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Abstract: In this article, we considered the fuzzy hyperbolic differential inclusions (fuzzy Darboux problem), introduced the 
concept of R-solution and proved the existence of such a solution. Also the substantiation of a possibility of application of partial 
averaging method for hyperbolic differential inclusions with the fuzzy right-hand side with the small parameters is considered.  
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1. Introduction 

In 1990 J.P. Aubin [6] and V.A. Baidosov [7, 8] introduced 
differential inclusions with the fuzzy right-hand side. Their 
approach is based on usual differential inclusions. E. Hüllermeier 
[20, 21] introduced the concept of R-solution similarly how it has 
been done in [34]. Later, the various properties of fuzzy solutions 
of differential inclusions, and their use in modeling various 
natural science processes were considered (see [1, 4, 5, 17, 18, 26, 
27] and the references therein). 

The averaging methods combined with the asymptotic 
representations (in Poincare sense) began to be applied as the 
basic constructive tool for solving the complicated problems 
of analytical dynamics described by the differential 
equations. After the systematic researches done by N. M. 
Krylov, N. N. Bogoliubov, Yu. A. Mitropolsky etc, in 1930s, 
the averaging method gradually became one of the classical 
methods in analyzing nonlinear oscillations (see [10, 25, 40, 
42] and references therein). In works [36-39], the possibility 
of application of schemes of full and partial averaging for 
fuzzy differential inclusions with a small parameter was 
proved. 

In papers [2, 3, 9, 11, 13, 18, 22, 30, 32, 33, 35], authors 
investigate classical models of partial differential equations 
with uncertain parameters, considering the parameters as 

fuzzy numbers. It was an obvious step in the mathematical 
modeling of physical processes. Study of fuzzy partial 
differential equations means the generalization of partial 
differential equations in fuzzy sense. While doing modelling 
of real situation in terms of partial differential equation, we 
see that the variables and parameters involve in the equations 
are uncertain (in the sense that they are not completely 
known or inexact or imprecise). Many times common initial 
or boundary condition of ambient temperature is a fuzzy 
condition since ambient temperature is prone to variation in a 
range. We express this impreciseness and uncertainties in 
terms of fuzzy numbers. So we come across with fuzzy 
partial differential equations. Also obviously, these 
equations can be written in as fuzzy partial differential 
inclusions. 

In this work we consider fuzzy hyperbolic differential 
inclusions (fuzzy Darboux problem) and introduce the 
concept of R-solution similarly how it has been done in [36, 
40, 50, 52, 53]. Also we ground the possibility of application 
of partial averaging method for fuzzy Darboux problem. This 
result generalize the results of A. N. Vityuk [40, 52] for the 
ordinary hyperbolic differential inclusions and M. Kiselevich 
[23], D. G. Korenevskii [24] for the ordinary hyperbolic 
differential equations. 
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2. Preliminaries 

Let ( )( ( ))n ncomp R conv R  be a family of all nonempty 

(convex) compact subsets from the space nR  with the 
Hausdorff metric  

( ) { }
0

, = min ( ), ( ) ,r r
r

h A B B S A A S B
≥

⊂ ⊂  

where , ( )nA B comp R∈ , ( )
r

S A  is r -neighborhood of set 

A . 

Let nE  be a family of all : [0,1]nu R →  such that u  

satisfies the following conditions: 

1) u  is normal, i.e. there exists an 0
nx R∈  such that 

0( ) = 1u x ; 
2) u  is fuzzy convex, i.e. 

( ) { }(1 ) min ( ), ( )u x y u x u yλ λ+ − ≥  for any , nx y R∈  

and 0 1λ≤ ≤ ; 

3) u  is upper semicontinuous, i.e. for any 0
nx R∈  and 

> 0ε  where exists 0( , ) > 0xδ ε  such that 

0( ) < ( )u x u x ε+  whenever 0 0< ( , ), nx x x x Rδ ε− ∈� � ; 

4) the closure of the set { }: ( ) > 0nx R u x∈  is compact. 

If nu E∈ , then u  is called a fuzzy number, and nE  is 
said to be a fuzzy number space. 

Definition 1. The set { }: ( )nx R u x α∈ ≥  is called the α

-level [ ]u α  of a fuzzy number nu E∈  for 0 < 1α ≤ . The 

closure of the set { }: ( ) > 0nx R u x∈  is called the 0 -level 
0[ ]u  of a fuzzy number nu E∈ . 

