Pharmacological Properties of *Calophyllum inophyllum* – Updated Review

Win Min Oo

Department of Biochemistry, University of Medicine, Magway, Myanmar

Email address: drwinminoo.umm@gmail.com

To cite this article:

Received: July 30, 2018; Accepted: August 13, 2018; Published: September 12, 2018

Abstract: Natural products have been used as medicine since ancient times. With the advancement of research methods nowadays, the pharmacological properties of herbal plants have become an important role in the development and designation of drugs for different diseases. *Calophyllum inophyllum* is a large tree which grows well in different parts of the world. Various parts of *Calophyllum inophyllum* have been investigated for the pharmacological actions and some of the active constituents have been identified and isolated successfully. Furthermore, certain molecular mechanisms underlying the pharmacological effects have been revealed by different research groups across the world in recent years. This paper aims to review the different pharmacological actions of *Calophyllum inophyllum* together with recently discovered active constituents and mechanistic details. The published information on the pharmacological properties of *Calophyllum inophyllum* was gathered by using different database platforms including Google Scholar, PubMed, ScienceDirect, Scopus and SciFinder. The results show different pharmacological actions including anti-inflammatory, anticancer, antioxidant, wound healing, osteogenic, antimicrobial, lipid-lowering and antidiabetic effects of different parts of *Calophyllum inophyllum*. This review will provide the researchers with the background of the therapeutic potential of *Calophyllum inophyllum* and the extent of discovery that will lead to develop therapeutic agents for different pathological states in future.

Keywords: *Calophyllum inophyllum*, Clusiaceae, Pharmacology, Pharmacological Properties

1. Introduction

Calophyllum inophyllum is a large evergreen tree which belongs to the family Clusiaceae and grows to the height of 8 to 20 meters. The trunk produces whitish latex on bruising and the leaves have a characteristic features of opposite arrangements with thick shiny parallel vasculatures. The flowers appears in axillary cymes and are of moderate size and fragrant. *Calophyllum inophyllum* bears purple black ovoid fruits with a single seeds. The fruits and flowers are borne throughout the year. The plant is native to Africa, India and South East Asian countries [1].

Since late 1900s, research have been focused on the pharmacological properties of different parts of *Calophyllum inophyllum* and active constituents have been identified and isolated. Therapeutic potentials of *Calophyllum inophyllum* in certain diseases have proved by various in vivo and in vitro research across the world. Therefore, an updated review is needed regarding the pharmacological effects of different compounds present in *Calophyllum inophyllum* tree.

This article reviews the different pharmacological properties of *Calophyllum inophyllum* in important medical disorders in accordance with the evidence extracted from the diverse research groups. This review will aid researchers to realize how far the extent of understanding the treatment potential of *Calophyllum inophyllum* has gone and to construct further research towards the development of potent drugs in near future.

2. Method

The electronic database including Google Scholar, PubMed, ScienceDirect, Scopus and SciFinder were searched for pharmacological properties of *Calophyllum inophyllum* from 1950 to now to obtain the relevant data.
3. Results and Discussion

3.1. Osteogenic Property

Calophyllolide which is present only in the nuts of *Calophyllum inophyllum* processes osteogenic property. The dry nuts contain approximately 2mg/g of calophyllolide. Calophyllolide content declines in the nuts during maturity. In *in vitro* experiments, calophyllolide activated alkaline phosphatase (ALP) activity in dose-dependent fashion in murine osteoblastic MC3T3-E1 cells but it was not cytotoxic significantly. The evidence of inducing osteoblast differentiation was explained by a rise in mineralization and ALP staining. Furthermore, it induced the expression of ALP and osteocalcin [2]. These supports the therapeutic potential of *Calophyllum inophyllum* in osteoporosis.

3.2. Anti-inflammatory Property

A number of experimental studies results in the evidence that different parts of *Calophyllum inophyllum* show anti-inflammatory property. Ethanol extracts of stem bark and seeds of *Calophyllum inophyllum* exhibited maximum inhibition at 250 µg/ml in proteinase inhibition and hemolysis assays. In Freund’s adjuvant induced arthritis rats, treatment with bark and seeds extracts reduced paw edema volume by 28.57 and 36.36 % respectively as compared with Diclofenac administration that had 43.51 % inhibition. Biochemical and hematological parameters of arthritis rats returned to normal by treating with oral intake of 250 mg/kg of the bark and seeds extracts [3]. In in vitro studies, 50µg/ml of crude oil of the fruits of *Calophyllum inophyllum* inhibits lipooxygenase and cyclooxygenase at 88% and 77% respectively. At the gene expression level, *in vitro* studies, 50µg/ml of crude oil of the fruits of *Calophyllum inophyllum* inhibit nitric oxide production and down-regulates inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and nuclear factor-kappaB (NF-κB) genes [4].

