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Abstract: Some of the largest datasets have strong time components, like machine monitoring, real-time alert and IoT devices, 

etc. Despite of so many applications of time series data, most storage options are either highly proprietary or worse, relational. 

Unlike other alternatives, TideDB does not have a data with multiple metrics broken down into multiple data with one metric that 

increases the pressure on system throughput dramatically, rather its data modeling based on the computed column and tag words 

index can provide high write throughput, low read latency, and petabytes storage. TideDB has been deployed in production 

settings on large clusters to manage multiple terabytes of storage at Taide Company. The paper describes the TideDB how to 

store and organize our time series data from about one hundred thousand devices and millions service modules. 
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1. Introduction 

There are plenty of storage engines out there, but none of 

them seem to offer fast and efficient time series storage and 

indexing. The existing options like MySQL aren’t very fast, 

and the fast options like HBase aren’t specifically made for 

time series and can lead to harsh operational issues. Before 

TideDB, we choose MySQL as our backend engine and do 

lots of maintenance work to improve the performance of 

MySQL. As the amount of data grows, the scalability of 

MySQL is very bad. Then the system used HBase as its 

backend engine, which looked better than MySQL, but still 

doesn't meet our requirements well. Instead of hacking on 

something like HBase to suit our needs, we decided to write 

our own time series storage engine. About nearly one year 

design and implementation TideDB can be used to manage the 

time series data from machine and application service for the 

TideCloud that monitors about one hundred thousand devices 

at Taide Company. These machines will produce a series data 

by the cycle of 10 seconds and inserted into TideDB cluster by 

2 minutes, and these data will be accessed in various business 

applications that need low read latency. Every day there are 50 

TB raw data to be inserted into TideDB, and lots of historical 

data query requests with 99 ile% latency < 200 ms. In Argus, 

TideDB shares many implementation strategies with Google's 

Bigtable, but TideDB provides a different data model and 

query optimizer than such systems and introduces the 

computed column into the data row. When a time series data is 

stored in a computed column, the data is stored contiguously 

and is retrieved with a minimum number of disk reads. It also 

provides some basic data operation for each component of 

Argus and some tools for the Argus administrator, such as 

query with where sub-clause, sharding/rebalance/check table, 

and support some basic aggregation computing. 

Section 2 provides an overview of the TideDB. Section 3 

describes the key features and the fundamentals of the TideDB 

implementation, and Section 4 presents some works on the 

performance and provides measurements of TideDB’s 

performance. Based on that, Section 5 describes related work, 

and Section 6 ends up with our conclusions. 

2. Architectural Overview 

TideDB consists of four components: Metadata server, 

Ranger server, Broker server and Distributed File System 

(DFS), and stores data in a table which is sorted by a primary 

key that contains instance IP (or the name of service 

monitored by Argus) and timestamp. One instance's sequence 

of data points stored in a 4 M file, and several instances’ files 

in logic form one data range. Metadata server provides the 

catalog information for all the tables in this system and builds 

the B-tree index structure for the range key of each table. Each 

Ranger server holds some ranges of the data, but all of the 



 Internet of Things and Cloud Computing 2017; 5(3): 59-63 60 

 

range on one Ranger server is not necessarily continuous that 

make the range service more flexible because each data range 

is not dependent upon another data range. There are millions 

of instances or services time series data to be inserted by one 

cycle. In order to relieve the pressure on Ranger server this 

design introduce the Broker to do some of requests 

preprocessing received such as building one bulk of multiple 

inserts and splitting the query clause into multiple sub query 

plans. The Broker server deployed on a Ranger machine is a 

light API service, which supports the REST API to be called 

by applications and enables applications to access data stored 

in TideDB.  

The incoming data to be inserted, which have a natural 

temporal ordering, is consistent with the TideDB data model 

design, so that the data will not be moved once written to 

memory file mapping disk one, and the query optimizer in 

Broker can make the query plan only hit one or two disk IO by 

mapping the query into multiple sub query plans. The data 

store only needs a normal file storage engine, which provides 

a uniform file namespace for Meta server and Ranger server, 

to do the persistence storage for TideDB. So this design 

chooses a distributed file system from the third party product 

that used to store the data with 3 replications that ensure the 

integrity of data. 

 

Figure 1. What are the components in the system and how they relate to one another. 

Scaling is achieved by splitting tables into contiguous data 

ranges and assigning them up to different physical nodes. 