It is clearly that the set [ ] ( )n
u conv R

α ∈  for all 0 1α≤ ≤ . 

Theorem 1. (Stacking Theorem [31]) If nu E∈  then 

1) [ ] ( )nu conv Rα ∈  for all [0,1]α ∈ ; 

2) 2 1[ ] [ ]u u
α α⊂  for all 1 20 1α α≤ ≤ ≤ ; 

3) if { }
k

α  is a nondecreasing sequence converging to 

> 0α , then 
1

[ ] = [ ] k

k

u u
αα

≥
∩ . 

Conversely, if { }: [0,1]Aα α ∈  is the family of subsets of 
nR  satisfying conditions 1) - 3) then there exists nu E∈  

such that [ ] =u Aα
α  for 0 < 1α ≤  and 0

0
0< 1

[ ] =u A Aα
α ≤

⊂∪ . 

Let θ  be the fuzzy number defined by ( ) = 0xθ  if 

0x ≠  and ( )0 = 1θ . 

Define : [0, )n nD E E× → ∞  by the relation  

[ ] [ ]( )
0 1

( , ) = sup , .D u v h u v
α α

α≤ ≤
 

Then D  is a metric in nE . Further we know that [41]: 

i). ( ),nE D  is a complete metric space, 

ii). ( ) ( ), = ,D u w v w D u v+ +  for all , , n
u v w E∈ , 

iii). ( ) ( ), = ,D u v D u vλ λ λ  for all , n
u v E∈  and Rλ ∈ . 

3. Fuzzy Hyperbolic Differential 

Inclusion. R-solution 

Consider the fuzzy hyperbolic differential inclusion (or in 
other words, fuzzy Darboux problem)  

( , ) ( , , ( , )),

( ,0) = ( ), [0, ],

(0, ) = ( ), [0, ], (0) = (0),

xy
u x y F x y u x y

u x x x a

u y y y b

ϕ
ψ ϕ ψ

∈
∈

∈
      (1) 

where 

2 ( , )
, ( , ) = , : [0, ] [0, ]

, : [0, ] , : [0, ]

n n

xy

n n n

u x y
u R u x y F a b R

x y

E a R b Rϕ ψ

∂∈ × ×
∂ ∂

→ → →
. 

We interpret fuzzy Darboux problem (1) as a family of 
set-valued Darboux problems  

( , ) [ ( , , ( , ))] ,

( ,0) = ( ), [0, ],

(0, ) = ( ), [0, ],

(0) = (0), [0,1].

xy
u x y F x y u x y

u x x x a

u y y y b

α α α

α

α

ϕ
ψ

ϕ ψ α

∈

∈
∈

∈

      (2) 

Qualitative properties and structure of the set of solutions of 
the set-valued Darboux problem have been studied by many 
authors, for instance [12, 14-16, 28, 29, 40, 44-53] and 
references therein. 

Definition 2 [28, 43]. A function :[0, ] [0, ] nu a b R× →  is 

said to be absolutely continuous on [0, ] [0, ]a b×  

( ( , ) ([0, ] [0, ])u AC a b⋅ ⋅ ∈ × ) if there exist absolutely 

continuous functions : [0, ] na Rϕ →  and :[0, ] nb Rψ → , 

and Lebesgue integrable function :[0, ] [0, ] ng a b R× →  such 

that  

0 0

( , ) = ( ) ( ) ( , ) , (0) = (0) = .
yx

u x y x y c g d d cϕ ψ ξ ς ς ξ ϕ ψ+ − + ∫∫  

Definition 3. An α − solution ( , )uα ⋅ ⋅  of (1) is understood 

to be an absolutely continuous function 

: [0, ] [0, ] nu a b Rα × →  that satisfies (2) for almost every 

( , ) [0, ] [0, ]x y a b∈ ×  and the boundary conditions for any 

[0, ]x a∈  and [0, ].y b∈  

Let U α  denote the α − solution set of (2) and 

( , ) = { ( , ) : ( , ) }U x y u x y u Uα α α α⋅ ⋅ ∈ . Clearly a family of 

subsets ( , ) = { ( , ): [0,1]}U x y U x yα α ∈  may not satisfy to 

conditions of Theorem 1, i.e. ( , ) .nU x y E∈  For example, 
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( , ) ( )nU x y comp Rα ∈  and ( , ) ( )nU x y conv Rα ∈  for any 

[0,1].α ∈  Therefore, we introduce the definition of 

R-solutions for fuzzy Darboux problem (1). 