The active constituents are Inophyllloidic acid, calophyllolide and inophyllum C and E. 3,5-dihydroxy-6-methoxy xanthone, beta-cyclooxygenase (COX)-2 and nuclear factor-kappaB (NF-kB) genes [5].

The oil extract of *Calophyllum inophyllum* stem bark has significant antibacterial action against *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Staphylococcus epidermidis* at 25 µg/ml concentration and against *Bacillus licheniformis*, *Bacillus subtilis*, *Escherichia coli* and *Klebsiella pneumoniae* at 50 µg/ml concentration [15].

The oil extract of *Calophyllum inophyllum* seeds exhibits two different antimicrobial actions. It directly inhibit mitosis of gram-positive bacteria while the extract accelerates the release of beta-defesin 2 peptide from macrophage to inhibit gram-negative bacteria [10].

Methanol and n-hexane extracts of discarded peel of *Calophyllum inophyllum* fruits exhibit significant antimicrobial activity against *Staphylococcus aureus* and *Mycobacterium smegmatis* [1].

3.3. Wound Healing Property

Topical application of Calophyllolide obtained from ethanolic extract of *Calophyllum inophyllum* seeds inhibited accelerated collagen formation and enhanced wound closure in animal models [7]. Irrigation with ionization marine solution with 10% *Calophyllum inophyllum* oil and 90% *Aleurites moluccana* induced regeneration of corneal epithelium and repress inflammation alkali burns in animal experiments [9]. In the scratch test assay on human keratinocyte cells, intubation in 0.1% of the oil extract of *Calophyllum inophyllum* accelerated wound closure with the healing factor 1.3 to 2.1 higher than control [10].

Regarding the mechanisms, the nut oil of *Calophyllum inophyllum* up-regulates the genes involved in cell adhesion, cell proliferation and O-glycan synthesis [11]. Calophyllolide of *Calophyllum inophyllum* seeds inhibits myeloperoxidase activity and induces M2-relation gene expression leading to M2 macrophage skewing [7].

3.4. Antibacterial and Antifungal Property

Bhat and colleagues first described the antimicrobial action of the oil of *Calophyllum inophyllum* against gram-positive bacteria in 1954 [12]. Later, Potti and Kurup reported a green yellow semi-solid compound, C32H46O6, isolated from the root bark inhibits the growth of gram-positive bacteria in 1970 [13]. According to experimental results, 20 µg/disc of caloxanthone A, calphynic acid, brasiliensic acid, inophyllol acid, and inophyllol acid, calphylluminol A and C and E isolated from root and nut of *Calophyllum inophyllum* inhibited *Staphylococcus aureus* but showed no effects on *Vibrio anguillarum, Escherichia coli* in agar well diffusions assays. However, the antibiotic action was lower than that of control, oxacillin [14].

Methanol extract of *Calophyllum inophyllum* stem bark has significant antibacterial action against *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Staphylococcus epidermidis* at 25 µg/ml concentration and against *Bacillus licheniformis*, *Bacillus subtilis*, *Escherichia coli* and *Klebsiella pneumoniae* at 50 µg/ml concentration [15].

Calophyllum inophyllum seeds inhibited *Methanol* extract of *Calophyllum inophyllum* stem bark has significant antibacterial action against *Staphylococcus aureus* and *Mycobacterium smegmatis* [1].

Ethanol and chloroform extracts of *Calophyllum inophyllum* leaves are also active against gram-positive bacteria – *Staphylococcus aureus*, *Streptococcus pyogenes* and *Corynebacterium diphtheriae* but lack antimicrobial effect on gram-negative organisms. Butanol extract of the leaves exhibited antibacterial action on both gram-positive and -negative bacteria except *Escherichia*. Regarding active constituents of the leaves, canophyllol acid is active against *Proteus mirabilis* while canophyllol is much more potent against gram-positive strains. Friedelin is active against *Staphylococcus aureus*, *Corynebacterium diphtheriae*, *Salmonella typhi*, *Klebsiella pneumoniae* and *Proteus mirabilis*. Inophynone processes antibacterial action on *Staphylococcus aureus* [16].
Aqueous extract of Calophyllum inophyllum leaves exerts inhibitory effect on Microsporum canis, Trichophyton schoenleinii and Aspergillus niger. Butanol extract of the leaves is active against Trichophyton simil and Trichophyton mentagrophytes while chloroform extract shows antifungal effect on Pseudallescheria boydii and Aspergillus niger. Regarding active constituents, friedelin present in the leaves is active against Aspergillus niger, Pseudallescheria boydii and Trichophyton schoenleinii. Canophyllol and inophynone lack antifungal effect [16].

