
 

Journal of Electrical and Electronic Engineering 
2017; 5(2): 68-73 

http://www.sciencepublishinggroup.com/j/jeee 

doi: 10.11648/j.jeee.20170502.17 

ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online)  

 

Improved Particle Swarm Optimization with Controllable 
Velocity-Updating Mode 

Jiao Weidong
1, *

, Huang Zhijing
1
, Yan Gongbiao

2
 

1School of Engineering, Zhejiang Normal University, Jinhua, China 
2Department of Mechanical Engineering, Zhejiang University, Hangzhou, China 

Email address: 

jiaowd1970@zjnu.cn (Jiao Weidong), 1484660232@qq.com (Huang Zhijing), ygb_zju@163.com (Yan Gongbiao) 
*Corresponding author 

To cite this article: 
Jiao Weidong, Huang Zhijing, Yan Gongbiao. Improved Particle Swarm Optimization with Controllable Velocity-Updating Mode. Journal of 

Electrical and Electronic Engineering. Vol. 5, No. 2, 2017, pp. 68-73. doi: 10.11648/j.jeee.20170502.17 

Received: March 16, 2017; Accepted: April 7, 2017; Published: April 12, 2017 

 

Abstract: At the late evolution stage of the basic particle swarm optimization (BPSO), convergence process starts to slow 

down and the best fitness particle fluctuates around the globally-optimal solution, which may give rise to decrease on 

convergence precision of the BPSO. Therefore, an improved algorithm for particle swarm optimization was proposed. The 

modified version of PSO uses a controllable velocity-updating mode to control velocity of evolved particles, which is expected 

to be useful for tuning the search for the globally-optimal solution. Optimization examples showed that the improved PSO is 

superior to the BPSO, on not only convergence precision but also computation expense. 
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1. Introduction 

Particle swarm optimization (PSO), an analogy to the 

choreography of hunting flight of a flock of birds, is a kind of 

global optimization algorithm [1]. Empirically, a PSO 

optimizer can rapidly converge at the early evolution stage. 

But at the late evolution stage, its convergence slows down 

and the best-fitness particle may fluctuate around the 

globally-optimal solution, which can lead to decrease of 

convergence precision. To solve these problems, Shi and 

Eberhart proposed using a linearly decreased inertia weight w 

during velocity-updating [2]. In literature [3], a constriction 

factor was imposed on the velocity term in the 

position-updating model of the BPSO. Also, fuzzy rule was 

presented to modify the weight w dynamically, thus global 

parameters of the swarm optimizer were changed adaptively 

to find an appropriate balance between search efficiency and 

optimization precision [4]. In recent years, PSO has been 

applied to successfully solve optimization tasks in many 

fields [5-7]. Some improved PSO algorithms have also been 

developed. Ireneusz proposed a new approach for particle 

swarm optimization algorithm to self-control on the 

optimization process, by means of co-evolution or 

co-operation in natural environments [8]. Cheung et al. used 

supervisors to guide the particles to execute search tasks with 

different update rules for their position and velocity [9]. Tang 

and Fang made further improvement on the human-brain 

simulated particle swarm optimization. They proposed 

extended memory and new velocity choosing and updating 

strategies to give the moving direction to each particle more 

intelligently and help them avoid trapping into local optimum 

[10]. 

In this paper, several modes for velocity-updating were 

defined firstly. Some velocity-changing tracks for swarm 

evolution were then designed. An improved particle swarm 

optimizer was proposed. Finally, an optimization example 

was given to verify the proposed optimization algorithm.  

2. The BPSO Algorithm and Some 

Modified Versions 

In the BPSO, a population of particles is firstly initialized 

with random position and velocity. Then the globally-optimal 

solution of an given function is searched iteratively. During 
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each iteration, position and velocity of every particle are 

updated by means of tracking two extremum. One is 

individual extremum pbest, i.e. the best solution seized by 

individual particle, and the other is global extremum gbest, i.e. 

the best solution by the swarm. After capturing these two 

extremum, position and velocity of every particle are updated. 

Considering the ith evolution, the full model of the BPSO 

can be written as [1] 

( ) ( )1 1 1 best, 1 present, 1 2 2 best , 1 present , 1

present , present, 1

,

. 1, 2, , .

i i i i i i

i i i

v v c r p p c r g p

p p v i N

− − − − −

−

 = + − + −


= + = ⋯

 (1) 

where vi and ppresent, i are search velocity and present 

position of particles in the ith evolution respectively. The 

variable vi is limited to the range ±vmax. Both r1 and r2 are 

random positive numbers, drawn from a uniform 

distribution between 0 and 1. c1 and c2 are both steering 

coefficients, and usually c1 = c2 = 2. N is total amount of 

evolution. 

