Necessary and Sufficient Conditions of ε-Separability

Maria A. Ivanchuk¹, Igor V. Malyk²

¹Department of Biological Physics and Medical Informatics, Bucovinan State Medical University, Chernivtsi, Ukraine
²Department of the System and Analysis and Insurance Financial Mathematics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine

Email address: mgracia@ukr.net (M. A. Ivanchuk), malyk.igor.v@gmail.com (I. V. Malyk)

To cite this article:

Received: September 13, 2016; Accepted: October 28, 2016; Published: November 21, 2016

Abstract: In this paper we propose a new approach for solving the classification problem, which is based on the using ε-nets theory. It is shown that for ε-separating of two sets one can use their ε-nets in the range space w.r.t. halfspaces, which considerably reduce the complexity of the separating algorithm for large sets’ sizes. The separation space which contains the possible values of ε for ε-nets of both sets is considered. The separation space is quasi-convex in general case. To check necessary and sufficient conditions of ε-separability of two sets one can solve an optimisation problem, using the separation space as constraints. The lower bound of the separation space is convex for the exponential distribution and linear for the uniform distribution. So, we have convex and linear optimisation problems in these cases.

Keywords: ε-nets, Separability, Quasiconvexity

1. Introduction

In 1987 D. Haussler and E. Welzl [1] introduced ε-nets. Since that time ε-nets are used in computational and combinatorics geometry.

Let X be a set (possibly infinite) and $\mathcal{R} \subseteq 2^X$. The pair (X, \mathcal{R}) is called a range space with X its points and the elements of \mathcal{R} its ranges. Typical examples of X range spaces in geometric context are set of halfspaces in R^d, set of balls in R^d, set of convex hulls in R^d, axis parallel rectangles in the plane [2], set of d-dimensional simplexes in R^d [3], triangles in the plane [4], set of α-fat wedges in the plain [5].

Numerous works study ε-nets of one set [2-6]. B. Aronov et al. shown the existence of ε-nets of size $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$ for planar point sets and axis-parallel rectangular ranges [2]. J. Kulkarni et al. get an ε-net of size $O\left(\frac{\pi}{\alpha \varepsilon}\right)$ for α -fat wedges in R^2 [5]. B .Gärtner proved the existing of ε-nets of size $\left\lfloor \frac{d \ln n}{\varepsilon}\right\rfloor$, where d is Vapnik-Chervonenkis dimension [3]. Matousek J. et al. shown that disks and pseudo-disks in the plane as well as halfspaces in R^3 allow ε-nets of size only $O\left(\frac{1}{\varepsilon}\right)$, which is best possible up to a multiplicative constant [6]. But, unfortunately, the analogous questions for higher-dimensional spaces remain open.

In this paper we will build ε-nets of two sets for solving the classification problem.

Consider two sets A and B in Euclidian space R^d. Consider the set A contains n_A points, set B contains n_B points. Let’s denote by conv_A the convex hull of the set A. Let $\text{conv}_A \cap \text{conv}_B \neq \emptyset$.

Definition 1. Sets A and B are called ε-separable if there exist subsets $A' \subset A$, $B' \subset B$, such that

$$\text{conv}(A \setminus A') \cap \text{conv}(B \setminus B') = \emptyset$$

(1)

and

$$n_A + n_B \leq \varepsilon(n_A + n_B)$$

(2)

The classification problem consists of finding the hyperplane L, which separates R^d into two halfspaces L_+^d. The lower bound of the separation space is convex for the exponential distribution and linear for the uniform distribution. So, we have convex and linear optimisation problems in these cases.
and L_ε, such that \(\frac{n_{\varepsilon,L} + n_{\varepsilon,R}}{n_\varepsilon + n_\gamma} \geq 1 - \varepsilon \).

Definition 2. Hyperplane L_ε is called ε-separating for the sets A and B if
\[
\frac{n_{\varepsilon,L} + n_{\varepsilon,R}}{n_\varepsilon + n_\gamma} \geq 1 - \varepsilon.
\]

Consider an infinite range space (R^d,H^d), where H^d is the closed halfspaces in R^d bounded by hyperplanes. In [7] the following theorem was proved.

