompoundactives or competition for transport by transporters (hypothesis of competitive inhibition).

- Metabolism: Once the bioactive molecule is input in an enterocyte, it can be submitted to metabolism by enzymes of Phase I and/or Phase II, resulting by molecular forms that are different from origins constituents. In a quite similar way, many other phytochemicals are highly metabolized by the intestinal microbiota before absorption; and again, the compounds in the systemic circulation to which the cells are exposed are different from those obtained directly from the plant.

It is only when the circulating forms of a bioactive molecule or a food product is known; a more complete view on the bioavailability, and possible correlation of bioefficacy, can be obtained. For drugs, it is a requirement when conducting bioavailability studies; and this type of approach can also be translated to nutritional research [360].

3.1.2. Improvement Approaches for Bioavailability and Bioefficacy

Face to this difficult course for the bioefficacy; several approaches have been evaluated to improve the bioaccessibility and bioavailability of bioactive ingredients and drugs. These sometimes include simple things, like the treatment and processing of the food matrix. For tomatoes, for example, lycopene has proved a better bioavailability when the tomatoes are cooked or mixed with a small amount of fat. Blood levels of lycopene may increase almost three times more than the consumption of fresh tomatoes [362-364]. But most approaches call technology by molecular changes to improve the solubility or absorption site of bioactive molecules [365].

Several chemical efforts aimed at improving bioavailability have led to the synthesis of derivatives or conjugates of natural molecules and the preparation of novel formulations and combinations having improved physicochemical properties. We can give as an example, the modification of a natural alkaloid (Huperzine A) in a semi-synthetic bioactive compound (ZT-1), whose the new design has improved the bioavailability and reduce the toxicity [366]. Molecular modeling of some coumarins is another example of combination of crystallographic and biological data, in order to design compounds which possess better bioavailability [367].

For the same purpose, and in addition to responding to the challenges of the sensitivity of biocompoundactives, several technologies have been developed, including the encapsulation of bioactive molecules (water-soluble or fat-soluble) in different forms (microcapsule, micelle, uni/multilamellar vesicle …) [368, 369].

Oehlke K. et al. (2014) cited the growing interest of nanoscale materials (nanotechnology) designed as delivery systems for organic and inorganic materials in order to overcome the problems associated with the low bioavailability of many bioactive compounds. The mechanisms leading to better bioavailability, according to the authors, are based on (i) improved solubility of the bioactive compounds in gastrointestinal conditions, (ii) protection of bioactive compounds from chemical conditions in the gastrointestinal tract, (iii) controlled release in the gastrointestinal tract, or (iv) improved transfer through the intestinal wall [370].

A final biotechnological method that can be mentioned in this context is that of biocatalysts. Some bacteria, such as Klebsiella pneumoniae, Xanthomonas campestris and Lactobacillus delbrueckii, are known to produce exopolysaccharides that are excreted into the culture medium. These bacteria are expected to convert exogenous lipophilic food ingredients in their glycosides soluble in water. In tocopherols, for example, this characteristic reaction (glycosylation), has converted the α- and δ-tocopherols by two biocatalysts glycosides tocopheryl, thus improving bioavailability and pharmacological properties as food additives with an effective antiallergic activity [371, 372].

3.2. Limits of Experiments Interpretation

The diversity and complexity of biocompoundactives, alone, make the study of all these compounds and understanding their mechanisms of action a very difficult mission. While many critics emerge to highlight, and draw attention to, some details relating to the study of bioactive compounds.

Indeed, there are important limitations that must be considered before interpreting an experiment to prove the effectiveness of a product. Traka M.H. and Mithen R.F. (2011); underlining the need for human intervention studies to provide high quality data for health of bioactive components; have criticized the data types used to support activities of some phytochemicals that promote health, including limits of observational and epidemiological studies, and research through the use of cell lines and animal models [361].

So, the major problem for evaluating the biological activity is that these studies present many challenges in the interpretation and extrapolation to humans. But despite all these challenges, various studies have very important benefits, and that is what we will discuss in the third and the last part of
this review, as already promised in our first study about this approach [3].

In all cases, significant efforts are needed to increase the number of clinical studies are still limited, and therefore, provide compelling evidence of the benefits of bioactive compounds in humans [373].

4. Conclusion

All scientific studies confirm that a varied and balanced diet, with minimal physical activity, is factor of protection against cancer, cardiovascular disease, osteoporosis, diabetes, obesity and high cholesterol. True that these diseases do not depend exclusively on food, they are also influenced by genetic factors, but if we cannot choose our ancestors, we can choose our food and organize our lifestyle [3, 374]!

In the first part of this review, we have presented opportunities that contain some most common vegetables and legumes, with discussion of challenges relating to (i) radical reversal dietary habits and how to provide science to the public, (ii) methods of food processing that may affect the content, activity and bioavailability of biocompounactives in foods, and (iii) allergic reactions of some food-borne phytochemicals that are responsible for a variety of symptoms and disorders in human body [3].