Meta Server which handles metadata management works and 

oversees the Ranger Servers is responsible for farming them 

out in an intelligent way and reassigns some ranges of the data 

locating at the overload Ranger Servers to other Range 

Servers that have enough space. New ranger nodes can be 

added as storage needs increase and the system automatically 

adapts to the new nodes. The Meta server receives the request 

of heartbeat from the Ranger server newly added, finds the 

Ranger server who own the most tablets and transfers some 

tablets to the new Ranger server to balance the service 

performance, and finally it adds the new Ranger server into 

the service list. 

3. Features and Implementation 

3.1. Data Row Format 

There are about 10 TB raw data every day from millions of 

monitoring objects. If the system does not do any processing 

to store these raw data, it will store a large amount of 

redundant data and impact the write throughput and reading 

performance. In order to enhance storage and access 

efficiency TideDB’s row format follows the design idea from 

the traditional relational database, that is one data row, which 

includes three parts, namely row header, field data and field 

offset. This design can apply query and field location. Header 

information includes the row state and row number that is the 

row order in the block, filed offset drives the field data. This 

data model will serves better than the JSON and BSON in 

certain way, such as space saving, field locating and 

compression, etc. When users want to find the value for the 

specified field, TideDB can directly depend on the field's 

offset to locate the value of this field without having to 

traverse all the field values. 

3.2. Time Series Data Modeling 

A time series is a sequence of data points, typically consists 

of successive measurements made over a time interval. There 

are about 100 thousand devices at Taide, and each node has 
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about 200 metrics including CPU used, memory used, QPS 

and UPS, etc. and it born the data by the cycle of 10 seconds. 

The data has the characteristics of time series and will be used 

to check if these machines have a good running state. For 

example, an operate engineer wants to know someone 

machine’s disk writing status in the past 10 hours, he can 

query the metric of DISK_TOTAL_WRITE_KB by the 

specified time range, and the web will show the chart by the 

query data result from the DB. 

The scenario mentioned above has two challenges: large 

writes throughput and low query latency. In order to solve this 

problem, our row format as follows: 

| Machine_timestamp_metric | Cycle | Timestamp | Tag 

Words |Computed Column | 

This row can store one hour data and the row key is built by 

the machine, the start point of one hour and metric. The 

column of Timestamp is the end point of one hour, the cycle is 

the interval of the new data born and the tag words flag this 

machine characters. Computed column contains two parts 

including computed header and data slot that records the 

actual data value from the machine. Computed header is 

comprised of 16 bytes that encode a slot map managing the 

data slot. The computed column has about 360 (1 hour dived 

by the cycle of 10 seconds) slots that store the arrange of data 

points. The first insert coming will build the new data row but 

the following insert only needs to do the in-place update of 

slot that will solve the large writes throughput. The query 

model use machine, time range and metric that the user 

specified to build the row key and query the data by the range 

index. 

3.3. Query Optimizer 

There are plenty of query cases at Taide based on the tag 

words condition including IDC, cluster and service name. It 

will hit lots of data rows if the system only use the time 

condition to locate the interesting data with specified tags. So 

this design introduce the tag words index into TideDB and 

avoid the redundant data scanning. TideDB tag words index 

have an inverted index design. Inverted indexes store a list of 

data rows that each tag word appears in. The index row only 

needs to be built and inserted as the data row builds. That is to 

say, one index row only inserts one time in one hour so that it 

will avoid write performance degradation raised by the index 

insert.  

TideDB provides the basic data query functions such as 

select and update, support the range query and aggregation 

computing by any fields and the where condition sub-clause. 

While the range query is coming, it will split the query work 

over all the range nodes in the cluster, find the data row id by 

the index if there’s one tag words index on the specified 

column, reduce their query result and send them to the client. 

In this machine monitor scenarios, TideDB’s Broker 

maintains an optimizer that can normalize and optimize the 

user’s query plan to make it suitable for TideDB’s data storage 

model. For example the incoming query with the time range of 

10 hours user specified and the metric of CPU_USED, but one 

TideDB’s data row only contains the data of 1 hour and 1 

metric, if the system directly use the clause user specified, the 

TideDB server will consume much time on the data scanning. 

So the Broker’s optimizer splits the incoming clause into 10 

sub clauses and maps 10 threads to do the sub-query 

separately, so as to avoid data scanning, reduce their query 

result and send them to the client.  

