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Abstract: The nonlinear model has a linear dynamic system following some static nonlinearity. The dominating approach to 

estimate the components of this model has been to minimize the error between the simulated and the measured outputs. For the 

special case of Gaussian input signals, we estimate the linear part of the Hammerstein model using the Bussgang’s classic 

theorem. For the case with general disturbances, we derive the Maximum Likelihood method. Finally one simulation example is 

used to prove the efficiency of our theory. 
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1. Introduction 

Many nonlinear systems can be modeled by a Hammerstein 

model (linear time-invariant (LTI) block following some static 

nonlinear block), Wiener model (LTI block preceding some 

static nonlinear block), or Hammerstein-Wiener model (LTI 

block sandwiched by two nonlinear blocks). 

The Hammerstein model is a special kind of nonlinear 

systems which has applications in many engineering problems 

and therefore, identification of Hammerstein models has been 

an active research topic for a long time. Existing methods in 

the literature can be roughly divided into six categories: the 

iterative method, the over-parameterization method, the 

stochastic method, the nonlinear least squares method, the 

separable least squares method and the blind method. 

The paper focuses on the identification of Hammerstein 

models shown in Figure 1 which consist of a nonlinear 

memory less element followed by a linear dynamical system. 

The input signal is denoted by ( )u t , the output signal by ( )y t  

and ( )x t  denotes the intermediate, immeasurable signal. We 

will call ( )w t  process noise and ( )e t  measure noise, and 

assume that they are independent. Note that since G  is a 

linear system, the process noise can equally well be applied 

anywhere after the nonlinearity with an additional filter. 

 

Figure 1. Hammerstein model. 

The Hammerstein models can be described by the following equation: 
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y t G q x t e t

x t x t w t

x t f u t

θ
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          (1) 

This paper will focuses on parametric models. We will 

assume f  and G  each belongs to a parameterized models 

class. Examples of such a model class may be polynomials, 

splines, or neural network for the nonlinear function f -in 

general a basis function expansion. The nonlinear f  may 

also be a piecewise linear function, like a saturation or a 

dead-zone. Common model classes for G  are FIR filters, 

rational transfer functions (OE models) or state space models, 

but also for example Laguerre filters may be used.  

If the process noise w  and the intermediate signal x are 

unknown, the parameterization of the Hammerstein models is 

not unique. Notice that in the characterization of the 

Hammerstein model shown in Figure 1. f and G  are actually 

not unique. Any pair ( ) ( )( , / )kf u G z k for some nonzero and 

finite constant k  would produce identical input and output 

measurements. In other words, any identification scheme 

cannot distinguish between  

( ) ( )( , / )kf u G z k  and ( ) ( )( , )f u G z . Therefore to get a 

unique parameterization, without loss of generality, one of the 

gains of ( )f u and ( )G z  has to be fixed. (We may also need 

to scale the process noise variance with a factor k .) 

Given input and output data, and model classes for f and G , 

we want to find the parametersθ  andη that best match the 

data, measured as input u and output y from the system. 

2. A Standard Method and Possible Bias 

Problems  

Several different methods to identify Hammerstein models 

have been suggested in the literature. A common approach is 

to parameterize the linear and nonlinear block, and to estimate 

the parameters from data, by minimizing an error criterion. 

If the process noise ( )w t  in Figure 1 is disregarded or 

zero, a natural criterion is to minimize 

( ) ( ) ( ) ( )( )( )2

1

1
, , ,

N

N

t

V y t G q f u t
N

θ η θ η
=

= −∑     (2) 

This is a standard approach and has been used in several 

papers. If the process noise is indeed zero, this is the 

prediction error criterion. If the measurement noise is white 

and Gaussian, (2) is also the Maximum Likelihood Criterion 

and the estimate is the consistent. 

While measurement noise e  is discussed in several papers, 

few consider process noise w . Reference [10] is one exception 

where both the input and output are subject to noise. 

Consistency of the estimate method is, however, not discussed 

in that paper. It may seem reasonable to use an error criterion 

like (2) even in the case where there is process noise.  