By continuous studying, evolved particles arrive at 

location of the globally-optimal solution eventually, and the 

search process ends. Theoretically, the last output of gbest is 

exactly the globally-optimal solution. However, the evolution 

process of the BPSO may stagnate and be trapped into a 

locally-optimal solution, if the globally-optimal solution is 

not captured during all particles fly to the solution limit p
*
. 

As a result, relatively slow convergence and fluctuation of 

the best-fitness particle around the globally-optimal solution 

will be observed in the BPSO. 

Some techniques had been applied to solve these problems. 

In literature [2], Shi and Eberhart proposed using a linearly 

decreased (LD) inertia weight wi on the velocity-updating 

model as 

( ) ( )1 1 1 best, 1 present , 1 2 2 best , 1 present, 1 .i i i i i i iv w v c r p p c r g p− − − − −= + − + − (2) 

where wi is limited between the upper limit wmax and the 

lower limit wmin, and 

max min

max .i

w w
w w i

N

−
= −              (3) 

usually wi ∈ [0.1, 0.9]. Two other weight factors on the 

individual variation (pbest,i-1 - ppresent,i-1) and the global 

variation (gbest,i-1 - ppresent,i-1) still change randomly, just as that 

in the BPSO. 

In literature [11], a constriction factor α was imposed on 

the velocity term in the position-updating model, i.e. 

present , present , 1 .i i ip p vα−= +            (4) 

As a result, the search velocity vi is constricted to a new 

bound ±αvmax by the factor α. But, like literature [2], no 

adequate attention is paid to either the individual variation or 

the global variation during velocity-updating, which may be 

unadvisable to improve a swarm optimizer. 

3. Constructing a Controllable Particle 

Swarm Optimizer 

3.1. Controllable Velocity-Updating Modes and 

Velocity-Changing Tracks 

Based on the above analysis, we proposed an extended 

velocity-updating model as 

( ) ( )1 1 best , 1 present , 1 2 best , 1 present , 1 .i i i i i i i i iv w v c p p c g pα β− − − − −= + − + −  (5) 

where wi, αi and βi are weight factors on search velocity vi, 

on the individual variation (pbest,i-1 - ppresent,i-1) and on the 

global variation (gbest,i-1 - ppresent,i-1) respectively. 

Definition 1. If the following formula (6) is satisfied, the 

velocity-updating model (5) is defined as the completely 

random mode (CRM). 

1, rand, rand.
i i i

w α β= = =            (6) 

Definition 2. If the following formula (7) is satisfied, the 

velocity-updating model (5) is defined as the partial random 

mode (PRM). 

( ) , rand, rand.i i iw f i α β= = =        (7) 

where f(i) is velocity-changing track satisfying f(i) ∈ [wmin, 

wmax]. As a matter of fact, the PRM is the same as the one 

proposed by Shi and Eberhart [2], when the LD track (LDT) 

in formula (2) is used. 

Definition 3. If the following formula (8) is satisfied, the 

velocity-updating model (5) is defined as the completely 

controllable mode (CCM). 

{ }min max( ), ( ) , .i i iw f i f i w wα β= = = ∈    (8) 

Under the CCM, the velocity-updating process in total 

evolution is controllable. 

Several velocity-changing tracks were designed to 

optimize the search process as follows, where ∆w = wmax - 

wmin. They are completely random track (CRT), limited 

random track (LRT), gaussian radial basis track (GRBT), 

power exponent track (PET) and square power exponent 

track (SPET), respectively. 

CRT: ( ) rand | ,if i =              (9) 

minLRT: ( ) rand | ,if i w w= ∆ ⋅ +        (10) 

( )2 2
1 2
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GRBT: ( ) e ,

i

f i w w
σ − −  = ∆ ⋅ +

      (11) 

1

min
PET: ( ) ,

i
f i w wξ −= ∆ +         (12) 

( )22
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1
SPET: ( ) .

w N i
f i w

N

ηη

η

 ∆ ⋅ − −
 = +    (13) 

where σ2
, ξ and η are all spread parameters of the response 
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f(i) to the i, and ξ > 1. Like the preceding LDT, three later 

tracks are strictly monotonically decreasing as the i 

increasing. 

Theoretically, the bound f(i) ∈ [wmin, wmax] can be easily 

satisfied by adjusting the spread parameter σ2
, ξ or η in the 

f(i), when the N is known. In figure 1, typical illustrations of 

these proposed tracks were depicted. Here x-coordinate is the 

number of evolution i, and y-coordinate the velocity weight 

wi in the ith evolution which was limited between wmin =0.2 

and wmax =0.8. The total amount of evolution was selected as 

N =500. 

 

Figure 1. Illustrations of several typical tracks for velocity-changing. 

