Study on the Concentration of Moment at Slab-column Joints Due to Presence of Shear Walls in Different Positions

Mohammad Rafiqul Islam, Abbas Ali, Mohammad Emran Tahir

Department of Civil and Environmental Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh

Email address:
rafiqul-cee@sust.edu (M. R. Islam), sardersust@gmail.com (A. Ali), emran_tahir09@yahoo.com (M. E. Tahir)

To cite this article:

Received: September 10, 2017; Accepted: September 25, 2017; Published: October 20, 2017

Abstract: A ten-storied building with shear walls in two directions with respect to the direction of lateral load acting on the building has been studied here. The finite element based software, ETABS (version 9.6) has been used for determining the moment at different area objects due to the lateral load and Simpson’s one-third rule has been used to calculate the line moment from mesh area. The study shows that, Shear Wall-1 (perpendicular to the lateral load direction) system produces more moment than the Shear Wall-2 (parallel to the load direction) system but around 45 percent of total negative or positive moment passes through column strip in SW-1 system and around 99 percent of negative or positive moment passes through the same strip in SW-2 system while rest of the moment passes through middle strip. Around 80 percent of column strip moment passes through effective strip (c+3h) in both of two systems.

Keywords: Shear Wall Systems, Lateral Load, Positive Moment, Negative Moment

1. Introduction

Now-a-days, Flat Plate concrete slabs become more popular in high rise buildings that include hotels, motels, hospitals and residential buildings etc for their aesthetic view and easy arrangements. The flat plate is not preferable for more vulnerability under lateral loads such as wind and earthquake as it transforms lateral loads to columns without the help of beams, column capitals and drop walls. However, considering high demand of flat plate, engineers advice to add shear walls to reduce vulnerability under lateral loads. A significant numbers of researches have been done over flat plate slabs stability and shear wall stability, positions and strength etc.

S. D. Bothara et.al discussed about the lateral behavior of a typical flat slab building which is designed according to I. S. 456 -2000 by means of dynamic analysis. The inadequacies of these buildings are discussed by means of comparing the behavior with that of conventional flat slab & Grid slab system selected for this purpose. To study the effect of drop panels on the behavior of flat slab during lateral loads, Zone factor and soil conditions –the other two important parameters which influence the behavior of the structure, are also covered. Software ETABS is used for this purpose. In this study among the number of stories, zone and soil condition is developed [12].

S. Bhat et.al studied about comparison of the difference between the earthquake behavior of buildings with and without shear wall using STAAD. pro [13].

Climent et.al focused on the behavior of corner slab–column connections with structural steel I- or channel-shaped sections (shear heads) as shear punching reinforcement [14].

J. M. Babaso studied about the performance of steel plate shear wall during past earthquakes events and the testing on steel plate and also the different case study of SPSW system [15].

V. R. Harne studied to determine the solution for shear wall location in multistory building. A RCC building of six-storey placed in Nagpur subjected to earthquake loading in zone-II is considered. An earthquake load is calculated by seismic coefficient method using IS 1893 (PART-I):2002. These analyses were performed using STAAD Pro. The study has been carried out to determine the strength of RC shear wall of a multistoried building by changing shear wall
location. Three different cases of shear wall position for a 6 storey building have been analyzed. Incorporation of shear wall has become inevitable in multi-storey building to resist lateral forces [16].

S. W. Han et.al told about the effective beam width model (EBWM) used for predicting lateral drifts and slab moments under lateral loads. They also studied on slab stiffness with respect to crack formation. This studies developed equations for calculating slab stiffness reduction factor by conducting nonlinear regression analysis using stiffness reduction factors [17].

U. Gupta et.al studied to compare the behavior of multi-storey buildings having flat slabs with drops to the two way slabs with beams and to study the effect of part shear walls on the performance of these two types of buildings under seismic forces. This work provides a good source of information on the parameters lateral displacement and storey drift [18].

E. S. Finzel et al told about the record of flat-slab subduction in southern Alaska by integrating stratigraphic, provenance, geochronologic, and thermo chronologic data from the region directly above and around the perimeter of ongoing flat-slab subduction [19].