3.5. Anticancer Property

Caloxanthone N and gerontoxantone C isolated from ethanol extract of *Calophyllum inophyllum* have cytotoxic effect on chronic myelogenaus leukemia cell line (K562) with IC50 of 7.2 and 6.3 µg/ml respectively [17]. 1/10,000 v/v of *Calophyllum inophyllum* oil can absorb UV rays (maximum 300nm) and has sun protection factor of 18-22. Similarly, 1% *Calophyllum inophyllum* oil is able to inhibit UV-induced DNA damage by 85% without significant irritation or cytotoxicity [18]. Furthermore, *Calophyllum inophyllum* contains 4-phenylcoumarins which inhibits Epstein-Barr virus early antigen (EBV-EA) activation caused by 12-O-tetradecanoylphorbol-13-acetate in Raji cells. Calocoumarin-A also protects mouse skin tumor formation in carcinogenesis experiments [19].

The stem bark of *Calophyllum inophyllum* contains different xanthones (inophinone, pyranojacareubin, rheediaxanthone A, maculaxanthone and 4-hydroxyxanthone). Among them, iophinone, rheediaxanthone A, maculaxanthone and 4-hydroxyxanthone exhibited anti-proliferative actions on 5 different cell lines – SNU-1, HeLa, NCI-H34, Hep G2 and K562. Pyranojacareubin lacks anticancer activity probably due to pyran ring fusion in its structure [20]. Ethanolic extract of the twigs of *Calophyllum inophyllum* contains a prenylated xanthone called caloxanthone O that is cytotoxic to human gastric cancer cell line (SGC-7901) with IC50 being 22.4 µg/ml [21]. 3β, 23-epoxy-friedelan-28-oic acid, canophyllol, canophyllumic acid and 3-oxofriedelan-28-oic acid and oleononic acid isolated from the stems and leaves is calophyllin acid, 3-oxofriedelan-28-oic acid, canophyllinic acid, amentoflavone, shikimic acid inophyllum C and inophyllloidic acid present in the leaves of *Calophyllum inophyllum* inhibits cell growth in human leukemia HL-60 cells [22].

The fruit extract of *Calophyllum inophyllum* shows significant antitumor effect on MCR-7 cells with IC50 of 23.59 µg/ml by inducing cell cycle arrest at G0/G1 and G2/M phases and apoptosis. *Calophyllum inophyllum* represses Bel-2 expression, anti-apoptotic protein, while inducing pro-apoptotic Bax, p53 and cytochrome C. The extract influences mitochondrial apoptotic pathway by enhancing intracellular reactive oxygen species (ROS), disturbing normal mitochondrial potential and activating caspase-3 [23].

Yellow and green pigments contained in seed oil of *Calophyllum inophyllum* leaves are cytotoxic to DLD-1 human colon cancer cells as they inhibit cell cycle at check points – G1-S and G2-M. The pigments also induce cell death in A549 and H1975 human non-small cell lung cancer cell lines with IC50 being 0.1206 and 0.0676% respectively in 24 hour incubation. The green pigment has synergistic effect on gefitinib, a selective epidermal growth factor receptor blocker to potentiate the cell death in A549 and H1975 cells [24].

Calophyllolide, caloxanthone A, calophyllumic acid, brasiliensic acid and inophyllloidic acid isolated from roots and nuts of *Calophyllum inophyllum* exhibited IC50 value of 3.5, 7.7, 10.5, 11.0 and 9.4 µg/ml respectively on human epidermoid carcinoma of the nasopharynx cell (KB). On another hand, calaustralin and inophyll E lacked such cytotoxic effect [14]. Inophyll A present in the root of *Calophyllum inophyllum* induces apoptosis in Jurkat T lymphoblastic leukemic cells via the generation of reactive oxygen species and mitochondrial membrane disruption with simultaneous activation of caspase 2, 9 and 3. This suggests the anticancer action of Inophyll A in *Calophyllum inophyllum* roots is a potential inducer of intrinsic apoptosis pathway in chemotherapy [25].

3.6. Neuropharmacological Properties

According to the experiments in rodent models, the leaf extract of *Calophyllum inophyllum* sedative and anxiogenic effects on the nervous system. The administration of 100 and 200 mg/kg of the extract significantly reduced head dips frequency in the hole board test on the animals. It prolonged the duration spent in the dark arena in the light and dark box test. In open field test, the total locomotion was reduced by the extract intake, the rearing and the grooming frequencies were decreased and the duration spent in closed arm was prolonged significantly as compared with control [26].