3.4. Failure Recovery 

TideDB must be devoted to maintaining integrity in the face 

of failure. Failure here can mean a user-level or fatal error in 

an individual write session, or a partial system error, or a total 

system error such as a power failure or software panic. Meta 

server maintains a heartbeat with each Ranger server. If the 

Meta server detects that the range server is unreachable, it will 

fail-over the data service locating on the crash Ranger server 

to another online Ranger server and continue the service for 

this range. Integrity here is limited to consistency. There are 

some types of log for data operation in TideDB. Data log can 

log the data insert and update, index log is to log the insert and 

update on table with index, split log is to log the block split, 

SStable split and tablet split. While one data insertion is 

coming, the data insertion log must be written to the disk and 

logging the data SStable split if it hit the SStable split case. In 

this machine monitor scenarios, TideDB’s data row is sorted 

by the machine and timestamp and the data is produced by the 

growth of timestamp so that the new data to be inserted only 

need to append the SStable file and the SStable split is tail split 

except the rare case that need to do the middle split. Tail split 

doesn’t need to log split case and avoid affecting the write 

performance by splitting. 

3.5. Administrator Tool 

TideDB provides some administrator tools to manage the 

metadata information in TideDB, such as TideDB 

Consistency Checking (TCC) that ensures the data 

consistency between on the Meta server and Ranger server, 

Rebalance Command that manually rebalance the data range 

amongst Ranger servers to help balancing the workload 

amongst nodes. For example, TideDB's administrator can 

transfer some data range from the 'hot' nodes to the 'code' 

nodes so that the responses to the client become more faster. 

4. Performance Evaluation 

Construct a performance evaluation 10 k+ bytes records by 

using 5 fields including 2 Varchar, 2 Int and 1 computed 

column. The data and do some data operation (insert/select) 

against the TideDB is driving the performance evaluation of 

the TideDB prototype. Our experiments show that TideDB's 

performance can meet the requirements of low read latency 

and high write throughput. Section 5.1 describes our 

experimental setup and section 5.2 present more detailed 

experimental results. 

4.1. Experimental Setup 

Each experiment uses two machines as TideDB server and 
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one client machine. Each machine has six quad-core Intel 

Xeon E 5-2620 processors, 64 GB RAM, a 1 Gbps network 

interface card, and runs RedHat Linux. On both two machines, 

this test start one Meta server to manage the meta information 

and one ranger server to process the user's data, and run the 

client driver cases on another machine. 

4.2. Experimental Detail 

This experiment uses Latency / Throughput as the metrics 

for our evaluation of insert operations and Average and 99 

ile% Latency / Time Range to evaluate the performance of 

range query. There will be a table to insert using the data 

from 6,000 machines by the cycle of 10 seconds and query 

the series of data points with the specified time range. Finally, 

the experiment has the concurrent query evolution on the 

table to test the performance stability of the TideDB, in this 

experiment, we can see TideDB's query performance is very 

stable. It does not hit the bumps on the query latency due to 

the concurrent query increasing. 

 

Figure 2. Write as the data rows increase.  

 

Figure 3. Query with the 1 hours of time range. 

 

Figure 4. Query with the 4 hours of time range.  

 

Figure 5. Query by the 8 hours of time range. 

 

Figure 6. Concurrent queries number: 4000. 

 

Figure 7. Concurrent queries number: 4000. 

5. Related Work 

There has been various study on the traditional database and 

the massive scale storage management system, including 

research on the dynamo at Amazon, Azure at Microsoft and 

bigtable/GFS at Google, and some popular Nosql products 

liking documented-based MongoDB, Cassandra and 

column-based HBase, etc. Our paper focuses on the time 

series storage, whose data model is not the format of JSON or 

BSON, but what adapts the innovative computed column and 

the row format from the traditional database. Its service is 

based on the data range, which demands more sophisticated 

data consistency and index techniques. Since data range may 

be split by the new insertion or manually rebalanced by 

administrator, the information (meta information, index, 

splitting work etc) have to be updated. 

TideDB provides the data service more access-efficient 
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than other documented Nosql since the data service is split 

into different ranges that any two nodes don't have the 

override data range, while other documented Nosql products 

following the round-robin way that will leads to two nodes 

may hit same data and the redundant disk I/O. 

6. Conclusions 

In this paper, we have implemented one time series storage 

built on the distributed file system, named TideDB that 

supports large write throughput and low query latency using 

fewer machines than other systems like HBase. Our TideDB 

offers several novel features that make it especially attractive 

for large-scale storage systems for time series data. First, 

TideDB is designed to support effective data model which can 

enhance storage and access efficiency for time series scenario. 

Second, failure recovery mechanism can ensure the data 

consistency. Third, TideDB provides some administrator tools 

to manage the metadata information. Finally, by the tag words 

index mechanism and the range service, our TideDB provides 

better performance than other same type of products. Our 

experimental results over a wide range of data workloads have 

clearly demonstrated the benefits of TideDB, showing that our 

TideDB has rich functions, high reliability and high 

performance. 
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