Y. Mirzaei et.al studied that the column failure due to an explosion can propagate in the structure through punching shear failure at the location of the neighboring columns, leading to progressive collapse. An analytical model is developed to be used in a finite element model of flat plate/slab structures to estimate the initiation of punching shear failure as well as post-punching shear response using ABAQUS [20].

M. A. Musmar indicated that openings of small dimensions yield minor effects on the response of shear walls with respect to both normal stresses along the base level of shear walls and maximum drift. Cantilever behavior similar to that of a solid shear wall takes place and analogous to that of coupled shear walls. On the other hand, when openings are large enough, shear walls behave as connected shear walls, exhibiting frame action behavior [21].

S. K. Mohammed et.al studied about a comparison of structural behavior in terms of strength, stiffness and damping characteristics which is done by arranging shear walls at different locations/configurations in the structural framing system. The elastic (response spectrum analysis) as well as in-elastic (nonlinear static pushover analysis) analyses are carried out for the evaluation of seismic performance. The results of the study indicate that the provision of shear walls symmetrically in the outermost moment resisting frames of the building and preferably interconnected in mutually perpendicular directions forming a core will lead to better seismic performance [22].

K. S. Patil et.al discussed about optimum design of reinforced concrete flat slab with drop panel according to the Indian code (IS 456-2000). The structure is modeled and analyzed using the direct design method. The optimization process is done for different grade of concrete and steel. The comparative results for different grade of concrete and steel is presented in tabulated form. Optimization for reinforced concrete flat slab buildings is illustrated and the results of the optimum and conventional design procedures are compared. The model is analyzed and designed by using MATLAB software. Optimization is formulated in nonlinear programming problem (NLPP) by using sequential unconstrained minimization technique (SUMT) [23].

K. M. Pathan et.al observed that the shear walls, if not used for full height of the structure, are also have same effectiveness in resisting the lateral loads. Here, an attempt is made to work out the height of Shear walls which will be just sufficient in resisting the lateral loads as good as the shear walls having full height equal to the height of the structure itself [24].

H. Rahangdale et.al analyzed G+5 Storey building in Zone IV with some preliminary investigation by changing various position of shear wall with different shapes to determine parameter like axial load and moments. This analysis is done by using Standard package STADD-pro [25].

V. K. RahmanI et.al presented the comparison of RCC and pre-stressed concrete flat slab. This work includes the designed estimates for RCC and pre-stressed concrete flat slabs of various spans. The aim of this work is to design RCC as well as pre-stressed concrete flat slabs for various spans and then to compare the results. Programming in MS EXCEL is done to design both types of flat slabs. The idea is to reach a definite conclusion regarding the superiority of the two techniques over one another. Results reveal that a RCC flat slab is cheaper than pre-stressed concrete flat slab for smaller spans but vice versa is true for larger spans [26].

Ramos, et.al studied about the punching failure mechanism resulted from the superposition of shear and flexural stresses near the column, and is associated with the formation of a pyramidal plug of concrete which punches through the slab. It is a local and brittle failure mechanism. The work reported the experimental analysis of reduced scale pre-stressed flat slab models under punching [27].

K. S. Sable et.al analyzed seismic behavior of building for different heights to see what changes are going to occur if the height of conventional building and flat slab building changes [28].

Bhunia et.al focused to determine the solution for shear wall location in multi-storey building based on its both elastic and elasto-plastic behaviors. An earthquake load is calculated and applied to a building of fifteen stories located in zone IV. Elastic and elasto-plastic analyses were performed using both STAAD Pro 2004 and SAP V 10.0.5 (2000) software packages. Shear forces, bending moment and story drift were computed in both the cases and location of shear wall was established based upon the above computations [29].

J. Sabouri et.al told that a comparative study has been carried out concerning some parameters such as strength, stiffness, lateral displacement, cracking development and steel weight. Moreover, shear walls have been compared through considering the ratio of strength to steel weight and their ductility and the results revealed that slit and coupled
shear walls showed more favorable performance [30].

S. J. Sardar et al. said that a 25 stories building in zone V with some investigation is analyzed by changing various location of shear walls for determining parameters like storey drift, storey shear and displacement by using standard package ETAB [31].

