

Internet of Things and Cloud Computing
2017; 5(3): 59-63

http://www.sciencepublishinggroup.com/j/iotcc

doi: 10.11648/j.iotcc.20170503.14

ISSN: 2376-7715 (Print); ISSN: 2376-7731 (Online)

TideDB - A Distributed, Scalable Time Series Database

Xue Yingfei

Research and Development Department, Tide Cloud Company, Shanghai, China

Email address:

To cite this article:
Xue Yingfei. TideDB - A Distributed, Scalable Time Series Database. Internet of Things and Cloud Computing. Vol. 5, No. 3, 2017, pp. 59-63.

doi: 10.11648/j.iotcc.20170503.14

Received: May 15, 2017; Accepted: July 15, 2017; Published: August 7, 2017

Abstract: Some of the largest datasets have strong time components, like machine monitoring, real-time alert and IoT devices,

etc. Despite of so many applications of time series data, most storage options are either highly proprietary or worse, relational.

Unlike other alternatives, TideDB does not have a data with multiple metrics broken down into multiple data with one metric that

increases the pressure on system throughput dramatically, rather its data modeling based on the computed column and tag words

index can provide high write throughput, low read latency, and petabytes storage. TideDB has been deployed in production

settings on large clusters to manage multiple terabytes of storage at Taide Company. The paper describes the TideDB how to

store and organize our time series data from about one hundred thousand devices and millions service modules.

Keywords: Distributed, Scalability, Time Series, Internet of Things, Metric, Performance

1. Introduction

There are plenty of storage engines out there, but none of

them seem to offer fast and efficient time series storage and

indexing. The existing options like MySQL aren’t very fast,

and the fast options like HBase aren’t specifically made for

time series and can lead to harsh operational issues. Before

TideDB, we choose MySQL as our backend engine and do

lots of maintenance work to improve the performance of

MySQL. As the amount of data grows, the scalability of

MySQL is very bad. Then the system used HBase as its

backend engine, which looked better than MySQL, but still

doesn't meet our requirements well. Instead of hacking on

something like HBase to suit our needs, we decided to write

our own time series storage engine. About nearly one year

design and implementation TideDB can be used to manage the

time series data from machine and application service for the

TideCloud that monitors about one hundred thousand devices

at Taide Company. These machines will produce a series data

by the cycle of 10 seconds and inserted into TideDB cluster by

2 minutes, and these data will be accessed in various business

applications that need low read latency. Every day there are 50

TB raw data to be inserted into TideDB, and lots of historical

data query requests with 99 ile% latency < 200 ms. In Argus,

TideDB shares many implementation strategies with Google's

Bigtable, but TideDB provides a different data model and

query optimizer than such systems and introduces the

computed column into the data row. When a time series data is

stored in a computed column, the data is stored contiguously

and is retrieved with a minimum number of disk reads. It also

provides some basic data operation for each component of

Argus and some tools for the Argus administrator, such as

query with where sub-clause, sharding/rebalance/check table,

and support some basic aggregation computing.

Section 2 provides an overview of the TideDB. Section 3

describes the key features and the fundamentals of the TideDB

implementation, and Section 4 presents some works on the

performance and provides measurements of TideDB’s

performance. Based on that, Section 5 describes related work,

and Section 6 ends up with our conclusions.

2. Architectural Overview

TideDB consists of four components: Metadata server,

Ranger server, Broker server and Distributed File System

(DFS), and stores data in a table which is sorted by a primary

key that contains instance IP (or the name of service

monitored by Argus) and timestamp. One instance's sequence

of data points stored in a 4 M file, and several instances’ files

in logic form one data range. Metadata server provides the

catalog information for all the tables in this system and builds

the B-tree index structure for the range key of each table. Each

Ranger server holds some ranges of the data, but all of the

 Internet of Things and Cloud Computing 2017; 5(3): 59-63 60

range on one Ranger server is not necessarily continuous that

make the range service more flexible because each data range

is not dependent upon another data range. There are millions

of instances or services time series data to be inserted by one

cycle. In order to relieve the pressure on Ranger server this

design introduce the Broker to do some of requests

preprocessing received such as building one bulk of multiple

inserts and splitting the query clause into multiple sub query

plans. The Broker server deployed on a Ranger machine is a

light API service, which supports the REST API to be called

by applications and enables applications to access data stored

in TideDB.