Theorem 1. A necessary and sufficient condition that two sets of points A and B are ε-separable is there exist $\varepsilon_A, \varepsilon_B$ and corresponding ε-nets $N_{\varepsilon_A}^+$, $N_{\varepsilon_B}^-$ in (R^d,H^d) such that
\[
\varepsilon_A n_A + \varepsilon_B n_B < \varepsilon (n_A + n_B)
\]
and
\[
\text{conv} N_{\varepsilon_A} \cap \text{conv} N_{\varepsilon_B} = \emptyset.
\]

To find $\varepsilon_A, \varepsilon_B$, which satisfy the inequality (3), let’s denote the separation space.

Definition 3. The set
\[D_{\varepsilon, \varepsilon} = \{ (\xi, \eta) \in (0,1)^2 : \exists N_{\varepsilon_A}^+, N_{\varepsilon_B}^- \text{ s.t. } \text{conv} N_{\varepsilon_A}^+ \cap \text{conv} N_{\varepsilon_B}^- = \emptyset \} \]
is called the separation space for A, B.

Let sets A and B are generated by the general populations ξ and η with distributions F_ξ and F_η.

Definition 4. The set
\[D_{\varepsilon, \varepsilon} = \{ (x, y) \in (0,1)^2 : \exists L \in R^d, P(\xi \in L) \leq x, P(\eta \in L) \leq y \} \]
is called the separation space for ξ, η.

Consider the Euclidian space R^d. In [8] the following lemma was proved.

Lemma 1. Let the inverse function F_ξ exist. Then the sets $D_{\varepsilon, \varepsilon}$ and $\overline{D}_{\varepsilon, \varepsilon} := \{ (0,1)^2 \setminus D_{\varepsilon, \varepsilon} \}$ are separated by the curve
\[
y(x) = \min \left\{ F_\eta \left(F_\xi^{-1} \left(1-x \right) \right), 1-F_\eta \left(F_\xi^{-1} \left(x \right) \right) \right\}.
\]

Let’s consider the general case, when distribution functions don’t have the inverse functions in some points. We will use the generalized inverse [9].

Definition 5. For an increasing function $T : R \to R$ with $T(-\infty) = \lim_{x \to -\infty} T(x)$ and $T(\infty) = \lim_{x \to \infty} T(x)$, the generalized inverse
\[T^{-}(y) = \inf \left\{ x \in R : T(x) \geq y \right\}, y \in R
\]
with the convention that $\inf \emptyset = \infty$. If $T : R \to [0,1]$ is a distribution function, $T^* : [0,1] \to \overline{R}$ is also called the quantile function of T.

In [8] the following lemma was proved.

Lemma 2. Sets $D_{\varepsilon, \varepsilon}$ and $\overline{D}_{\varepsilon, \varepsilon}$ are separated by the line
\[
y(x) = \min \left\{ F_\eta \left(F_\xi^{-1} \left(1-x \right) \right), 1-F_\eta \left(F_\xi^{-1} \left(x \right) \right) \right\}.
\]

For the line $y_{\varepsilon, \varepsilon}(x)$, which separates the sets $D_{\varepsilon, \varepsilon}$ and $\overline{D}_{\varepsilon, \varepsilon}$, the following theorem was proved in [8].

Theorem 2. Let the following conditions
\begin{enumerate}
\item The sets A, B of size n_A, n_B are generated by the independent continuous random variables ξ, η.
\item The sets $D_{\varepsilon, \varepsilon}$ and $\overline{D}_{\varepsilon, \varepsilon}$ are separated by the line $y_{\varepsilon, \varepsilon}(x)$.
\end{enumerate}
are satisfied. Then there exist the following equality
\[
\lim_{n_A, n_B \to \infty} y_{\varepsilon, \varepsilon}(x) = y(x),
\]
where
\[
y(x) = \min \left\{ F_\eta \left(F_\xi^{-1} \left(1-x \right) \right), 1-F_\eta \left(F_\xi^{-1} \left(x \right) \right) \right\}.
\]

In this paper we will consider separation curve $y(x)$ for the sets $D_{\varepsilon, \varepsilon}$, $\overline{D}_{\varepsilon, \varepsilon}$ and it’s properties.