However ( ) ( )( ), ,G q f u tθ η  is not the true predictor in this 

case. We will name this method the approximate prediction 

error method, and we will show that the estimate obtained this 

way is not necessarily consistent.  

Suppose that the true system can be described within the 

model class, i.e. there exist parameters ( )0 0
,θ η  such that. 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )0 0 0 0 0, , , , ,y t G q f u t w t e t G q f u t G q w t e tθ η θ η θ = + + = + +               (3) 

An estimate from a certain estimation method is said to be 

consistent if the parameters converge to their true values, 

when the number of data N tends to infinity.  

To investigate the minimum of the approximative PEM 

criterion (2) we write the true system as 

( ) ( ) ( )( ) ( ) ( )0 0, ,y t G q f u t w t e tθ η= + +ɶ      (4) 

where  

( ) ( ) ( )0
,w t G q w tθ=ɶ , ( ) ( ) ( )0

, 0Ew t G q Ew tθ= =ɶ  

( ) ( ) ( ) ( ) ( ) 22 2 *

0 0 0, , , wEw t G q Ew t G q G qθ θ θ λ= =ɶ   (5) 

( ) ( )2 2
,

w e
Ew t Ee tλ λ= =                 (6) 

We may regard ( )w tɶ  as a (input-dependent) 

transformation of the process noise to the output. Stochastic 

properties, such as mean and variance of the process noise will 

typically be preserved in the transformation from ( )w t  to 

( )w tɶ . 

Now insert the expression for y  in Eq. (4) into the 

criterion (2): 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

2
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1
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1
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1 2
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N

t

N

t
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t t

V G q f u t G q f u t w t e t
N

G q f u t G q f u t
N

w t e t G q f u t G q f u t w t e t
N N

θ η θ η θ η

θ η θ η

θ η θ η

=

=

= =

 = − + + 

= −

+ + + − +      

∑

∑

∑ ∑

ɶ

ɶ ɶ

          (7) 
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Now assume all noises are ergodic, so that time averages 

tend to their mathematic expectations as N tends to infinity. 

Assume also that u  is a (quasi)-stationary sequence, so that it 

also has well defined sample averages. Let E denote both 

mathematical expectation and averaging over time signals. 

Using the fact that the measurement noise e  is zero mean, 

and independent of the input u  and the process noise w , 

means that several cross terms will disappear. The criterion 

then tends to 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
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t

N

t
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V G q f u t G q f u t w t e t
N

G q f u t G q f u t
N

w t e t G q f u t G q f u t w t e t
N N

θ η θ η θ η

θ η θ η

θ η θ η

=

=

= =

 = − + + 

= −

+ + + − +      

∑

∑

∑ ∑

ɶ

ɶ ɶ

          (8) 

Note that the criterion has a quadratic form, and the true value ( ),θ η  will minimize the criterion 

Using the partial derivation about the ( ),
N

V θ η , we can obtain the estimate values ( ),θ η  

( )

( )

,
0

,
0

N

N

V

V

θ η
θ
θ η
η

∂
= ∂

∂ =
 ∂

                                               (9) 

3. Bussgang’s Theorem and Its Implication for Hammerstein Models 

We generalize the following Bussgang’s theorem 

Theorem 1. Let ( )y t be the stationary output from a static nonlinearity f  with a stationary Gaussian input ( )u t , i.e, 

( ) ( )( )y t f u t= . 

Assume that the expectations ( )( ) ( )( ) 0E y t E u t= = . 

Then 

( ) ( )0
,

yu u
R b Rτ τ τ= ∀ ∈ℤ                                       (10) 

where 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )( )0
, ,

yu u
R E y t u t R E u t u t b E f u tτ τ τ τ ′= − = − = , 

Proof: Set  

( ) ( )

( ) ( )

2

2 22

1 2 1 2 1 2

1
, 1,

2

0, , ,

u

up u e u p u du

u up u du r u u p u u du du

σ
π

τ

− ∞

−∞

∞ ∞ ∞

−∞ −∞ −∞

= = =

= = =

∫

∫ ∫ ∫

 