Definition 3. The upper semicontinuous fuzzy mapping 
: [0, ] [0, ] nR a b E× →  that satisfies to the following system  

(
[0,1]

[ ( , )]

[ ( , )] ,sup

( ) ( ) [ ( , , )] = ( ),
st

t su R t s

h R t s

v t s u F u d d o

α

α

ησ
α

α

σ η

σ τ η ξ ν ν ξ ση

∈

++

∈

+ +

  
+ + + − +   

∫ ∫∪
                     (3) 

is called the R-solution of fuzzy Darboux problem (1), where 
( ) ( , )v x AC t t σ∈ + , ( ) ( , )y AC s sτ η∈ + , ( ) [ ( , )] ,v x R x s α∈  

[ , ],x t t σ∈ +  ( ) [ ( , )] ,y R t y ατ ∈  [ , ],y s s η∈ +  

( ) = ( ) = ,v t s uτ  0
0

( )
lim 0.

o

σ
η

ση
ση+

+

→
→

=   

Now we are interested in the following question: Under 
what conditions, there exists a unique R-solution to (1). In the 
next theorem we find the existence result for a unique 
R-solution of fuzzy Darboux problem (1). 

Theorem 2. Suppose the following conditions hold: 
1) fuzzy mapping ( , , )F u⋅ ⋅  is measurable, for all nu R∈ ; 

2) there exists > 0λ  such that for all , n
u u R′ ′′∈   

( ( , , ), ( , , ")) "D F x y u F x y u u uλ′ ′≤ −  

for every ( , ) [0, ] [0, ]x y a b∈ × ; 

3) there exists > 0γ  such that ( ( , , ), )D F x y u θ γ≤  for 

every ( , , ) [0, ] [0, ] nx y u a b R∈ × × ; 

4) for all [0,1], , " nu u Rβ ′∈ ∈  and every 

( , ) [0, ] [0, ]x y a b∈ ×   

( , , ) (1 ) ( , , ") ( , , (1 ) ");F x y u F x y u F x y u uβ β β β′ ′+ − ⊂ + −  

5) functions ( )ϕ ⋅  and ( )ψ ⋅  are absolutely continuous 

functions on [0, ]a  and [0, ]b . 

Then there exists a unique R-solution ( , )R ⋅ ⋅  of fuzzy 

Darboux problem (1) defined on the set [0, ] [0, ]a b× .  

Proof. By [29,49], every set-valued Darboux problem of 

family (2) has solution ( , )uα ⋅ ⋅  on the set [0, ] [0, ]a b× , i.e. 

( , )U x yα ≠ ∅  for every ( , ) [0, ] [0, ]x y a b∈ ×  and [0,1].α ∈  

Also by [40] and [50], ( , ) ( )nU x y comp Rα ∈  for every 

( , ) [0, ] [0, ]x y a b∈ ×  and [0,1].α ∈  

By [40] and [51], if ( , )u Uα α⋅ ⋅ ∈  then  

2 2

1 1

2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) [ ( , , ( , ))]
x y

x y

u x y u x y u x y u x y F x y u x y dydx
α α α α α α− − + ∈ ∫ ∫  

for every 1 2 1 2[ , ] [ , ] [0, ] [0, ]x x y y a b× ⊂ × . 

Consider any solutions 1 2( , ), ( , )u u Uα α α⋅ ⋅ ⋅ ⋅ ∈  and any [0,1]β ∈ . Let ( , )uα
β ⋅ ⋅  be such that  

1 2( , ) = ( , ) (1 ) ( , )u x y u x y u x yα α α
β β β+ −  

for every ( , ) [0, ] [0, ]x y a b∈ × . 