The incoming data to be inserted, which have a natural

temporal ordering, is consistent with the TideDB data model

design, so that the data will not be moved once written to

memory file mapping disk one, and the query optimizer in

Broker can make the query plan only hit one or two disk IO by

mapping the query into multiple sub query plans. The data

store only needs a normal file storage engine, which provides

a uniform file namespace for Meta server and Ranger server,

to do the persistence storage for TideDB. So this design

chooses a distributed file system from the third party product

that used to store the data with 3 replications that ensure the

integrity of data.

Figure 1. What are the components in the system and how they relate to one another.

Scaling is achieved by splitting tables into contiguous data

ranges and assigning them up to different physical nodes.

Meta Server which handles metadata management works and

oversees the Ranger Servers is responsible for farming them

out in an intelligent way and reassigns some ranges of the data

locating at the overload Ranger Servers to other Range

Servers that have enough space. New ranger nodes can be

added as storage needs increase and the system automatically

adapts to the new nodes. The Meta server receives the request

of heartbeat from the Ranger server newly added, finds the

Ranger server who own the most tablets and transfers some

tablets to the new Ranger server to balance the service

performance, and finally it adds the new Ranger server into

the service list.

3. Features and Implementation

3.1. Data Row Format

There are about 10 TB raw data every day from millions of

monitoring objects. If the system does not do any processing

to store these raw data, it will store a large amount of

redundant data and impact the write throughput and reading

performance. In order to enhance storage and access

efficiency TideDB’s row format follows the design idea from

the traditional relational database, that is one data row, which

includes three parts, namely row header, field data and field

offset. This design can apply query and field location. Header

information includes the row state and row number that is the

row order in the block, filed offset drives the field data. This

data model will serves better than the JSON and BSON in

certain way, such as space saving, field locating and

compression, etc. When users want to find the value for the

specified field, TideDB can directly depend on the field's

offset to locate the value of this field without having to

traverse all the field values.

3.2. Time Series Data Modeling

A time series is a sequence of data points, typically consists

of successive measurements made over a time interval. There

are about 100 thousand devices at Taide, and each node has

61 Xue Yingfei: TideDB - A Distributed, Scalable Time Series Database

about 200 metrics including CPU used, memory used, QPS

and UPS, etc. and it born the data by the cycle of 10 seconds.

The data has the characteristics of time series and will be used

to check if these machines have a good running state. For

example, an operate engineer wants to know someone

machine’s disk writing status in the past 10 hours, he can

query the metric of DISK_TOTAL_WRITE_KB by the

specified time range, and the web will show the chart by the

query data result from the DB.

The scenario mentioned above has two challenges: large

writes throughput and low query latency. In order to solve this

problem, our row format as follows:

| Machine_timestamp_metric | Cycle | Timestamp | Tag

Words |Computed Column |

This row can store one hour data and the row key is built by

the machine, the start point of one hour and metric. The

column of Timestamp is the end point of one hour, the cycle is

the interval of the new data born and the tag words flag this

machine characters. Computed column contains two parts

including computed header and data slot that records the

actual data value from the machine. Computed header is

comprised of 16 bytes that encode a slot map managing the

data slot. The computed column has about 360 (1 hour dived

by the cycle of 10 seconds) slots that store the arrange of data

points. The first insert coming will build the new data row but

the following insert only needs to do the in-place update of

slot that will solve the large writes throughput. The query

model use machine, time range and metric that the user

specified to build the row key and query the data by the range

index.