In this review (part 2) we focused on studies that have been conducted on biocompounactives of common fruits, and opportunities that present bioactivity of these phytochemicals to prevent many chronic diseases. As well, emphasis is placed on some challenges that face the good investment of biocompounactives, especially bioavailability and bioefficacy; with discussion of some improvement approaches for these factors, like (i) molecular modeling, (ii) nanotechnologies and (iii) biocatalysts.

In the third, and last part of this study, we continue on preventive approach of biocompounactives that contain cereals and some foods of animal origin, with discussion of other opportunities and challenges facing this approach, especially those concerning the revelation of bioactivities using observational and epidemiological studies, and research through the use of cell lines and animal models as mentioned above.

Acknowledgements

Abdelkarim G thanks Professors Abderrahim BOUALI and Abderrahim ZIYYAT for directions and observations they provided during the preparation of this research.

References

[27] Schauss AG; Emerging Knowledge of the Bioactivity of Foods Elsevier Inc., 2010: 71-84.

[42] Setorki M et al.; Effects of apple juice on risk factors of lipid profile, inflammation and coagulation, endothelial markers and atherosclerotic lesions in high cholesterolemic rabbits. Lipids in Health and Disease, 2009, 8: 39.

[57] Hussain PR et al.; Bioactive compounds and antioxidant activity of gamma irradiated sun dried apricots (Prunus armeniaca L.); Journal of Food Composition and Analysis, 2013, 30(2): 59-60.

[80] Schmitz-Eiberger MA and Blanke MM; Bioactive components in forced sweet cherry fruit (Prunus avium L.), antioxidative capacity and allergenic potential as dependent on cultivation types of tangerines (Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand. Journal of agricultural and food chemistry, 2011, 58(10) : 6069.

[107] Sezai E et al., Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from northeastern Turkey. Plant foods for human nutrition (Dordrecht, Netherlands), 2012, 67(3): 271 - 276.

[111] Lori Z; Figure firs into a healthy diet. Environmental Nutrition, 2011, 34(7): 8.

[125] Ono E et al.; Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera); The Plant cell, 2010, 22(8): 2856 - 2871.

[129] Gómez-García R et al.; Enzyme-assisted extraction of antioxidant phenolics from grape (Vitis vinifera L.) residues. 3 Biotech, 2012, 2(4): 297-300.

[160] Park YS et al.; Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars; Journal of Food Composition and Analysis, 2011, 24(7): 963 - 970.

[165] Park YS et al.; Nutritional and pharmaceutical properties of bioactive compounds in organic and conventional growing kiwifruit; Plant foods for human nutrition (Dordrecht, Netherlands), 2013, 68(1): 57 - 64.

Saranuy K and Rakrudee S; Antioxidant and antibacterial activities of selected varieties of thai mango seed extract; Pakistan journal of pharmaceutical sciences, 2011, 24(1): 37.

Ozrenk, K et al.; Fatty acids, tocopherols, selenium and total carotene of pistachios (P. vera L.) from Diyarbakir (Southeastern Turkey) and walnuts (J. regia L.) from Erzincan (Eastern Turkey); Food Science and Technology International, 2012, 18(1): 55-62.

Carvalho M et al.; Human cancer cell antiproliferative and antioxidant activities of Juglans regia L; Food and Chemical Toxicology, 2010, 48(1): 441 - 447.

Zong-Tsi C et al.; Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress; Food chemistry, 2012, 135(4): 2119.

[219] Crifò T et al.; Short cold storage enhances the anthocyanin contents and level of transcripts related to their biosynthesis in blood oranges; Journal of agricultural and food chemistry, 2012, 60(1): 476.

[225] Manzoor M et al.; Variation in minerals, phenolics and antioxidant activity of peel and pulp of different varieties of peach (Prunus persica L.) fruit from Pakistan; Molecules (Basel, Switzerland), 2012, 17(6): 6491 – 650.

[276] Sara B et al. ; By-products of *Opuntia ficus-indica* as a source of antioxidant dietary fiber ; Plant foods for human nutrition (Dordrecht, Netherlands), 2010, 65(3): 210 - 216.

[287] Rendina, E et al.; Dietary supplementation with dried plum prevents ovariectomy-induced bone loss while modulating the immune response in C57BL/6J mice; The Journal of nutritional biochemistry, 2012, 23(1): 60 - 68.

[293] Shannon MS et al.; Juice, pulp and seeds fractionated from dry climate primocane raspberry cultivars (Rubus idaeus) have significantly different antioxidant capacity, anthocyanin content and color. Plant foods for human nutrition (Dordrecht, Netherlands), 2012, 67(4): 358.

[301] Liaqat A et al.; Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries; European Food Research and Technology, 2012, 234(1): 33 - 44.

[315] Riahi A and Hlíder C; Bioactive compounds and antioxidant activity of organically grown tomato (Solanum lycopersicum L.) cultivars as affected by fertilization. Scientia Horticulturae, 2013, 151: 90 - 96.

[317] Charanjit K et al.; Functional quality and antioxidant composition of selected tomato (Solanum lycopersicum L) cultivars grown in Northern India; LWT - Food Science and Technology, 2013, 50(1): 139-145.