2. Results and Discussion

2.1. Quasiconvexity of the Separation Curve

Consider the function $f = y(x)$ where $y(x)$ is separation curve for the sets $D_{\varepsilon, \varepsilon}$, $\overline{D}_{\varepsilon, \varepsilon}$. Let’s show that in the general case function f is quasiconvex [10].

Definition 6. Let X be the convex subset of R^d. Function $f : X \to R$ is called quasiconvex, if for any $x, y \in X$ and $\lambda \in [0,1]$
\[
f(\lambda x + (1-\lambda)y) \leq \max \left\{ f(x), f(y) \right\}.
\]

Theorem 3. Function
\[
y(x) = \min \left\{ F_\eta \left(F_\xi^{-1} \left(1-x \right) \right), 1-F_\eta \left(F_\xi^{-1} \left(x \right) \right) \right\}
\]
is quasiconvex.

Proof. A continuous function $f : X \to R$ is quasiconvex if and only if at least one of the following conditions holds: f is nondecreasing; f is nonincreasing; there is a point $c \in X$ such that for $t \in X, t \leq c$, f is nonincreasing, and for $t \in X, t > c$, f is nondecreasing [10]. Let’s show that
function \(y(x) \) is nonincreasing.

1. Consider function \(f_1(x) = F_\eta \left((F_\xi)_G^{-1}(1-x) \right) \). Function
 \(F_\xi(x) \) is nondecreasing, so, \((F_\xi)_G^{-1}(x) \) is also
 nondecreasing. Then \((F_\xi)_G^{-1}(1-x) \) is nonincreasing.
 Since \(F_\eta(y) \) is nondecreasing,
 \(f_1(x) = F_\eta \left((F_\xi)_G^{-1}(1-x) \right) \) is nonincreasing.

2. Consider function \(f_2(x) = 1 - F_\eta \left((F_\xi)_G^{-1}(x) \right) \). Function
 \((F_\xi)_G^{-1}(x) \) is nondecreasing, so \((F_\xi)_G^{-1}(x) \) is also
 nondecreasing. Then \(f_2(x) = 1 - F_\eta \left((F_\xi)_G^{-1}(x) \right) \) is
 nonincreasing. Since function \(f_1(x) \) and \(f_2(x) \) are nonincreasing,
 \(y = \min \{ f_1(x), f_2(x) \} \) is nonincreasing. Thus, Theorem 3 is
 proved.

In particular cases function \(y(x) \) may be convex or linear.
Consider corresponding examples.

2.2. Exponential Distribution

Let \(\xi, \eta \) two random variables which is exponentially
distributed with parameters \(\mu_\xi, \mu_\eta \). Then according to
Lemma 1 we have
\[
y(x) = \min \left(1 - x^{\mu_\xi}, (1-x)^{\mu_\eta} \right), \quad x \in (0,1).
\]

Lemma 3. Let two random variables \(\xi, \eta \) exponentially
distributed with parameters \(\mu_\xi, \mu_\eta \), then function \(y(x) \),
which separates sets \(D_{\xi,\eta} \) and \(\overline{D}_{\xi,\eta} \) is convex.

Proof. Let’s consider the following two possible cases.

1. Let \(\mu_\xi > \mu_\eta \), then
 \[
y(x) = F_\eta \left((F_\xi)_G^{-1}(1-x) \right) = (1-x)^{\frac{\mu_\eta}{\mu_\xi}}, \quad x \in (0,1)
\]
 We need to show that the function \(y(x) \) is convex. Since
 \[
y''(x) = \frac{\mu_\eta}{\mu_\xi} \left(\frac{\mu_\eta}{\mu_\xi} - 1 \right) \left(1-x \right)^{-\frac{\mu_\eta}{\mu_\xi}}, \quad x \in (0,1).
\]
 So, function \(y(x) \) is convex as \(\mu_\xi > \mu_\eta \).

