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Abstract: It is proposed the very simple and quick method for estimation of the asymptotic stability of any nonlinear 

dynamic systems, in particular, of the high-dimensional systems for which Tailor series of the right-hand sides of the 

differential equations converge very slowly. In such problems, the sum of terms of the order of smallness higher than two can 

substantially exceed the value of any term of second order. In this case, Lyapunov’s methods cannot guarantee correct stability 

estimate at all. The new method does not use the notion of Liapunov function and, therefore, one has no numerous 

shortcomings of all Liapunov methods. In this paper, it is proposed to replace the very complex problem of the searching for 

Liapunov function with a very simple problem of the searching maximum of the function of n coordinates (that is of the 

velocity of variation in metrics of the perturbed state space). However, one is not intended for the linear systems. 
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1. Introduction 

It is proposed such broadening of the Smol’yakov method 

[1, 2] which permits quickly to solve the question about 

existence or absence of the asymptotical stability even in 

very complex cases when the solution could not be found. 

The working out of the problem of the movement 

steadiness began in the end of 19 century in several works of 

E. Raus, A. E. Jukovskii, A. M. Liapunov and later was 

continued by N. G. Chetaev, D. R. Merkin, N. N. Krasovskii 

and others. The most serious results were obtained in the 

dissertation of A. M. Liapunov in 1892. He proposed the 

general formulation for the stable motion problem. 

Unfortunately, this method, based on the sufficient conditions 

of the stable motion, has many serious shortcomings. In 

particular, the classical Liapunov's theory often does not 

permit to find the asymptotical steadiness even if one exists. 

The basic Liapunov theorem declares: "If for the 

differential equation of the perturbed motion it is possible to 

find a positive-definite function ( ) 0V x > , such that the full 

derivative in time ( )Vɺ  will be negative-definite ( 0V <ɺ ) or 

0V ≡ɺ , then non-perturbed motion is stable." 

If the last requirement 0V ≡ɺ  in Liapunov's theorem is 

excluded, then this theorem defines the asymptotical 

steadiness. But the last requirement (the pseudo-stability, i.e 

the stability in means ( 0, 0)V V> ≡ɺ ) does not define some 

stability from the practical point of view. 

Among shortcomings of the classic theory [3-14], it is 

necessary to notice, that, firstly, the searching for the 

desirable function ( )V x  is very complex, secondly, it is 

required to expand the perturbed equations in rows, thirdly, 

method of Liapunov functions is not correct because the 

different Liapunov functions define absolutely different 

asymptotical stability sets in any concrete problem (see 

example 1 in [1]). These shortcomings are the consequence 

of the fact that Liapunov method is based only on the 

individual small terms of the first and second order. 

However, in the nonlinear problems (especially of the great 

dimension ( 5n ≥ )), the particular sums of the higher order 

terms can considerably exceed any second order term (from 

which Liapunov function is formed). 

Liapunov method is based on the sufficient conditions of 

the movement steadiness and it is impossible often to find 

Liapunov function even if the asymptotically stable 

movement exists in the considered problem. The proposed 

new method is based on the necessary conditions and one 

allows always to find the stable motion when it exists. 

2. Statement of the Problem 

Let a process in n -space be given by the vector 
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differential equation 

   = ( ( ), ),
dy

Y y t t
dt

                             (1) 

where ( , )Y y t  is the known vector-function satisfying 

requirements ensuring existence of the solution of the 

equation (1), 1( )= ( ( ),..., ( )ny t y t y t  is the vector-function of 

the phase-coordinates 

y ( ), =1,... .i t i n And let the partial derivatives

2

2
 , , =1,...,i

k

Y
i k n

y

∂
∂

, exist and ones are continuous. 

And let ( )z t  be some solution of the equation (1). It is 

required to estimate the steadiness of ( )z t  with respect to the 

small perturbations ( )x t : 

( )= ( )- ( ).x t y t z t  

Introduce this equality into equation (1) and rewrite it via 

coordinates 

1 1 + = ( + ,..., + , ), =1,..., .i i
i n n

dz dx
Y z x z x t i n

dt dt
       (2) 

The investigation of the steadiness can be performed 

directly on the basis of the equations (2) or after expansion of 

these equations in rows on the small parameter ( )x t  in a 

neighbourhood of the solution ( )z t : 

1

+ = ( , ) + (  ) + , =1,..., ,

n
i i i

i z k i
kk

dz dx Y
Y z t x Y i n

dt dt x−

∂
∆

∂∑  

Where iY∆  is the sum of the members above the first 

order. As ( )z t  is the solution of the equation 

= ( , ),
dz

Y z t
dt

                                   (3) 

we receive the following perturbed equations 

z

1

= ( ) + , =1,...,
dt

n
i i

k i
kk

dx Y
x Y i n

x=

∂
∆

∂∑               (4) 

By means of urge towards ( ) 0x t →  in the equations (2) or 

(4) we can judge about the steadiness of the solution ( )z t  of 

the equation (4) 

Using only the linear terms of the equations (4) seldom 

brings success. The analysis of the (4) usually is done by 

means of the Liapunov functions ( )V x , [3-14]. 

