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Abstract: One current interest in medical research is the comparison of treatments in the analysis of survival times of 

patients. This is particularly problematic, especially for censored data, and when these data consists of several groups, where 

each group has distinct properties and characteristics but belong to the same distribution. There are various modeling schemes 

that have been contemplated to overcome these complexities inherent in the data. One such possibility is the Bayesian 

approach which integrates prior knowledge in analysis. In this paper, we focus on the use of Bayesian lognormal mixture 

model (MLNM) with related Dirichlet process (DP) prior distribution for estimating patient survival. The advances in the 

Bayesian paradigm have considerably bolstered the development and application of mixture modelling methodology in the 

field of survival analysis. The proposed MLN model is compared with the conventional parametric lognormal and the 

nonparametric Kaplan Meier (K-M) models used to estimate survival to establish model robustness. A simulation study that 

investigates the impact of censoring on these models is also described. Real data from past research is used to show the 

resulting Dirichlet process mixture model’s robustness in the comparison of censored treatment. The results indicate that the 

proposed lognormal mixtures provide a better fit to complex data. Further, the MLN models are able to estimate various 

survival distributions and therefore appropriate to compare treatments. Clinicians will find these models useful especially when 

confronted with the obstacle of choosing a suitable therapy for a disease. 
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1. Introduction 

Most medical data are censored and/or arise from several 

homogenous subgroups relating to one or several 

characteristics, for example when different treatments are 

administered to patients. There is therefore an increasing 

need for efficient estimation of patient survival through 

comparison of treatments. Several modeling procedures have 

been postulated in literature. One such scheme is the 

Bayesian framework that incorporates prior information 

regarding the data without compromising the accuracy of 

estimates [2]. And as reported by [5], models based on 

Bayesian nonparametrics present more flexibility leading to 

ease of computation. Bayesian nonparametric models 

however suffer from the possible impediments of inference, 

particularly due to the challenges associated with prior 

choice. The Dirichlet Process (DP) is the prior of choice for 

Bayesian non-parametric models. However the DP is 

inadequate in these settings since the posterior is not DP but 

a mixture of DP. Mixture DP distributions offer the options 

of discreteness and flexibility especially since they consider 

data as represented by weighted sum of distributions, with 

each distribution characterized by a unique parameter set 

representing a subspace of the population. Given the 
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complexities associated with these MDP models, posterior 

inference is feasible through tractable MCMC technique 

algorithms. [13], postulated that the Dirichlet Process (DP) 

prior for mixing portions can be handled by both a Bayesian 

framework through an MCMC algorithm. [9] use Bayesian 

techniques, with prior drawn from specific estimation points 

to analyze survival times data while [1] consider Dirichlet 

process and its extensions in boistatistics. 

The main aim of this paper is to develop and apply the 

Bayesian Dirichlet process lognormal mixture approach to 

model patients’ survival in cases of censoring. This aim is 

addressed through the estimation of a two component 

lognormal mixture model in a simulation study and an 

application to a leukemia remission dataset from [4]. A 

Bayesian Markov Chain Monte Carlo (MCMC) approach 

through Gibbs sampling and Metropolis-Hasting algorithm, 

assuming known number of mixing components was 

implemented. 

In this paper we carry out posterior inference by sampling 

from the posterior distribution using simulation employing 

Markov Chain Monte Carlo (MCMC) methods. We employ 

the MCMC sampling algorithms through the Win BUGS [14] 

software. The overall aim of MCMC sampling is to simulate 

from a complex (posterior) density by creating a Markov 

chain with the posterior density as its stationary distribution. 

This is done by direct successive simulations from the 

component conditional distributions. 

The rest of this paper is organized as follows. In Section 2, 

we define the Dirichlet process mixture model and Bayesian 

computational approach for parameter estimation. We also 

provide the method of simulation and discuss the issue of 

model evaluation. In Section 3, we illustrate the model using 

simulated datasets and the leukemia dataset. The results are 

discussed further in Section 4. 