3.3. Query Optimizer

There are plenty of query cases at Taide based on the tag

words condition including IDC, cluster and service name. It

will hit lots of data rows if the system only use the time

condition to locate the interesting data with specified tags. So

this design introduce the tag words index into TideDB and

avoid the redundant data scanning. TideDB tag words index

have an inverted index design. Inverted indexes store a list of

data rows that each tag word appears in. The index row only

needs to be built and inserted as the data row builds. That is to

say, one index row only inserts one time in one hour so that it

will avoid write performance degradation raised by the index

insert.

TideDB provides the basic data query functions such as

select and update, support the range query and aggregation

computing by any fields and the where condition sub-clause.

While the range query is coming, it will split the query work

over all the range nodes in the cluster, find the data row id by

the index if there’s one tag words index on the specified

column, reduce their query result and send them to the client.

In this machine monitor scenarios, TideDB’s Broker

maintains an optimizer that can normalize and optimize the

user’s query plan to make it suitable for TideDB’s data storage

model. For example the incoming query with the time range of

10 hours user specified and the metric of CPU_USED, but one

TideDB’s data row only contains the data of 1 hour and 1

metric, if the system directly use the clause user specified, the

TideDB server will consume much time on the data scanning.

So the Broker’s optimizer splits the incoming clause into 10

sub clauses and maps 10 threads to do the sub-query

separately, so as to avoid data scanning, reduce their query

result and send them to the client.

3.4. Failure Recovery

TideDB must be devoted to maintaining integrity in the face

of failure. Failure here can mean a user-level or fatal error in

an individual write session, or a partial system error, or a total

system error such as a power failure or software panic. Meta

server maintains a heartbeat with each Ranger server. If the

Meta server detects that the range server is unreachable, it will

fail-over the data service locating on the crash Ranger server

to another online Ranger server and continue the service for

this range. Integrity here is limited to consistency. There are

some types of log for data operation in TideDB. Data log can

log the data insert and update, index log is to log the insert and

update on table with index, split log is to log the block split,

SStable split and tablet split. While one data insertion is

coming, the data insertion log must be written to the disk and

logging the data SStable split if it hit the SStable split case. In

this machine monitor scenarios, TideDB’s data row is sorted

by the machine and timestamp and the data is produced by the

growth of timestamp so that the new data to be inserted only

need to append the SStable file and the SStable split is tail split

except the rare case that need to do the middle split. Tail split

doesn’t need to log split case and avoid affecting the write

performance by splitting.

3.5. Administrator Tool

TideDB provides some administrator tools to manage the

metadata information in TideDB, such as TideDB

Consistency Checking (TCC) that ensures the data

consistency between on the Meta server and Ranger server,

Rebalance Command that manually rebalance the data range

amongst Ranger servers to help balancing the workload

amongst nodes. For example, TideDB's administrator can

transfer some data range from the 'hot' nodes to the 'code'

nodes so that the responses to the client become more faster.

4. Performance Evaluation

Construct a performance evaluation 10 k+ bytes records by

using 5 fields including 2 Varchar, 2 Int and 1 computed

column. The data and do some data operation (insert/select)

against the TideDB is driving the performance evaluation of

the TideDB prototype. Our experiments show that TideDB's

performance can meet the requirements of low read latency

and high write throughput. Section 5.1 describes our

experimental setup and section 5.2 present more detailed

experimental results.

4.1. Experimental Setup

Each experiment uses two machines as TideDB server and

 Internet of Things and Cloud Computing 2017; 5(3): 59-63 62

one client machine. Each machine has six quad-core Intel

Xeon E 5-2620 processors, 64 GB RAM, a 1 Gbps network

interface card, and runs RedHat Linux. On both two machines,

this test start one Meta server to manage the meta information

and one ranger server to process the user's data, and run the

client driver cases on another machine.