Using some knowledge of probability, we have  

( ) ( ) ( )1

1 2 1 2 1 21

2

1 1
, , exp , ,

2
2

T
p u u u u B u u

B

τ
π

− = − 
 

  (11) 

where  

1

2

1 11
,

1 11

r r
B B

r rr

− −   
= =   −−   

 

Substituting B  and 1B−  into the right part of the 

( )1 2
, ,p u u τ  

We can obtain 

( ) ( )
2 2

1 2 1 2

2

2

2 1

1 2
2

1
, ,

2 1

u u ru u

r
p u u e

r
τ

π

+ −
−

−=
−

      (12) 

Then 

( ) ( ) ( ) ( ) ( )
2 2

1 2 1 2

2

2

2 1

1 2 1 2 1 2 1 2 1 2
2

1
, ,

2 1

u u ru u

r

yuR u f u p u u du du u f u e du du
r

τ τ
π

+ −
−

∞ ∞ ∞ ∞ −

−∞ −∞ −∞ −∞
= =

−∫ ∫ ∫ ∫           (13) 
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Applying the equality 

( ) ( ) ( )
2 2 2
1 2 2

122 212 1 2 12

1 1 2
2 1

u ru r u
u

rr r
u e du r r u eπ

− +
∞ −− −

−∞
= −∫

  (14) 

We insert (13) into (12) then  

( ) ( )
2
2

2
2 2 2

2

u

yu

r
R u f u e duτ

π
−∞

−∞
= ∫         (15) 

Since we are dealing with stationary processes, the 

ensemble average and the time average can be equated, that is 

( )u
r R τ=  and we assume  

( )
2

2
0

1

2

u

b u f u e du
π

−∞

−∞
= ∫  

Then 

( ) ( )0
,

yu u
R b Rτ τ τ= ∀ ∈ℤ  

To simplify 0
b , we adopt the following fact that  

( )( ) ( )( )
ii z

E h z z E h z′=  

when z  has a ( )0,N I  distribution. This equality holes 

since  

( ) ( ) ( )

( )( ) ( )( )

2 2 2

2 2 2
0

1 1 1

2 2 2

0                      

u u u

u

b u f u e du f u e f u e du

E f u E f u

π π π

∞
− − −∞ ∞

−∞ −∞
=−∞

 
′= = − + 

  

′ ′= + =

∫ ∫
               (16) 

The theorem 1 has thus been shown. 

Let yu
φ  and u

φ  denote the z-transforms of yu
R  and u

R , 

respectively. Provided that these transforms are well-defined, 

(10) can also be written as ( ) ( )0yu u
bφ ω φ ω= . 

Bussgang’s theorem has turned out to be very useful for the 

theory of Hammerstein and Wiener system identification. The 

reason for this is that Bussgang’s theorem explains why it is 

possible to estimate the linear and nonlinear parts of a 

Hammerstein system separately when the input is Gaussian. It 

can be used to obtain a good estimate of the linear part of the 

model. It is interesting to note that the result applies also to our 

more general situation with process noise w . 

Theorem 2. Consider the model structure defined by Figure 

1. Assume that the input ( )u t  and the process noise ( )w t  are 

independent, Gaussian, stationary processes (not necessarily 

white). Assume that the measurement noise ( )e t  is a 

stationary stochastic process, independent of u  and w . It is 

however not assumed that e is neither white nor Gaussian. Let 

( ),G q θ  be an arbitrary transfer function parameterization 

with freely adjustable gain, such that ( ) ( )0 0,G q G qθ =  (the 

true linear part of the system) for some parameter value 0θ . 

Let θ  be estimated from u and y  using an output error 

method, neglecting any possible of nonlinearity: 

( ) ( ) ( )( )
2

1

ˆ arg min ,
N

N

t

y t G q u t
θ

θ θ
=

= −∑        (17) 

Then  

( ) ( )0 0
ˆ, ,
N

G q b G q as Nθ → → ∞  

Proof: define  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0, ,x t f u t x t x t w t y t G q x t e t= = + = +                     (18) 