3. The New Method of Stability of the 

Non-linear Dynamic Systems 

Consider a really different approach to the problem of 

steadiness based on the variational calculation [1, 2] without 

shortcomings of the classic theory of Liapunov functions. 

Let in n -space X  be defined half-metrics 
2

1

1

2

n

k

k

S x

=

= ∑  

and a small quantity 0ε > . Consider the solution of equation 

(2) (or (4)) in a small ε -environment of zero in X : 

2

1

1
=  .

2

n

k

k

S x ε
=

≤∑                              (5) 

Definition 1. We say that a solution of the equation (1) 

is ε -stable if there exists the small quantity 0ε >  and a 

moment 1 1 (0 < < )t t ∞  that for all 1t t>  the trajectory ( )x t  

remains in the sphere (5). And we say that a movement is 

asymptotically stable if, for any small quantity 0ε > , the 

trajectory ( )x t  aspires to zero and reaches value ( )  0 x t ≡  

in (5) for t ≤ ∞ . This means that the movement in the 

space X  satisfies condition ( ) =(grad  S , )  0S x x ≤ɺ ɺ . 

Assertion 1. Suppose that the problem of the movement 

steadiness has a positive solution. As it follows from 

Definition 1, the object moves inside sphere (5) in the 

space X . In this case ( ) =(grad  S , )  0S x x ≤ɺ ɺ  and function 

( )S xɺ  reaches its maximum in some point x in (5) (at the 

moment 1t t> ), and we talk in this case about ε -stable. It 

is obvious that the global maximum in (5) can be reached 

only in zero of the space X . It means that the 

asymptotical stability has place. 

The Assertion 1, in essence, proves the following 

theorem. 

Theorem 1. For a solution of the dynamic system to be 
ε -stable to the small perturbations it is necessary that the 

full derivative (about time) ( )S xɺ  of the function ( )S x , 

calculated with regard to the differential equations (2) or 

(4), reached maximum in the sphere (4), and in the case of 

the asymptotical stability, it is necessary that maximum 

( )S xɺ  be reached in the point 0x = . 

Consequence 1. For the asymptotical stability of zero-

solution of the equations (2) or (4) relative to the 

coordinate ( )ix t , it is necessary that, in any small 

environment of the point 0x =  and in this point, the 

following conditions take place [15]: 

2

2

S
 0,

ix

∂ ≤
∂

ɺ

 0, ( 1,..., )
i

S
i n

x

∂ = =
∂

ɺ

                  (6) 

for the asymptotical stability of zero-solution of the equations 

(2) or (4), it is necessary that, in any small environment of 

the point 0x =  and in this point, the conditions (6) be 

satisfied simultaneously for all 1,...,i n= . 

Proposal 1. We shall speak that, in a small ε -environment 

of zero and in the point 0x = , the weak asymptotical 

stability of the zero-solution of equations (2) or (4) relative to 

the coordinate kx  has place if, in the case 
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2

2
0

k

S

x

∂ =
∂

ɺ

                                         (7) 

the following conditions are satisfied 

2

2
[ ( )] 0

k k

d S

x dt x

∂ ∂ ≥
∂ ∂

ɺ

                               (8) 

if the conditions (6) are satisfied for all 1,...,i n=  and if at 

least for one coordinate kx  are also satisfied the conditions 

(7) and (8), we shall speak about the week asymptotical 

stability of the problem (1). 

The Theorem 1 and Proposal 1 allow to estimate 

steadiness of the nonlinear dynamic systems far simpler and 

quicker than Liapunov's method. The proposed new method 

does not require the very complex searching for Liapunov's 

functions and one reduces the stability problem to a very 

simple problem searching max S( )nx R
x∈
ɺ . 

In some cases, theorem 1 and proposal 1 can be also used 

for investigation of some linear systems as is demonstrated 

by the example 2 below. 