Different xanthones of *Calophyllum inophyllum* – euxanthone, mesuaxanthone-A, B, 6-desoxy jacerubin, jacerubin, calophyllin-B, dehydroxycycloguanandin can exert CNS depressant property with ptosis, decline in motor activity, sedation, muscle tone loss, enhanced sleeping time and ether anesthesia in animal models. However, these compounds lack analgesic, anticonvulsant and antipyretic properties [27]. Yet, the methanol extract of *Calophyllum inophyllum* stem barks has analgesic action at the dose of 100mg/kg and 200mg/kg in mice [15].

3.7. Lipid-Lowering Property

Diastereomeric mixture calphyllic acid and isocalphyllic acid, 3-oxofriedelan-28-oic acid, canophyllinic acid, amentoflavone, shikimic acid inophyllum C and inophyllloidic acid present in the leaves of *Calophyllum inophyllum* have different lipid lowering activities on plasma cholesterol, triacylglycerol and phospholipids [28].

3.8. Antioxidant Property

The reducing power and DPPH (diphenyl picrylhydrazyl) free radical scavenging power of the methanol extract of the leaves are more potent than those of aqueous extract. Total phenol concentrations of methanol and aqueous extracts of the leaves are 140 ± 17 and 97 ± 9 mg/g respectively.
Methanol and aqueous extracts contains flavonoid contents of 177 ± 5 and 89 ± 3 mg/g respectively [29].

Calophyllolic acid and isocalophyllolic acid, canophyllolic acid present in the leaves of Calophyllum inophyllum have antioxidant property at 200 µg/ml concentration. They are able to scavenge hydroxyl radicals and superoxide anions and suppress malondialdehyde production [28]. Delta-tocotrienol contributes to 236 mg/kg of kernel oil of Calophyllum inophyllum [30]. This may also prevents free radical chain reactions of lipid peroxidation preventing the generation of harmful peroxide radicals.

3.9. Antiviral Property

Dipyranocoumarins – calophyllolide, inophyllums B, C, G, and P present in the seeds and leaves of Calophyllum inophyllum have non-nucleoside reverse transcriptase inhibitory effect which may contribute to the development of new drugs for retroviral infections [31, 31]. Inophyllums B and P inhibit reverse transcriptase with IC50 being 38 and 130 nM respectively. HIV-1 grown in cultures also sensitive to these inophyllums [33-35].

3.10. Antidiabetic Property

The potential antidiabetic effects of Calophyllum inophyllum are of two mechanisms. The first one is inhibition of α-glucosidase enzyme required for intestinal absorption of dietary glucose and the second one, the reduction of insulin resistance in peripheral tissues particularly the skeletal muscles [8, 36-37]. The bark and leaves of Calophyllum inophyllum contain numerous flavonoids and coumarins – inophyllum D, H, calanone, isocordato-oblongic acid, amentoflavone, carpachromene and lupenone, all of which inhibit α-glucosidase enzyme [8].

The diastereomeric mixture of Calophyllolic acid and isocalophyllolic acid (F015) extracted from Calophyllum inophyllum leaves reduces insulin resistance by enhancing glucose uptake in skeletal muscle cells. The mechanism is via the activation of phosphorylidyinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) without the involvement of 5’AMP-activated kinase (AMPK) (Prasad et al, 2013). F015 also reduces palmitate-induced insulin resistance by reversal of insulin-stimulated phosphorylation of IRS-1, AKT and GSK-3β. F015 inhibits the generation of reactive oxygen species and associated inflammation induced by fatty acid by downregulating JNK, ERK1/2 and p38 MAPK. F015 prevents against inflammation-stimulated IRS-1 serine phosphorylation and reverses insulin-stimulated IRS-1 tyrosine kinase leading to promoting insulin sensitivity [37].

4. Conclusion

Different parts of Calophyllum inophyllum tree have certain pharmacological properties – osteogenic, anti-inflammatory, wound healing, antibacterial, antifungal, anticancer, lipid-lowering, antioxidant, neuropharmacological and antidiabetic effects. The bioactive compounds have been identified, leading towards the development of new potent drugs for common diseases.

Conflict of Interest

The author declares there is no conflict of interest.

References

[26] Ibironke GF, Ugege OG. Neurobehavioural activities of the ethanol leaf extract of *Calophyllum inophyllum* in rodents.