Then since e  is independent of u the cross spectra between u and y will be: ( )0

iw

yu xuG eφ φ= , since u  and w  are 

Gaussian, then ( )x t  is Gaussian, so Bussgang’s theorem tells us that 
0 0xu x u ubφ φ φ= = . Since ( ) ( )( )0x t f u t= , the resulting 

conclusion is that  

( ) ( ) ( )0 0

iw

yu uG e bφ ω φ ω=                                    (19) 

Now it is well known (see e.g. chapter 8 in Ljung (1999)) that ˆ
N

θ  will converge to a value that minimizes 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )2 1
, 2 Re , ,

2

iw iw

y yu u
V E y t G q u t w G e w G e w dwθ θ φ θ φ θ φ

π
− = − = − + ∫  

Insert (19) into this expression, and replace the θ  -independent term ( )y
wφ  with the θ -independent term ( ) ( )

2
2

0 0

iw

ub G e φ ω . 

Minimizing ( )V θ  is thus the same as minimizing  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

2
2

0 0 0 0

2

0 0

2Re , ,

,

iw iw iw iw

u u u

iw iw

u

W b G e b G e G e w G e w dw

b G e G e d

θ φ ω θ φ θ φ

θ φ ω ω

− = − + 

= −

∫

∫
 

which prove the theorem. 

The theorem is a consequence of the fact that the best linear system approximation that relates u and y is proportional to the 

linear part 0
G  of the true system. 

Basically this means that an estimate of the linear system ( )G q  will be consistent for many other common linear 

identification methods. Note that the gain of G  cannot be estimated anyway, since a gain factor can be moved between G  and 

f without affecting the input-output behavior. 

4. An Example 

Consider a generalized Hammerstein system ( ) ( ) ( ) ( )( ) ( ), , 1y t G q f u t u t w tθ= − +  

where 

( )
1 2

1

1 0.6 0.1
G q

q q− −=
+ +

( ) ( )( ) ( )( ) ( )2
, 1 arctan 1f u t u t u t u t− = ⋅ −  

And where ( )w t  is white Gaussian noise with 

( )( ) ( )( )2
0, 1E w t E w t= =  

Let the input ( )u t be generated by linear filtering of a 

white Gaussian process ( )e t  with  

( )( ) ( )( )2
0, 1E e t E e t= =  

such that 

( ) ( )
1 2

1

1 0.8 0.1

1 0.2

q q
u t e t

q

− −

−

− +=
−

. 

And assume that ( )e t  and ( )w s  are independent for all t, 

s 

This input signal has been used in an identification 

experiment where a data set consisting of 100000 

measurements of ( )u t  and ( )y t  was collected. A linear 

output error model has been estimated from this data set and 

the result was: 

( )
1

1 2

0.762 0.682ˆ
1 0.613 0.102

OE

q
G q

q q

−

− −

−=
+ +

 

As can be seen, the denominator of ( )ˆ
OE

G q  is indeed 

close to the denominator of ( )G q . 

In Figure. 2, we compare the two output responses of the 

real system and the identification system. In Figure. 3, we 

draw the error curve between the two output responses. From 

these Figures, we can see that with the number of measured 

data pairs tend to infinity, the identification system can suit the 

real system and the error will tend to zero. 

 

Figure 2. The output responses of the real system and the identification 

system. 

 

Figure 3. The error between the two output responses. 
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5. Maximum Likelihood Estimation  

5.1. Derivation of the Likelihood Function for White 

Disturbances 

The likelihood function is the probability density function 

(PDF) of the outputs ( ) ( ) ( ){ }1 , 2
N

y y y y N= ⋯  for given 

parameters θ  and η . We shall also assume that the input 

sequence ( ) ( ) ( ){ }1 , 2
N

u u u u N= ⋯  is a given, deterministic 

sequence.(We condition the PDF wrt to this sequence, if it is 

described as a stochastic process.) Let ( ), ,N

N

y
p uθ η  denote 

this PDF. For an observed data set *

Ny , the ML estimation is 

the one maximization the likelihood function: 

( ) ( )*
,

ˆ ˆ, arg max , ,N

N

y
p Z

θ η
θ η θ η=          (20) 

where  

{ }* *,
N N N

Z u y=  

For the Hammerstein model (Figure 1), we first assume that 

the disturbance sequences ( )e t  and ( )w t  are white noises. 