Then  

2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) =u x y u x y u x y u x yα α α α
β β β β− − +  

1 2 2 1 2 1 1 1 2 1 1 1= ( , ) ( , ) ( , ) ( , )u x y u x y u x y u x yα α α αβ β β β− − + +  

2 2 2 2 2 1 2 1 2 2 1 1(1 ) ( , ) (1 ) ( , ) (1 ) ( , ) (1 ) ( , )u x y u x y u x y u x yα α α αβ β β β+ − − − − − + − ∈  

2 2 2 2

1 2

1 1 1 1

[ ( , , ( , ))] (1 ) [ ( , , ( , ))]
x y x y

x y x y

F x y u x y dydx F x y u x y dydxα α α αβ β∈ + − ⊂∫ ∫ ∫ ∫  

2 2 2 2

1 2

1 1 1 1

[ ( , , ( , ) (1 ) ( , ))] = [ ( , , ( , ))]
x y x y

x y x y

F x y u x y u x y dydx F x y u x y dydxα α α α α
ββ β⊂ + −∫ ∫ ∫ ∫  
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i . e .  
2 2

2 2 2 1 1 2 1 1

1 1

( , ) ( , ) ( , ) ( , ) [ ( , , ( , ))]
x y

x y

u x y u x y u x y u x y F x y u x y dydxα α α α α α
β β β β β− − + ∈ ∫ ∫  f o r  e v e r y  ( , ) [0, ] [0, ]x y a b∈ ×  a n d  

[0,1]β ∈ . 

By [40] and [51], function ( , )uα
β ⋅ ⋅  is solution of set-valued Darboux problem (2), i.e. ( , ) ( , )u x y U x yα α

β ∈  for every 

( , ) [0, ] [0, ]x y a b∈ × . Consequently ( , ) ( )nU x y conv Rα ∈  for every ( , ) [0, ] [0, ]x y a b∈ ×  and [0,1].α ∈  

Since, 2 1[ ( , , )] [ ( , , )]F x y u F x y u
α α⊂  for all 1 20 < 1α α≤ ≤  and ( , , ) [0, ] [0, ] nx y u a b R∈ × × , then 2 1( , ) ( , )U x y U x y

α α⊂  

for all 1 20 < 1α α≤ ≤  and ( , ) [0, ] [0, ]x y a b∈ × . 

By [50, 52], every Darboux problem of family (2) has 

one R-solution ( , )Rα ⋅ ⋅  on the set [0, ] [0, ]a b×  and we hav

e  ( , ) = ( , )R x y U x yα α  f o r  e v e r y  [0,1]α ∈  a n d  

( , ) [0, ] [0, ]x y a b∈ ×  . 

By [20 ,  53] ,  we  ge t  tha t  a  fami ly o f  subse ts  

( , ) = { ( , ): [0,1]}R x y R x yα α ∈  satisfies to conditions of The

orem 1, i.e. ( , ) nR x y E∈  for every ( , ) [0, ] [0, ]x y a b∈ × . T

his concludes the proof.  

4. The Method of Partial Averaging 

Now consider fuzzy Darboux problem with the small 
parameters  

1 2( , ) ( , , ( , )),

( ,0) = ( ), ,

(0, ) = ( ), , (0) = (0),

xy
u x y F x y u x y

u x x x R

u y y y R

ε ε
ϕ

ψ ϕ ψ
+

+

∈
∈

∈
       (4) 

where 1 2> 0, > 0ε ε  - small parameters, = [0, ).R+ +∞  

In this work, we associate with the problem (4) the 
following full averaged fuzzy Darboux problem  

1 2( , ) ( , , ( , )),

( ,0) = ( ), ,

(0, ) = ( ), , (0) = (0),

xy
z x y G x y z x y

z x x x R

z y y y R

ε ε
ϕ

ψ ϕ ψ
+

+

∈
∈

∈
       (5) 

where : n nG R E→  such that  

1 2 1 2

1 1 2 1 20 0 0 0
2

1 1
( , , ) , ( , , ) = 0.lim

T T T T

T

T

D F x y z dydx G x y z dydx
T T T T→∞

→∞

 
 
 
 

∫ ∫ ∫ ∫ (6) 

The main theorem of this section is on averaging for fuzzy 
Darboux problem with the small parameters. It establishes 
nearness of R-solutions of (4) and (5), and reads as follows. 