2. Let \(\mu_\xi < \mu_\eta \), then
 \[
y(x) = 1 - F_\eta \left((F_\xi)_G^{-1}(x) \right) = 1 - x^{\frac{\mu_\xi}{\mu_\eta}}, \quad x \in (0,1)
\]
 Also, need to show that the function \(y(x) \) is convex. Since
 \[
y''(x) = -\frac{\mu_\xi}{\mu_\eta} \left(\frac{\mu_\xi}{\mu_\eta} - 1 \right) x^{-\frac{\mu_\xi}{\mu_\eta}}, \quad x \in (0,1)
\]
 So, function \(y(x) \) is convex as \(\mu_\xi < \mu_\eta \). Thus, Lemma 3
is proved.

Let \(\mu_\xi = 1 \) and \(\mu_\eta = 5 \). Function \(y(x) \) is illustrated in the
figure 1.

![Figure 1](image)

Fig. 1. Function \(y(x) \) for exponential distribution.

2.3. Uniform Distribution

Let \(\xi, \eta \) two random variables which is uniformly
distributed with parameters \(a_\xi, b_\xi \) and \(a_\eta, b_\eta \). According to
the Lemma 1, the set \(D_{\xi,\eta} \) is lower bounded by the function
\[
y(x) = \min \left(a_\xi - \frac{b_\xi - a_\xi}{b_\eta - a_\eta} x + \frac{b_\xi - a_\xi}{b_\eta - a_\eta}, \frac{a_\xi - b_\xi}{b_\eta - a_\eta} x + \frac{a_\xi - b_\xi}{b_\eta - a_\eta} \right), \quad x \in (0,1).
\]

Lemma 4. Let two random variables \(\xi, \eta \) uniformly
distributed with parameters \(a_\xi, b_\xi \) and \(a_\eta, b_\eta \), then function
\(y(x) \), which separates sets \(D_{\xi,\eta} \) and \(\overline{D}_{\xi,\eta} \) is linear
decreasing function.

Proof. For this reason consider the following two possible cases:

1. Let \(h \in (-\infty, 0) \): \(F_\xi(h) < F_\eta(h) \), then
 \[
y(x) = F_\eta \left((F_\xi)_G^{-1}(1-x) \right) = \frac{a_\xi - b_\xi}{b_\eta - a_\eta} x + \frac{b_\xi - a_\xi}{b_\eta - a_\eta}
\]
 So, \(y(x) \) is linear function. Since \(a_\xi - b_\xi < 0 \), function
 \(y(x) \) is decreasing.

2. Let \(h \in (-\infty, 0) \): \(F_\xi(h) > F_\eta(h) \), then
 \[
y(x) = 1 - F_\eta \left((F_\xi)_G^{-1}(x) \right) = a_\xi - \frac{b_\xi - a_\xi}{b_\eta - a_\eta} x + \frac{a_\xi - b_\xi}{b_\eta - a_\eta}
\]
31 Maria A. Ivanchuk and Igor V. Malyk: Necessary and Sufficient Conditions of \(\varepsilon \)-Separability

So, \(y(x) \) is linear function. Since \(a_x - b_x < 0 \), function \(y(x) \) is decreasing. Thus, Lemma 4 is proved.

Let \(a_x = 1, b_x = 5 \) and \(a_y = 4, b_y = 7 \). Function \(y(x) \) is illustrated in the figure 2.

\[y(x) = \min(N_1, N_2), x \in (0,1), \]

where

\[
N_1 = \Phi \left(\frac{m_x + \sigma_x \Phi^{-1}(1-x) - \mu_y}{\sigma_y} \right)
\]

\[
N_2 = 1 - \Phi \left(\frac{m_x + \sigma_x \Phi^{-1}(x) - \mu_y}{\sigma_y} \right).
\]

Let \(\mu_x = 3, \sigma_x = 1 \) and \(\mu_y = 5, \sigma_y = 2 \). Function \(y(x) \) is illustrated in the figure 3.