2. Material and Method 

2.1. Model Formulation 

In this section, we define the Dirichlet process lognormal 

mixture model for analyzing survival data. Let 1,... nt t  be a 

random sample taken from a censored and possibly 

heterogeneous population. The two parameter lognormal 

distribution given by 
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The joint prior can be expressed as 

2 2 2 2 2( , , | , , , , ) ( | ) ( | , ) ( | , )f s f f s f sµ ω θ σ α β ν ω ν µ σ α β=  (7) 

Now according to [10] posterior distribution is calculated 

through Bayes Theorem as 
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Thus by combining the likelihood and the prior, the 

posterior of µ  and 
2s  is given as 
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which is Dirichlet Process mixture model. For each 

observation it , we define an indicator variable as 
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tif failure timeis an uncensored

i
if t is a censoring right time

δ
= 
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                (10) 

If it  is an uncensored failure time, that is, 0i = , the full 

conditional mixture DP model is as given by equation (9). 

For a rightly censored observation it , 1i = , then the posterior 

is given as 
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where jn are the number of uncensored failure times in the 

thj  cluster. 

For this finite mixture model, we treat the number of 

subgroups, K  representing the data under study as known. 

As the data size grows and data become more complicated, 

an infinite number of prior information is theoretically 

assigned for growing with data, giving a hierarchical 

representation. The proportion of data explained by a 

subgroup j  is represented by the component weight jω , 

while each component is also described by its own 

distribution 2( | , )j j jf t sµ , defined by component specific 

parameters, 2,j jsµ . Since the components come from the 

lognormal parametric family, 2( | , )j j jf t sµ , then the 

parametric mixture model is 
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f t sω µ
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∑                       (13) 

In the Bayesian analysis of the model, we assume that

1| ~ ( ,..., )nK Dirω ν ν , where ; 1,...,i i nν =  are fixed 

constants. Also, the component parameters 2,j jsµ  are 

assumed a priori independent, conditionally on K  and, 

possibly, a vector of hyperparameters, 
2, , ,α β θ σ so that the 

posterior is 
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If prior distributions are specified, such that 

2 2 2 2( , , | , , , , ) ( | ) ( | , ) ( | , )sf s f f s f sµ ω θ σ α β ν ω ν µ σ α β=  (15) 

then a sample from the joint posterior of can be obtained by 

means of Markov chain Monte Carlo methods [3]. In the 

Bayesian framework, a DP prior is assigned to the mixture 

model with a kernel distribution, to form a mixture DP model 

(MDPM) written as 

2 2
( , ) ( | , ) ( , )F t G f t s G d sµ µ= ∫                 (16) 

If we set G  as a DP prior, then 0~ ( , )G DP Gν  denotes 

Dirichlet Process prior placed on the random distribution 

function G . Thus 0( , )DP Gν  is the Dirichlet process with a 

base distribution 0G , an infinite-dimensional distributional 

parameter which makes the MDPM a nonparametric method 

and 0ν >  is the mass parameter. 

For this lognormal distribution mixture we model 

flexibility by conveniently assigning the following 

independent prior distributions [8] for the unknown 

parameters, and accordingly, express the MDPLN model 

hierarchically as 
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In WinBUGS [12], censored data are modelled using a 

missing data approach through the command I(., ) as follows 

2[ ] ~ ln ( [ ]; [ ]) ( . [ ];)t i d orm mu i s i I ces time i             (18) 

where cens:time [i] is either zero for uncensored outcome or 

the ith recorded survival time for censored outcomes. Hence, 

censored survival times are considered drawn from a 

truncated lognormal distribution. We place the prior 

distributions on the parameters and hyper parameters as 

shown in equation (16), and choose small positive values for

να , βα , σα , νβ , ββ , σβ , θµ ,
2
θσ  to express vague prior 

knowledge about these parameters and setting 1ν =  [3]. 

2.2. Computation Method 

The model described in Section 2.1 can be fitted using 

MCMC sampling with latent values iZ  to indicate 

component membership of the ith observation. Since 

( )j iP Z jω = =                                  (19) 

We can write 

1~ ( , , )i KZ Mult ω ω⋯                           (20) 

In this approach, iZ  is sampled by computing posterior 

probabilities of membership, and the other parameters are 

sampled from their full posterior distributions, conditional on 

the latent indicators. This was implemented in the WinBUGS 

software package. The algorithm is set by selecting the 

permutation of components at each iteration  minimizing the 

vector dot product, from the posterior distribution. The 

MCMC output was then aligned according to each picked 

permutation. 