Theorem 3. Let in the domain 

= {( , , ): , , }nQ x y u x R y R u B R+ +∈ ∈ ∈ ⊂  the following 

conditions hold: 
1) fuzzy mappings ( , , )F u⋅ ⋅  and ( , , )G u⋅ ⋅  is continuous 

on R R+ +× ; 

2) fuzzy mappings ( , , )F x y ⋅  and ( , , )G x y ⋅  satisfy a 

Lipschitz condition  

( ( , , ), ( , , ")) " ,D F x y u F x y u u uλ′ ′≤ −
 

( ( , , ), ( , , ")) "D G x y u G x y u u uλ′ ′≤ −
 

with a Lipschitz constant > 0λ ; 
3) there exists > 0γ  such that  

( ( , , ), )D F x y u θ γ≤ , ( ( , , ), )D G x y u θ γ≤  

for every ( , )x y R R+ +∈ ×  and every nu R∈ ; 

4) for all [0,1], , " nu u Rβ ′∈ ∈  and every ( , )x y R R+ +∈ ×   

( , , ) (1 ) ( , , ") ( , , (1 ) "),F x y u F x y u F x y u uβ β β β′ ′+ − ⊂ + −  

( , , ) (1 ) ( , , ") ( , , (1 ) ");G x y u G x y u G x y u uβ β β β′ ′+ − ⊂ + −  

5) limit (6) exists uniformly with respect to u  in the 

domain ;B  

6) functions ( )ϕ ⋅  and ( )ψ ⋅  are absolutely continuous 

functions on R+  and ( ) , ( )x B y Bϕ ψ′ ′∈ ∈  for all 

, ,x y R+∈  where (0) ;B S Bρ′ + ⊂  

7) the R-solution of the Darboux problem  

1 1 1
1 2

1

1

( , ) [ ( , , ( , ))] ,

( ,0) = ( ), [0, ),

(0, ) = ( ), [0, ), (0) = (0),

xy
u x y F x y u x y

u x x x

u y y y

ε ε
ϕ
ψ ϕ ψ

∈
∈ ∞
∈ ∞  

together with a ρ − neighborhood belong to the domain B for 

1 2, (0, ]ε ε ε∈ . 

Then for any (0, ]η ρ∈  and L >  0 there exists 

0 ( , ) (0, ]Lε η ε∈  such that  fo r  a l l  1 2 0, (0, ]ε ε ε∈  and 
1 1

1 2( , ) [0, ] [0, ]x y L Lε ε− −∈ ×  the following inequality holds  

( ( , ), ( , )) <D R x y R x y η             (7) 

where ( , ), ( , )R R⋅ ⋅ ⋅ ⋅  are the R-solutions of initial and partial 

averaged Darboux problems.  
Proof. By theorem 2, we have unit R-solution of Darboux 

problem (4) on 1 1
1 2[0, ] [0, ]L Lε ε− −×  and unit R-solution of 
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Darboux problem (5) on 1 1
1 2[0, ] [0, ]L Lε ε− −× .  

Let 1
1 1Lδ ε −= , 1

2 2Lδ ε −= , ( ) 1 2, : , , , 0,1,..., , ,n i j i jK x y x ih y jl i j n h l
n l

δ δ = = = = = = 
 

,  

1 1[ , ] [ , ]ij

n i i j jK x x y y+ += ×  and 1 1
1 2[0, ] [0, ]K L Lε ε− −= × . We denote fuzzy mappings ( , )mP ⋅ ⋅  and ( , )mQ ⋅ ⋅  such that  

1 2

[

[ ( , )] = ( ) ( ) [ ( , , )] ,
( , )] i j

yx

n

ij ij

n x yu P
i j

P x y v x y u F u d d

x y

α α

α
τ ε ε ς ζ ς ζ

∈

  + − + 
  

∫ ∫∪  

1 2

[

[ ( , )] = ( ) ( ) [ ( , , )] ,
( , )] i j

yx

n

ij ij

n x yz Q
i j

Q x y v x y z G z d d

x y

α α

α
τ ε ε ς ζ ς ζ

∈

  + − + 
  

∫ ∫∪  

( ,0) = ( ,0) = ( ), (0, ) = (0, ) = ( ),n n n nP x Q x x P y Q y yϕ ψ  

where 1( ) ( , )
ij i i

v x AC x x +∈ , 1( ) ( , )
ij j j

y AC y yτ +∈ , ( ) [ ( , )]n

ij jv x P x y α∈ , 1[ , ]
i i

x x x +∈ , ( ) [ ( , )]n

ij iy P x y ατ ∈ , 1[ , ]
j j

y y y +∈ , 

( ) = ( ) =
ij i ij j

v x y uτ ,  1( ) ( , )
ij i i

v x AC x x +∈ ,  1( ) ( , )
ij j j

y AC y yτ +∈ ,  ( ) [ ( , )]n

ij jv x Q x y α∈ ,  1[ , ]
i i

x x x +∈ ,  ( ) [ ( , )]n

ij iy Q x y ατ ∈ ,  

1[ , ]
j j

y y y +∈ , ( ) = ( ) =
ij i ij j

v x y zτ . 