4.2. Experimental Detail

This experiment uses Latency / Throughput as the metrics

for our evaluation of insert operations and Average and 99

ile% Latency / Time Range to evaluate the performance of

range query. There will be a table to insert using the data

from 6,000 machines by the cycle of 10 seconds and query

the series of data points with the specified time range. Finally,

the experiment has the concurrent query evolution on the

table to test the performance stability of the TideDB, in this

experiment, we can see TideDB's query performance is very

stable. It does not hit the bumps on the query latency due to

the concurrent query increasing.

Figure 2. Write as the data rows increase.

Figure 3. Query with the 1 hours of time range.

Figure 4. Query with the 4 hours of time range.

Figure 5. Query by the 8 hours of time range.

Figure 6. Concurrent queries number: 4000.

Figure 7. Concurrent queries number: 4000.

5. Related Work

There has been various study on the traditional database and

the massive scale storage management system, including

research on the dynamo at Amazon, Azure at Microsoft and

bigtable/GFS at Google, and some popular Nosql products

liking documented-based MongoDB, Cassandra and

column-based HBase, etc. Our paper focuses on the time

series storage, whose data model is not the format of JSON or

BSON, but what adapts the innovative computed column and

the row format from the traditional database. Its service is

based on the data range, which demands more sophisticated

data consistency and index techniques. Since data range may

be split by the new insertion or manually rebalanced by

administrator, the information (meta information, index,

splitting work etc) have to be updated.

TideDB provides the data service more access-efficient

63 Xue Yingfei: TideDB - A Distributed, Scalable Time Series Database

than other documented Nosql since the data service is split

into different ranges that any two nodes don't have the

override data range, while other documented Nosql products

following the round-robin way that will leads to two nodes

may hit same data and the redundant disk I/O.

6. Conclusions

In this paper, we have implemented one time series storage

built on the distributed file system, named TideDB that

supports large write throughput and low query latency using

fewer machines than other systems like HBase. Our TideDB

offers several novel features that make it especially attractive

for large-scale storage systems for time series data. First,

TideDB is designed to support effective data model which can

enhance storage and access efficiency for time series scenario.

Second, failure recovery mechanism can ensure the data

consistency. Third, TideDB provides some administrator tools

to manage the metadata information. Finally, by the tag words

index mechanism and the range service, our TideDB provides

better performance than other same type of products. Our

experimental results over a wide range of data workloads have

clearly demonstrated the benefits of TideDB, showing that our

TideDB has rich functions, high reliability and high

performance.

References

[1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, Robert E. Gruber. Bigtable: A Distributed Storage
System for Structured Data.

[2] TideCloud, http://tidecloud.org/

[3] InfluxDB, https://www.influxdata.com/

[4] OpenTSDB, http://opentsdb.net/

[5] MongoDB, http://www.mongodb.org/

[6] Apache Cassandra, http://cassandra.apache.org/.

[7] Avinash Lakshman, Prashant Malik. Cassandra - A
Decentralized Structured Storage System.

[8] Apache HBase, http://hbase.apache.org/.

[9] Rick Cattell. Scalable SQL and NoSQL Data Stores.

[10] James Cipar, Greg Ganger, Kimberly Keeton, Charles B.
Morrey III, Craig A. N. Soules, Alistair Veitch. LazyBase:
Trading Freshness for Performance in a Scalable Database.

[11] Amazon SimpleDB, http://aws.amazon.com/simpledb/.

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall and Werner
Vogels. Dynamo: Amazon's Highly Available Key-value
Store.

[13] Sybase,
http://www.sybase.com/products/databasemanagement/adapti
veserverenterprise.

[14] Rick Cattell. High Performance Scalable Data Stores.

[15] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google File System.

[16] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy
Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul
Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram
Sankaran, Kavitha Manivannan, Leonidas Rigas. Windows
Azure Storage: A Highly Available Cloud Storage Service with
Strong Consistency.

[17] Daniel J. Abadi Samuel R. Madden Nabil Hachem.
Column-Stores vs. Row-Stores: How Different Are They
Really?

[18] Voldemort, http://project-voldemort.com/design.php

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, Russell Sears. Benchmarking Cloud Serving
Systems with YCSB.