2.3. Simulation Algorithm 

This section describes the sampling algorithm [6] for 

simulating from the complex posterior distribution. This is 

implemented by creating a Markov chain with the posterior 

as its stationary distribution through direct successive 

simulations from the component conditional distributions. 

We note that the Gibbs sampler and its various adaptations 

has been the most commonly used approach in Bayesian 

mixture estimation. 

Our interest in this study was to estimate the parameter of 

Bayesian Dirichlet process lognormal mixture. We used the 

simulation algorithm for analyses. For this study, data were 

simulated from two component lognormal mixture models 

with the following parameter configurations: 

2( | , , , ) 0.4 (4,0.16) 0.6 (5,0.09)f t K s LN LNω µ = +   (21) 

The censoring levels of 30% was applied to model and a 

sample size of N = 100 for n=100 individuals was used for 

all experiments. The following steps were applied to carry 

out the simulations. 

1. Generate it  from the respective model, for i=1, 2,…, n. 

2. Generate censoring times by assuming that the largest 

C% survival times are right censored. 

3. Fit the model based on the data, with 10000 iterations, 

5000 burn-in. 

4. Record posterior estimates of the model parameters, 

namely median and standard deviation. 

3. Results 

3.1. Simulated Data 

Based on the nature of the survival data, a mixture of two 

Lognormal [13] distributions is considered. We generated N 

= 100 data sets, each with n = 100 individuals. We generated 

a right-censored data set by first generate a variable T for 

true survival time from the mixture distribution. Next, we 

generated another variable for censoring time, C from a 

uniform distribution on the interval (0, 4.784) so that each 

individual has approximately a 30% chance of having a 

right-censored survival time. This was to obtain 

approximately 30% censoring for the data set. 

Since we know very little about the true values of these 

parameters, we used vague Gamma priors [3] as follows 

( )
( )

( )
( )

6

2

~ 1,0.001

~ 0,10

~ 2,0.001

~ 1,0.009976

Gamma

Normal

IG

Gamma

ν

θ

σ
β

                   (22) 

These non-informative prior distributions were deployed 

to generate lifetime data sets resembling the nature of 

complex models [13], and each have a variance of
610 , not to 

influence the posterior distribution. A large prior variance is 

indicative of a vague distribution and therefore reflects 

relative ignorance about the true parameters. 

We carried out a convergence diagnostic test to ensure 

convergence of the Markov Chains by estimating the length 

of the burn-in period, before taking a sample from the 

converged chain. The plot in Figure 1 illustrates the trace 

history for µ  and
2s while Table 1 confirms the accuracy of 

the parameter estimates in the 30% of censoring. 
 

 



43 Henry Ondicho Nyambega and George Otieno Orwa:  On Bayesian Estimation of Dirichlet Process Lognormal   

Mixture Models and Comparison of Treatments in Censoring 

 

 

Figure 1. Trace history for µ  and 2s . 

Table 1. Posterior estimates of the model parameters from 10000 iterations 

for a burn-in of 5000 with 30% censoring. 

Parameter Posterior Mean Posterior SD 95% CI 

µ  0.908 0.1496 (0.872, 1.109) 

2s  2.718 1.095 (2.677, 3.255) 

θ  0.8037 0.1168 
(0.7146, 

0.9927) 

2σ  2.935 1.1768 (2.865, 3.376) 

β  2.542 0.3801 (2.498, 2.812) 

The figure shows quite a good mixing of the algorithm, 

with the mixture size moves oscillating without remaining in 

the same place for too long. The simulated data was used to 

illustrate the performance of the proposed MDPLN model 

with competing models in literature. We employed both 

graphical and quantitative methods to compare the 

parametric lognormal model, the non-parametric Kaplan 

Meier (K-M) and the proposed MDPL model. Graphical 

comparison was through fitting the survival functions of the 

three models to the data and a visual inspection as to how 

similar shape and behavior of the survival functions (curves) 

are to the true model made (Equation 21). Figure 2 shows the 

survival curves (plots) obtained. 