A. A. Sathawane et al. studied to determine the most economical slab between flat slab with drop, flat slab without drop and grid slab. The total length of slab is 31.38 m and width is 27.22 m. Total area of slab is 854.16 sqm. Analysis of the flat slab and grid slab has been done both manually by IS 456-2000 and by using software also. Flat slab and grid slab has been analyzed by STAAD PRO. Rates have been taken according to N. M. C. C. S. R. It is observed that, the flat slab with drop is more economical than Flat slab without drop and grid slabs [32].

P. V. Sumanth Chowdary et al. studied the solution for shear wall location and type of shear wall in seismic prone areas. The effectiveness of RCC shear wall building is studied with help of four different models. Model one is bare frame system and remaining three types are different shear wall buildings. An earthquake load is applied to 8 storey building located in different zones. The performance of building is evaluated in terms of lateral displacements of each storey. The analysis is done by using structural finite element analysis (SAP2000) software [33].

K. Galal discussed the efficiency of each model in representing both the global and local behaviour of RC shear walls. The objective of this paper is to provide a state-of-the-art on the recent advancements and challenges in the area of modeling of RC shear walls [34].

S. R. Thorat et al. studied the dynamic behavior of reinforced concrete frame with and without shear wall and concrete braced frame. The purpose of this study is to compare the seismic response of above structural systems. Axial forces and moments in members and floor displacements were compared [35].

M. Varma et al. discussed a method designated as Equivalent Load Method, in which equivalent load is calculated using Grashof-Rankine formulae, and is considered to be acting on the slab. The deflection calculated using equivalent load method is found to be closer to experimental values. The negative deflection has been tackled in literature by applying a factor of 0.7 to cracking moment (Mr). The deflection thus calculated again differs considerably with the experimental values. In the paper, with the method, a procedure has been proposed in which instead of the factor 0.7 being applied to Mr, cracking moment of inertia is proposed to be used in place of effective moment of inertia. The deflection thus calculated has been found to be comparable with experimental results. Experimental data obtained and data available in literature have been used to validate the procedure. Experimental work has been carried out for two end conditions i.e. fixed supported and simply supported two-way RC slab. Six separate specimens were casted for both end condition of different thickness, sizes and for different loads [36].

2. General Data

2.1. Building Data

- Story height (per floor): 10 ft.
- Length in global- X direction: 54 ft.
- Length in global- Y direction: 60 ft.
- Each slab panel: 18 ft × 20 ft.

2.2. Column, Shear Wall and Slab Properties

- Material: Reinforced concrete.
- Column size: 15 inch × 15 inch.
- Slab thickness: 7 inch.
- Shear wall length: 6.67 ft.
- Shear wall thickness: 12 inch.

![Figure 1. Typical Floor Plan Without Shear Wall.](image)

<table>
<thead>
<tr>
<th>Load type</th>
<th>At the roof (psf)</th>
<th>Rest of the story (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load</td>
<td>112.5</td>
<td>162.5</td>
</tr>
<tr>
<td>Live load</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

2.4. Material Properties

- Compressive strength of concrete, $f'_c = 4000$ psi.
- Yield stress of steel, $f_y = 60,000$ psi.
- Modulus of elasticity of concrete, $E = 3,600,000$ psi.

2.5. Strip Define

One-fourth of short span around the column defined as column strip in both directions-long and short while rest of the length at the middle defined as middle strip (Shown in
Column length and three times of slab depth \((c+3h)\) around the column defined as effective strip.

Figure 2. Strips Details.

2.6. Mesh System

For the finite element analysis, the slab area is meshed. Around a particular column, each slab panel is meshed into 14 blocks in the direction of global-Y (20 ft.) and 12 blocks in the direction of global-X (18 ft.).

Figure 3. Typical Mesh System for a Slab for This Study.

2.7. Loading System

Lateral earthquake load - perpendicular to shear wall systems (defined as: SW-1): The shear walls, where lateral earthquake force is acting on the perpendicular direction, is called the shear wall system-1 (SW-1).