4. Demonstration of Possibilities of the 

New Method 

Example 1 [3]. (Satellite on the circular orbit). Estimate 

the movement steadiness of the satellite on the circular orbit 

using the following nonlinear differential equations of the 

perturbation movement: 

1
2

dx
x

dt
=  

2 3
2 2 2 02

1 4 3 5 2
0 1

( )[ cos ( ) ]
( )

o

rdx
r x x x x

dt r x

ωω= + + + −
+

 

4

3
4

dx
x

dt
=                                      (9) 

24 2 4
5 3

0 1

2 1
( ) sin 2

2

dx x x
x x

dt r x
ω= − − +

+
 

5 2
5 4 5 3

0 1

2
( ) 2 ( )

( )

dx x
x x x tgx

dt r x
ω ω= − + + +

+
 

The order of this system is 5n = . Therefore, the sum of 

the third order terms can be higher than any term of the 

second order in Liapunov function. In this case, there are 

doubts about Liapunov method truthfulness. In [3], by 

Liapunov methods, it was received only pseudo-stability of 

the satellite (i.e the stability on the pair ( 0, 0)V V> ≡ɺ ), but 

the asymptotical stability or its absence was not proved. The 

proposed method proves the absence of the asymptotical 

stability. 

Introduce the function 

5

1 2 2

1

i i

i

S x x x x x

=

= = +∑ɺ ɺ

2 3
2 2 2 0

1 4 3 5 2
0 1

{( )[ cos ( ) ] }
( )

o

r
r x x x x

r x

ωω+ + + −
+

 +  

3 4x x
22 4

4 5 3
0 1

2 1
{ ( ) sin 2 }

2

x x
x x x

r x
ω− + +

+
+ 

2
5 5 4 5 3

0 1

2
{ ( ) 2 ( ) }

( )

x
x x x x tgx

r x
ω ω− + + +

+
. 

Calculating the second partial derivatives of Sɺ , we 

receive 

2 32
202
4 5 52 3

0 11 0 1

6
{ 4 4 ( )},

( )( )

rxS
x x x

r xx r x

ω ω∂ = − + + +
+∂ +

ɺ

 

2

2
2

0,
S

x

∂ =
∂

ɺ

 

2
2 3

2 0 1 5 3 4 5 52 3
3 3

sin
2 ( )( ) cos 2 4 ( ) ,

cos

xS
x r x x x x x x

x x
ω ω∂ = − + + + +

∂

ɺ

 (10) 

2
2

2 0 12
0 14

2 ( ) 4
( )

xS
x r x

r xx

∂ = + −
+∂

ɺ

, 

2
2 2 2

2 0 1 3 4 3 4 3 4 22
0 1 0 15

2 2
2 ( ) cos sin 2 2 2

( )

x xS
x r x x x x x tgx x tgx

r x r xx

∂ = + − − + − +
+ +∂
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Hence, it is obvious that in any small environment (5) of 

zero and in the point 0x =  the second partial derivatives of 

Sɺ  about coordinates 1 3 4 5, , ,x x x x  can have any sign. It 

means that the asymptotical stability has no place in this 

problem. However, for coordinate 2x  (in point 0x = ) we 

find 

2

2
2 2

[ ( )] 0
d S

x dt x

∂ ∂ >
∂ ∂

ɺ

,                            (11) 

that is, only for the coordinate 2x  we receive the weak 

asymptotical stability. 

Example 2 [3] (Gyrocompass). Let the gyroscope be set in 

the horizontal plane and angles α  and β  define the 

deviations of the gyroscope axes from the vertical, and let -

kα  and kβ  be some renovation momentums, where 0k > . 

Estimate the steadiness of gyrocompass using the following 

linear model of the movement: 
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0,

0,

J b H k

J b H k

α α β β
β β α α

+ − − =

+ + + =

ɺɺɺ ɺ

ɺɺ ɺ ɺ
 

where J  is the equatorial moment of inertia of the 

gyroscope, H  is the kinetic moment and b  is the coefficient 

of the resistance forces. 