This means that for given N
u , ( )y t  will also be a sequence 

of independent variables. This in turn implies that the PDF of 
Ny will be the product of the PDF of ( ), 1,2y t t N= ⋯ . It is 

thus sufficient to derive the PDF of ( )y t . To simplify 

notation we shall use ( ) , ( )y t y x t x= =⋯  for short.  

To find the PDF, we introduce the intermediate signal x  as 

a nuisance parameter. The PDF of y given x is basically a 

reflection of the PDF of e , since ( ) ( ) ( ) ( ),y t G q x t e tθ= + . 

It is easy to find if e  is a white noise: 

( ) ( )( )/ ,y ep y x p y G q xθ= −           (21) 

where e
p  is the PDF of e . 

The same is true for the PDF of x given N
u  if w  is white 

noise,  

Since ( ) ( )( ) ( ),x t f u t w tη= + . With given N
u and η , so 

( ) ( )( )( )/ , ,N

x w
p x u p x f u tθ η= −         (22) 

where w
p  is the PDF of w . 

Now by integrating over all x R∈ , we then eliminate this 

immeasurable signal from the following equations: 

( ) ( ) ( ) ( )
( )( ) ( )( )( )

* , /, ; , / , ; / , , ; / , ;

, ,

N N N N

y x y y x x
x R x R

e w
x R

p Z p x y u dx p y x u p x u dx

p y G q x p x f u t dx

θ η θ η θ η θ η

θ η
∈ ∈

∈

= =

= − −

∫ ∫

∫
              (23)

We now assume that the process noise ( )w t and the measurement noise ( )e t  are Gaussian, with zero means and variances 

w
λ and 

e
λ  respectively, i.e. 

( )( )
( )

( )( )
( )2 21 1

2 21 1
,

2 2

e w

t v t

e w

e w

p t e p v t e
ε

λ λε
πλ πλ

− −
= =                         (24) 

For each time instant t. Since the noise is white, the joint likelihood is the product over all time instant, and thus  

( ) ( ) ( )
( )( )

( )

( )

1 1
, , , ,

2 2

1 21

1 1
/ , ;

2 2

N N
N E t E t

N N N

y
x x x Nt

e w e w

p y u e dx t e dx
θ η θ η

θ η
π λ λ π λ λ

∞ ∞ ∞ ∞− −

−∞ =−∞ =−∞ =−∞=

   
= ∏ =      
   

∫ ∫ ∫ ∫⋯    (25) 

where 

( ) ( )( ) ( )( )( )221 1
, , , ,

e w

E t y G q x x f u tθ η θ η
λ λ

= − + −  

Given data { }* * *,
N N N

Z u y= . We can calculate y
p  and its 

gradients for each θ  and η . This means that the ML 

criterion can be maximized numerically. 

We may also note that each integral in (25) depends on 

( )x t  for only one time instant t, so they can be computed in 

parallel. If the noise covariance w
λ  and e

λ  are unknown, 

they can be just included among the parametersθ andη and 

their ML estimates are still obtained by (20). 

5.2. Special Case: No Process Noise or no Measurement 

Noise  

Most approaches suggested in the literature restrict the 

noise to either process noise or measurement noise. In this 

case, the likelihood function (25) is considerably simplified, 

and the criterion is reduced to something we recognize from 

other references. 

First the case of no process noise, 0
w

λ = . Since the only 

stochastic part is the measurement noise, we have  
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )( )2

*

1
, ,

2

1

, ; , , ,

1

2

e

N

y e e

y t G q f u tN

t
e

p Z p y t G q x t p y t G q f u t

e
θ η

λ

θ η θ θ η

πλ

− −

=

= − = −

= ∏
                   (26) 

Maximizing this is equivalent to minimizing the criterion 

( ) ( ) ( ) ( )( )( )2

1

1
, , ,

N

N

t

V y t G q f u t
N

θ η θ η
=

= −∑                             (27) 

This is the prediction error criterion discussed before. It gives a consistent estimate if the condition of no process noise is 

satisfied. However if there is process noise, this criterion does not use the true prediction, and may be give biased estimates. 