Earthquake load is applied in global X- direction for both systems (SW-1 &SW-2) and the moment \((m_{11})\), due to earthquake load, is only considered for this study. This moment \((m_{11})\) is calculated and provided by ETABS software [5].

Lateral earthquake load - parallel to shear wall systems (defined as: SW-2): The shear wall, where lateral earthquake force is acting on the parallel direction, is called the shear wall system-2 (SW-2).

Figure 4. Load Acting to the Perpendicular Direction in SW-1.

Figure 5. Load Acting to the Parallel Direction in SW-2.
2.8. Earthquake Load Calculation

The calculation was done by equivalent static force method in excel sheet. The used data has been taken from BNBC-1993 code [3].

<table>
<thead>
<tr>
<th>Floor</th>
<th>load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Floor F1</td>
<td>4.22074</td>
</tr>
<tr>
<td>2nd Floor F3</td>
<td>8.44148</td>
</tr>
<tr>
<td>3rd Floor F3</td>
<td>12.6622</td>
</tr>
<tr>
<td>4th Floor F4</td>
<td>16.883</td>
</tr>
<tr>
<td>5th Floor F5</td>
<td>21.1037</td>
</tr>
<tr>
<td>6th Floor F6</td>
<td>25.3244</td>
</tr>
<tr>
<td>7th Floor F7</td>
<td>29.5452</td>
</tr>
<tr>
<td>8th Floor F8</td>
<td>33.7659</td>
</tr>
<tr>
<td>9th Floor F9</td>
<td>37.9867</td>
</tr>
<tr>
<td>Roof</td>
<td>38.6004</td>
</tr>
</tbody>
</table>

Table 2. Earthquake Loaded Acted in Floors.

The force has been put in ETABS software as point loads.

2.9. Moment m_{11}, m_{22} and m_{12} Significance

a. m_{11}: Direct moment per unit length acting at the mid-surface of the element on the positive and negative 1 faces about the 2-axis.

b. m_{22}: Direct moment per unit length acting at the mid-surface of the element on the positive and negative 2 faces about the 1-axis.

c. m_{12}: Twisting moment per unit length acting at the mid-surface of the element on the positive and negative 1 faces about the 1-axis, and acting on the positive and negative 2 faces about the 2-axis.

3. Data Analysis

The moment percentage is generated from the moment (m_{11}) due to lateral earthquake load acting in the Global-X direction. The moment taken from ETABS is sum using Simpson one-third rule for each line.

In this study, it is noticed that, more moment in magnitude has been produced in SW-1 with respect to SW-2. For line-AL to line-GL, the moment generated for SW-1 is negative and for SW-2 is positive, while for line-GR to line-M, the moment generated for SW-1 is positive and SW-2 is negative.

It is also noticed that, around 46 percent of total negative moment passes through column strip in SW-1 system while around 98 percent of negative moment in SW-2 system and rest of the moment pass through the middle strip. Around 45 percent of total positive moment passes through column strip in SW-1 system while around 99 percent of positive moment in SW-2 system and rest of the moment pass through the middle strip.
Around 80 percent of column strip moment passes through effective strip (c+3h) while rest of the moment passes through rest of the area of the column strip.

4. Conclusions

It has been seen that, between two systems, the perpendicular shear wall (SW-1) system produces more moment in magnitudes with respect to parallel shear wall (SW-2) system. For line A to GL, which is situated load acting side of column, the moment produced in SW-1 system is negative and other side (line GR to M) is positive and vice versa for SW-2 system.

Although SW-2 system produced less moment but about 99 percent of it passes through column strip and in SW-1 system, more moment has been produced but about 45 percent of it passes through the strip.

Around 80 percent of middle strip moment passes through critical (c+3h) section in both systems. Thus about 79 percent of total moment passes through critical (c+3h) section in SW-2 system but 36 percent of total moment passes in the section SW-1 system.

References

[5] ETABS Nonlinear ver. 9.6, (Extended Three-dimensional Analysis of Building System), computers and structures Inc.

[7] M. Ofelia Moroni, (2002), Concrete Shear Wall Construction, University of Chile, Santiago, Chile.