\[y(x) \text{ for uniform distribution.} \]

\[y(x) \text{ for normal distribution.} \]

2.4. Normal Distribution

Let \(\xi, \eta \) two random variables which is normally distributed with parameters \(\mu_x, \sigma_x \) and \(\mu_y, \sigma_y \). According to lemma 1 the set \(D_{\xi,\eta} \) is lower bounded by the function

\[y(x) = \min(N_1, N_2), x \in (0,1), \]

where

\[
N_1 = \Phi \left(\frac{m_x + \sigma_x \Phi^{-1}(1-x) - \mu_y}{\sigma_y} \right)
\]

\[
N_2 = 1 - \Phi \left(\frac{m_x + \sigma_x \Phi^{-1}(x) - \mu_y}{\sigma_y} \right).
\]

Let \(\mu_x = 3, \sigma_x = 1 \) and \(\mu_y = 5, \sigma_y = 2 \). Function \(y(x) \) is illustrated in the figure 3.

2.5. Checking the Necessary and Sufficient Conditions for \(\varepsilon \)-Separability

Obviously, for any \(\varepsilon_x, \varepsilon_y \in D_{\xi,\eta} \), the equality (4) holds. So, to check the \(\varepsilon \)-separability of the sets \(A \) and \(B \) it’s enough to check the existing such \((\varepsilon_x, \varepsilon_y) \in D_{\xi,\eta} \) that the inequality (3) holds. Consider the optimisation problem

\[
\min \frac{\varepsilon_x n_x + \varepsilon_y n_y}{n_x + n_y} \quad \text{(10)}
\]

\[
(\varepsilon_x, \varepsilon_y) \in D_{\xi,\eta} \quad \text{(11)}
\]

Let \((\varepsilon_x^{\min}, \varepsilon_y^{\min}) \) be the solution of the task (10), (11). If the equality (3) doesn’t hold for \((\varepsilon_x^{\min}, \varepsilon_y^{\min}) \), it doesn’t hold for all \((\varepsilon_x, \varepsilon_y) \in D_{\xi,\eta} \), it means the sets \(A \) and \(B \) are not \(\varepsilon \)-separable. According to the Theorem 2, the condition (10) can be changed into

\[
(\varepsilon_x, \varepsilon_y) \in D_{\xi,\eta} \quad \text{(12)}
\]

According to the Theorem 3, in the general case, the set \(D_{\xi,\eta} \) is quasiconvex. According to the Lemma 4, the set \(D_{\xi,\eta} \) is convex if the distribution is exponential. In this case the problem (10), (12) is the problem of convex programming. In case of uniform distribution, according to the Lemma 5, the task (10), (12) is the task of linear programming.

Let the point \((x_0, y_0) \) is the solution of the optimisation problem (10), (12).

In the paper [8] the following theorem was proved.

Theorem 4. Let

(1) \(\xi_i, i \geq 1 \) have distribution \(F_{\xi} \), \(\eta_j, j \geq 1 \) have distribution \(F_{\eta} \),

(2) \(\xi_i, \eta_j, i, j \geq 1 \) be independent random variables,

(3) Functions \(F_{\xi}, F_{\eta} \) have inverse and bounded densities \(f_{\xi}, f_{\eta} \) exist.

Then we obtain the weak convergence

\[
\xi_{n,m} = \xi_{n,m}(y) = \sqrt{n} \left(F_{\xi} \left(F_{\xi}^{-1}(y) \right) - F_{\eta} \left(F_{\xi}^{-1}(y) \right) \right) \rightarrow N(0, \sigma^2),
\]

where

\[
\sigma^2 = F_{\eta} \left(F_{\xi}^{-1}(y) \right) \left(1 - F_{\eta} \left(F_{\xi}^{-1}(y) \right) \right), \quad \text{as } n \rightarrow \infty,
\]

\[
m = O\left(n^\alpha \right), \quad \alpha > 0
\]