From the plots in Figure 2 we see that the parametric 

lognormal is not capable of capturing the generated mixture 

distribution with long tail and thus is not a good choice for 

estimating the mixture survival time data. However, the 

MDPLN model fits the data better than both parametric 

lognormal and the nonparametric K-M. To facilitate a 

quantitative comparison, the Kolmogorov-Smirnov (KS) test, 

a nonparametric test for goodness-of-fit [7], was used to 

assess the appropriateness of the proposed models against the 

true mixture model. The KS test summarizes the discrepancy 

between observed values and the values expected under the 

models in question. Table 2 shows the results from the 

comparison. 

 

Figure 2. Comparison of survival functions for lognormal, K-M and 

MDPLNM Functions. 

Table 2. Kolmogorov-Smirnov goodness-of-fit test of failure time cumulative 

density and survival function estimation. 

Model 
F(t) S(t) 

Test Stat p-value Test Stat p-value 

Lognormal 0.4785 0.0040 0.5215 0.001 

KM 0.2963 0.2560 0.7037 0.008 

DPLNMM 0.1476 0.8680 0.8524 0.667 

The results in Table 2 show that the estimated CDF for the 

mixture model using MDPLNM has the smallest test 

statistics value of 0.1476 with a p-value of 0.8680>0.05. A 

smaller test statistics reflects a better model fit. We conclude 

that MDPLN model offers the best estimate and therefore 

most appropriate to estimate survival. 
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3.2. Application 

Here we analyzed data from remission times of 21 pairs of 

42 acute leukemia patients [4] in a clinical trial designed to 

test the potency of 6-Mercaptopurine (6-MP) to lengthen 

remission in patients randomly assigned to maintenance 

therapy of either 6-MP or a placebo. As in the simulated 

example, we used the same prior distributions and the 

Sampling MCMC algorithm through Win BUGS with 10000 

iterations (5000 to burn-in) to fit the data. In Figure 4 we 

illustrate and predict the survivor functions. The Survivor 

functions have also been compared to the Kaplan Meier 

estimator. From the figure there appears to be a good 

correspondence between the K-M and the plots for each set 

of treatment observation. 

 

Figure 3. Fitted survival curves and Kaplan Meier estimator for 6MP 

treatment and Placebo in Leukemia data. 

From figure 3, we conclude that patients who receive the 

6-MP treatment have a longer survival rate than the patients 

in the placebo group. This justifies the effectiveness of 6-MP 

treatment in prolonging duration of remission for the 

patients. 

In Table 3 we show a quantitative comparison using 

Kolmogorov-Smirnov test, a nonparametric test for 

goodness-of-fit, for testing statistical differences in survival 

between groups. The null hypothesis states that the leukemia 

patient groups have the same survival distribution against the 

alternative that the survival distributions are different. 

Table 3. Comparison of treatments using Kolmogorov-Smirnov goodness-of-

fit test. 

6( ) MPS t  ( )PLCBS t  

Test Stat p-value Test Stat p-value 

0.5946 0.000510 0.4173 0.060 

From these p-values for each test statistic, we conclude, at 

the 0.05 significance level, that patients who receive the 6-

MP treatment have a longer survival rate than the patients in 

the placebo group. This result supports earlier findings by 

[4]. 

4. Conclusions and Further 

Developments 

In this paper, we have illustrated how Bayesian methods 

can be used to fit a mixture of lognormal model with a 

known number of components to heterogeneous, censored 

survival data using MCMC algorithm through the Win 

BUGS software to estimate the survivor function. We show 

from simulation results and those from real data that the 

mixture Dirichlet Process LNM model is capable of 

capturing different shapes of complex survival time 

distributions. This indicates that the proposed model is more 

robust than the competing parametric lognormal and 

nonparametric Kaplan Meier models, and therefore shows 

promising potential to be applied to compare different 

treatments. Some extensions and modifications of the model 

would be extended to cases where we have unknown number 

of components K as data grows in complexity. 
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