For systems with no measurement noise 0
e

λ =  the criterion (25) forces ( ) ( ) ( ),y t G q x tθ= . So if G  is invertible, the ML 

criterion becomes 

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )2
11

, ,
21

*
1

1
, ; , ,

2

w

G q y t f u tN
N

y w
t

w

p Z p G q y t f u t e
θ η

λθ η θ η
πλ

−− −
−

=
= − = ∏              (28) 

The maximum can be found by maximizing the logarithm, 

which reduces the problem to minimizing the criterion 

( ) ( ) ( ) ( )( )( )2
1

1

1
, , ,

N

N

t

V G q y t f u t
N

θ η θ η−

=

= −∑   (29) 

Remark. We should add the following theorem to describe 

the exist of the ( )1
,G q θ−

 

Theorem 3. Assume that the filter G  is stable, and 

( ) ( )
1 1

,
,

G q
G q

θ
θ

− = . All that is needed is that the function ( )
1

,G q θ  be 

analytic in 1q ≥ ; that is, it has no poles on or outside the unit 

circle. We could also phrase the condition as ( ),G q θ  must 

have no zeros on or outside the unit circle. This ties in very 

nicely with the spectral factorization result according to which 

for rational strictly positive spectra, we can always find a 

representation ( ),G q θ  with these properties. 

5.3. Colored Noise  

 

Figure. 4. Hammerstein model with colored noise. 

If the process and measurement noise are colored, we may represent the Hammerstein model as in Figure. 4. The following 

equations give the output: 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

, ,

w

e

x t f u t H q w t

y t G q x t H q e t

η η

θ θ

= +

= +
                                     (30) 

By using predictor form, we may write this as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )

1 1 1

1 1

1

ˆ, , , , 1 , / , ,

, , 1 ,

ˆ / , , ,

N t N

w w

e e

t N N

x t u H q f u H q x t w t x t x u w t

y t H q G q x t H q y t e t

y t y x u e t

η η η η η

θ θ θ

θ

− − −

− −

−

= + − + = +

= + − +

= +

            (31) 
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The only stochastic parts are e  and w . For a given sequence 
N

x , the joint PDF of Ny  is obtained in the stand way. 

( ) ( ) ( )( )1

1

ˆ/ / , , ,N

N
N N t N N

ey
t

p y x p y t y t y x u θ−

=
= ∏ −                             (32) 

( ) ( ) ( )( )1

1

ˆ / , ,N

N
N t N

wx
t

p x p x t x t x u η−

=
= ∏ −                                (33) 

The likelihood function for Ny  is obtained from (32) by integrating out the nuisance parameter 
N

x  using its PDF (33): 

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )( )

1 1

1 2
1

1 1

, , ; , , ,   

, , ,

N

N
N N

e e ey x R x R x N R
t

w w w

p y u p H q y t H q G q x t

p H q x t H q f u t

θ η θ θ θ

η η η

∞ ∞ ∞ − −

∈ ∈ ∈
=

− −

= −

× −

∏∫ ∫ ∫⋯
          (34) 

In the case e and w  are Gaussian, we obtain  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )
( )

1

1 1 1 1

1

1
, ,

2

, , , , , ,

                                       

N

t

N

e e e w w w

t

E t

p H q y t H q G q x t p H q x t H q f u t

e
θ η

θ θ θ η η η

=

− − − −

=

−

− × −

∑
=

∏
          (35) 

where 

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )( )22
1 11 1

, , , , , ,e w

e w

E t H q y t G q x t H q x t f u tθ η θ θ η η
λ λ

− −= − + −              (36) 

The integration is a true multi-integral over all sequences 
N

x . 

6. Conclusion 

In this paper, one linear model with general disturbance is 

considered to be identified. The identification approach is the 

classical prediction error framework, where the error between 

the simulated and the measured outputs is needed to be 

minimized. Further more for the special case of Gaussian 

input signals, we estimate the linear part of the Hammerstein 

model using the Bussgang’s classic theorem. We derive the 

maximum likelihood method to solve the identification 

problem with general disturbance. 
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