According to the theorem 4, the point \((\varepsilon_x^{\min}, \varepsilon_y^{\min}) \) belongs to the neighbourhood
\[
\begin{pmatrix}
 x_0 - \frac{z_p \sigma}{\sqrt{n_A}}, x_0 + \frac{z_p \sigma}{\sqrt{n_A}} \\
 y_0 - \frac{z_p \sigma}{\sqrt{n_B}}, y_0 + \frac{z_p \sigma}{\sqrt{n_B}}
\end{pmatrix},
\]

where \(\sigma = \sqrt{F_\eta\left(F_\xi^{-1}(y)\right)\left[1 - F_\eta\left(F_\xi^{-1}(y)\right)\right]} \), \(p \) is probability, \(z_p \) is \(t \)-distribution quantile for the corresponding probabilities in \(p \) (fig. 4).

If in the boundary point \(x_0 = \frac{z_p \sigma}{\sqrt{n_A}}, y_0 = \frac{z_p \sigma}{\sqrt{n_B}} \)
the condition (4) of the theorem 1 doesn’t hold, namely:
\[
\frac{x_0 - \frac{z_p \sigma}{\sqrt{n_A}}}{n_A} + \frac{y_0 - \frac{z_p \sigma}{\sqrt{n_B}}}{n_B} > \varepsilon,
\]

then the sets \(A \) and \(B \) are not \(\varepsilon \)-separable.

Example 1. Consider two sets of points \(A \) and \(B \) generated by the uniformly distributed general populations \(\xi \) and \(\eta \). Let \(n_A = 500, n_B = 1000, a_\xi = 1, b_\xi = 5, a_\eta = 4, b_\eta = 7 \). Let’s verify the \(\varepsilon \)-separability of the sets \(A \) and \(B \) as \(\varepsilon = 0,05 \).

Build the set \(D_{\xi,\eta} \) (fig. 5) and consider the task of linear programming
\[
\begin{align*}
E_A + 2E_B & \rightarrow \min \\
E_A - E_B & \leq \frac{1}{3} \\
0 \leq E_A & \leq 1, 0 \leq E_B \leq 1.
\end{align*}
\]

The solution of the linear programming problem (13)-(15) is the point \((0,25;0)\) (fig. 5). Let’s find the confidential interval for the solution of the problem
\[
E_A + 2E_B \rightarrow \min
\]

with probability \(p = 0,95 \).

According to the theorem 4
\[
\sigma^2 = F_\eta\left(F_\xi^{-1}(y)\right)\left[1 - F_\eta\left(F_\xi^{-1}(y)\right)\right] = 0 \quad \text{as} \quad y = 0.
\]

so, the confidential interval for the problem (16), (17) solution degenerates to the point \((0,25;0)\).

Example 2. Consider two sets of points \(A \) and \(B \) generated by the exponentially distributed general populations

Let’s verify the condition (3) of the theorem 1
\[
\frac{E_A^{\min} n_A + E_B^{\min} n_B}{n_A + n_B} = 0,0833 > 0,05.
\]

The condition (3) doesn’t hold for \((E_A^{\min}, E_B^{\min}) \), hence it doesn’t hold for all \((E_A, E_B) \in D_{\xi,\eta}\). So, the sets \(A \) and \(B \) are not \(\varepsilon \)-separable as \(\varepsilon = 0,05 \).

Example 2. Consider two sets of points \(A \) and \(B \) generated by the exponentially distributed general populations
Let ξ and η. Let $\mu_{\xi} = 1, \mu_{\eta} = 5, n_\alpha = 500, n_\beta = 500$. Let's verify the ε-separability of the sets A and B as $\varepsilon = 0.05$.

Let's build the set $D_{\varepsilon,\alpha}$ (fig.6). Consider the problem of convex programming

$$\varepsilon_\alpha + \varepsilon_\beta \rightarrow \min$$

(18)

$$-\varepsilon_\alpha^{1/3} - \varepsilon_\beta \leq -1$$

(19)

$$0 \leq \varepsilon_\alpha \leq 1, 0 \leq \varepsilon_\beta \leq 1.$$

(20)

The solution of the convex programming problem (18)-(20) is the point $(0.245; 0.245)$ (fig.6).