Assuming 1 1 2, 3 3 4, , ,x x x x x xα α β β= = = = = =ɺɺ ɺ ɺ  we 

receive the following equations 

1 2 2 2 4 3

3 4 2 4 4 2 1

, ,

, .

x x x bx H x kx

x x x bx H x kx

= = − + +

= = − − −

ɺ ɺ

ɺ ɺ

              (12) 

Introduce function  =(  , )S grad S xɺ : 

2 2
1 2 2 2 4 2 3 3 4 4 2 4 1 4S x x bx Hx x kx x x x bx H x x kx x= − + + + − − −ɺ  

and calculate the second particular derivatives 

2 2 2 2

2 2 2 2
1 3 2 4

0, 2 0
S S S S

b
x x x x

∂ ∂ ∂ ∂= = = = − <
∂ ∂ ∂ ∂

ɺ ɺ ɺ ɺ

.     (13) 

From (13), it follows that the system (12) is asymptotically 

stable about only the angular speeds 2x  and 4x . For 

estimation of stability about angles α , β , it is necessary to 

use Proposal 1: 

2

1 1 3 3

S S
( ( )) ( ( )) 0

d d
k

x dt x x dt x

∂ ∂ ∂ ∂= = >
∂ ∂ ∂ ∂

ɺ ɺ

, 

hence it follows only the weak asymptotical stability about 

these angles. 

In [2, с. 211-213], it was found the asymptotical stability 

of the system (12) for all coordinates, whereas we receive the 

weaker asymptotical stability for angles than for the angular 

speeds. Perhaps, our assertion is more exact. 

Example 3 [3] (Cone pendulum). Consider the idealized 

model of a pendulum spinning about the vertical axis. Le l  

be length of the pendulum thread, let g  denote the 

gravitational constant, let θ  and ψ  denote, respectively, an 

angle of decline from the vertical axis and angle of rotation 

in the horizontal plane. The pendulum movement is 

described by the following non-linear differential equations, 

[3]: 

2g
= - sin + sin cos , = -2 .

l
ctgθ θ ψ θ θ ψ θψ θɺɺ ɺɺɺ ɺ  

Introducing the new variables 1 2 3 = , = , =y y yθ θ ψɺ ɺ , we 

receive the following system of the third non-linear 

differential equations 

1 2

2
2 1 3 1 1

3 2 3 1

= , 

 = - sin + sin cos ,

 = -2 .

y y

g
y y y y y

l

y y y ctgy

ɺ

ɺ

           (14) 

Investigate the stability of the following movement 

1 2 3= = = , = = 0, = =  = .y const y y constθ α θ ψ ωɺ ɺ  

Placing these values in (14), we find 

2 g
cos  = 

l
ω α .                               (15) 

Introducing the new coordinates 

31 1 2 2 3 = + , = , = + , y x y x y xα ω and taking into account (15), we 

receive the following perturbed motion equations 

1 2

2 2
2 1 3 1 1

3 2 3 1

= ,

 = - cos sin ( + ) + ( + ) sin ( + )cos ( + ),

 = -2 ( + ) ( + )

x x

x x x x x

x x x ctg x

ω α α ω α α
ω α

ɺ

ɺ

ɺ

                                                  (16) 

The asymptotical stability or its absence were not established for the system (16) in [3]. 

Prove that the asymptotical stability has no place in the problem (16). Consider function 

2 2
1 2 2 1 3 1 1

3 2 3 1

=  + [- cos sin( ) +( ) sin( ) cos( )]

[ 2 ( ) ( )]

S x x x x x x x

x x x ctg x

ω α α ω α α
ω α

+ + + + +
− + +

ɺ

 

and calculate its the second particular derivatives. 

We receive 

2

2
2

0
S

x

∂ =
∂

ɺ

 and the inequality (11) is not 

satisfied for the coordinate 2x . This means that the variable 

2x  is not even weak asymptotical stable. The second 

particular derivatives about 1x  and 3x  (which are not given 

here in consequence of their bigness) are the homogeneous 

linear functions about the co-ordinate 2x  which can be of 

any sign in any environment of zero. Hence, it follows 

absence of the asymptotical stability about values 1x  and 3x . 

Notice. The proposed new method does not require 

expanding of the perturbed differential equations in rows and 

permits to receive the function Sɺ  directly on the basis of the 

equations 

1 1  = ( + ,..., + , ) -  , =1,..., . i i
i n n

dx dz
Y z x z x t i n

dt dt
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5. Conclusion 

The new method does not use Liapunov functions. As it 

was demonstrated by the examples, this new method is far 

simpler and more effective than the classic Liapunov theory 

and all its known modifications and improvements [3-14]. 

Engineers now can in some minutes or hours define the 

asymptotical stability or absence of the stability in any 

nonlinear dynamical systems, while up to now Liapunov 

methods required often many hours, months or did not permit 

to estimate the stability at all. 
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