By [52], it follows that the sequences =1{[ ( , )] }n

n
P α ∞⋅ ⋅ , and =1{[ ( , )] }n

n
Q α ∞⋅ ⋅  are equicontinuous and fundamental and their limits 

are α − levels of R-solutions [ ( , )]R α⋅ ⋅  and [ ( , )]R α⋅ ⋅  of the problems (4) and (5). 

Consequently, the sequences =1{ ( , )}n

n
P ∞⋅ ⋅  and =1{ ( , )}n

n
Q ∞⋅ ⋅  meet by ( , )R ⋅ ⋅  and ( , )R ⋅ ⋅ . 

By [52], for any 1 > 0η  there exists 00 < ε ε≤  such that  

1 2
1([ ( , )] ,[ ( , )] ) exp( ),n nh P x y Q x y Lα α η λ λ−≤                              (8) 

2
23

([ ( , )] ,[ ( , )] ) (1 exp( )),n L
h R x y P x y L

n

α α γ λ≤ +                           (9) 

2
23

([ ( , )] ,[ ( , )] ) (1 exp( ))n L
h Q x y R x y L

n

α α γ λ≤ +                           (10) 

for any [0,1],α ∈  ( , )x y K∈  and 1 2 0, (0, ]ε ε ε∈ . 

Combining (8), (9) and (10), choosing 
2 29 (1 exp( ))L L

n
γ λ

η
+≥  and 1 2

<
3exp( )L

ηλη
λ  we obtain  

( ( , ), ( , ))D R x y R x y ≤  

( ( , ), ( , )) ( ( , ), ( , )) ( ( , ), ( , )) =n n n nD R x y P x y D P x y Q x y D Q x y R x y≤ + +  

[0,1] [0,1]

= ([ ( , )] ,[ ( , )] ) ([ ( , )] ,[ ( , )] )sup supn n nh R x y P x y h P x y Q x yα α α α

α α∈ ∈
+ +  

[0,1]

([ ( , )] ,[ ( , )] ) < = .sup
3 3 3

nh Q x y R x yα α

α

η η η η
∈

+ + +  

The theorem is proved. 

5. Conclusion. 

We conclude with a few remarks. 
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Remark 1. In this work, we considered the fuzzy differential inclusion, when fuzzy mapping ( , , )F u⋅ ⋅  is measurable o

n [0, ] [0, ]a b× . If ( , , )F u⋅ ⋅  is continuous on [0, ] [0, ]a b×  then instead of the equation (1) it is possible to consider the fo
llowing more simple equation  

(

{ }

[0,1]

[ ( , )]

[ ( , )] ,sup

( ) ( ) [ ( , , )] = ( ),
u R t s

h R t s

v t s u F t s u o

α

α

α

α

σ η

σ τ η ση ση

∈

∈

+ +


+ + + − +



∪
                     (11) 

and similarly we can prove all results received earlier. 
Remark 2. If the condition 4) of Theorem 3 is not true, then the R-solutions can not exist. But there are valid the following 

conditions: 
1) for any α -solution ( , )uα ⋅ ⋅  of inclusion (4) there exists a α -solution ( , )zα ⋅ ⋅  of inclusion (5) such that 

( , ) ( , )u x y z x yα α η− <  for all 1 1
1 2( , ) [0, ] [0, ]x y L Lε ε− −∈ ×  and [0,1]α ∈ ; 

2) for any α -solution ( , )zα ⋅ ⋅  of inclusion (5) there exists a α -solution ( , )uα ⋅ ⋅  of inclusion (4) such that 

( , ) ( , )u x y z x yα α η− <  for all 1 1
1 2( , ) [0, ] [0, ]x y L Lε ε− −∈ ×  and [0,1]α ∈ . 
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