Let's find the confidence interval for problem's solution with probability $p = 0.95$

$$\varepsilon_\alpha + \varepsilon_\beta \rightarrow \min$$

(21)

$$(\varepsilon_\alpha, \varepsilon_\beta) \in D_{\varepsilon,\alpha}$$

(22)

According to theorem 4

$$\sigma^2 = F_\eta \left(F^{-1}_\xi (y) \right) \left(1 - F_\eta \left(F^{-1}_\xi (y) \right) \right) = 0.0517 \text{ as } y = 0.245,$$

then

$$\frac{z_{0.05} \sigma}{\sqrt{n_\alpha}} = 0.02.$$

So, the confidence interval for the problem's (18)-(20) solution is $[0.0225; 0.0265, 0.0225; 0.0265]$.

Let's verify the condition (3) in the boundary point $(0.225; 0.225)$

$$\frac{\varepsilon^\min_\alpha n_\alpha + \varepsilon^\min_\beta n_\beta}{n_\alpha + n_\beta} = 0.225 > 0.05.$$

The condition (3) doesn't hold for $(\varepsilon^\min_\alpha, \varepsilon^\min_\beta)$, hence it doesn't hold for all $(\varepsilon_\alpha, \varepsilon_\beta) \in D_{\varepsilon,\alpha}$. So, the sets A and B are not ε-separable as $\varepsilon = 0.05$.

Example 3. Consider two sets of points A and B generated by the general populations ξ, η. Let random variable ξ be uniformly distributed with the parameters $a_\xi = 1, \ b_\xi = 5$ and random variable η be normally distributed with the parameters $\mu_\eta = 7, \sigma_\eta = 1$. Let $n_\alpha = 1000, n_\beta = 5000$. Let's verify the ε-separability of the sets A and B as $\varepsilon = 0.05$. Consider the problem of convex programming

$$\varepsilon_\alpha + 5\varepsilon_\beta \rightarrow \min$$

(23)

$$\varepsilon_\alpha \geq \Phi \left(\frac{b_\xi (1 - \varepsilon_\alpha) + a_\xi \varepsilon_\alpha - \mu_\eta}{\sigma_\eta} \right)$$

(24)

$$0 \leq \varepsilon_\alpha \leq 1, 0 \leq \varepsilon_\beta \leq 1.$$

(25)

The convex programming problem's solution $(0.0044; 0.022)$ is illustrated in the figure 7.
Let’s find the confidence interval for problem’s solution with probability \(p = 0.95 \)

\[
\varepsilon_A + 5\varepsilon_B \geq \min (\varepsilon_A, \varepsilon_B) \in D_{A,B} \tag{26}
\]

\[
\sigma^2 = F_y^{-1}\left(\frac{1 - F_y^{-1}(y)}{5}\right) \rightarrow 0 \text{ as } y = 0.022 \,
\]

hence the confidential interval degenerates to the point \((0.0044; 0.022)\) . Let’s verify the condition (3)

\[
\frac{\varepsilon_{A_{A}} n_A + \varepsilon_{B_{B}} n_B}{n_A + n_B} = 0.0191 < 0.05 \, .
\]

The condition holds. So, the sets \(A \) and \(B \) are \(\varepsilon \)-separable as \(\varepsilon = 0.05 \) .

3. Conclusions

Two sets \(A \) and \(B \) are \(\varepsilon \)-separable iff there exist their \(\varepsilon \)-nets \(N_{\varepsilon_1}^A \), \(N_{\varepsilon_2}^B \) in \((R^d, H^d)\) such that conditions (3)-(4) hold. To verify the conditions (3)-(4) it is enough to solve the optimisation problem (10)-(11). If the solution of the problem (10)-(11) does not satisfy the condition (3), then the sets \(A \) and \(B \) are not \(\varepsilon \)-separable. According to the theorem 2, one can use the theoretical set \(D_{\varepsilon_1, \varepsilon_2} \) as constraints for the optimisation problem (10)-(11). Three examples show verification of \(\varepsilon \)-separability for uniform and exponential distributions.

References