The sub-figure 1 (a) was two-dimensional distribution of 

the CRT, in which the weight wi randomly changed within [0 

1]. The LRT was shown in the sub-figure 1 (b) where the wi 

also randomly changed, but bounded by [0.2 0.8]. The LDT 

was described in the sub-figure 1 (c). Also the GRBT, the 

PET and the SPET were given in the sub-figure from 1 (d) to 

1 (f) respectively, using such parameters setting as σ2
 =600, ξ 

=1.03 and n =4. Accordingly, their outputs are [0.8 0.2+∆2], 

[0.8 0.2+∆2] and [0.8 0.2504] respectively, where both ∆1 and 

∆2 are very small positive number. In figure 1, every 

deterministic track has different slope, especially in the first 

fifty evolutions. Moreover, steep gradient feature can be seen 

from both the GRBT and the PET (see the framed part by 

dashed line), below we will see the slope coefficient of a 

track is very important in a controllable optimizer. 

3.2. Performance Evaluation on a Swarm Optimizer 

The functions Pi and Qi are used to evaluate on-line and 

off-line performances of a swarm optimizer, where Fi is 

fitness of the ith particle at the jth evolution, and i = 1, 2, …, 

N, j = 1, 2, …, M. M is size of a population, N is total amount 

of evolution. 

{ }

10

1

10 2

1
log ,

log Best , , , .

M

i j

j i

i i M

P F
M

Q F F F

=

  
=  

 
 =    

∑

⋯

        (14) 

It goes without saying that whether or not a particle has the 

best-fitness depends on target of an optimization problem, i.e. 

minimizing or maximizing a given function. 

4. An Optimization Example 

The optimization problem is formulated as 

( )
( ) ( )2 2

2 2

,
min100 2 , 2 , 2.

x y
x y x y x y− − − − ≤ ≤   (15) 

Intuitively, its globally-optimal solution is x = y = 1, and its 

extremum is zero. 

Firstly, the PSO system was configured as follows. The 

total amount of evolution N is 500, and the wmin and wmax are 
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0.2 and 0.8 respectively. Size of population is designedly 

selected as 30 for testing convergence performance of an 

optimizer under small-population condition. The best history 

solution and the best-fitness are both initialized with infinite, 

and the globally best solution gbest with [0 0]. Individual and 

global steering coefficients are both selected as 2. The 

maximum velocity is 0.3.  

Table 1. Performance of several typical swarm optimizers on the illustrated example. 

Optimizers 
Test No. 

Convergence Precision Computation Expense 
1 2 3 4 5 6 7 8 9 10 

CRM (BPSO) F F F F F F F F F F 0/10 274 

PCM-LRT S F F S S S F F S S 6/10 365 

CCM-LRT S S F S F S S S F S 7/10 132 

PCM-LDT S S S F F S S S F F 6/10 336 

CCM-LDT S S S F S F S F S S 7/10 235 

PCM-GRBT S S S S F F F S S S 7/10 124 

CCM-GRBT S F S S S S S F S S 8/10 86 

PCM-PET S S S S S S S F F S 8/10 127 

CCM-PET S S F S S F S S S S 8/10 82 

PCM-SPET S S S F S S S F S S 8/10 >500 

CCM-SPET S S S F S S F S F S 7/10 376 

 

Ten tests were randomly made upon several combinations 

of velocity-updating modes and velocity-changing tracks. 

Convergence precision and computation expense of these 

optimizers were listed in table 1. The letter ‘S’ stands for 

successful convergence, and the letter ‘F’ for failed one. 

Especially, the symbol ‘S’ implies one almost successful 

convergence. That is, it will be successful if the amount of 

evolution N is enough big. Furthermore, on-line and off-line 

performances of several typical swarm optimizers were given 

in figure 2. In figure 2, two x-coordinates are both the 

studying number i. And y-coordinates are the on-line 

performance P-online and the off-line performance Q-offline 

respectively. 

 

Figure 2. On-Line and off-line performances of several typical optimizers. 

5. Results and Discussion 

Under small-population condition (only thirty individuals), 

the globally-optimal solution was never captured by the 

BPSO (CRM) in ten tests, and its averaged computation 

expense is 274 iterations, seen from table 1. As expected, 

almost all CCM based optimizers except the CCM-SPET 

were superior to the BPSO, on both convergence precision 
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and computation efficiency. It was also shown that the 

modified PSO by Shi and Eberhart [2] (i.e. the PCM-LDT 

combination) consumed more computation than the BPSO 

(from 274 to 336). After using the CCM for 

velocity-updating, computation cost was considerably 

reduced from 336 to 235 iterations, and convergence 

precision was also improved slightly (from 6/10 to 7/10). 

Although only ten tests are very inadequate for quantitatively 

evaluating these optimizers, the results can verify their 

effectiveness and better overall performance qualitatively. 

The deleterious effects of randomness in the BPSO were 

indeed controlled to some extent by introducing controllable 

velocity-updating modes. 

It could be also seen from figure 2 that, under keeping 

good optimization precision, the CCM based swarm 

optimizers, for example CCM-GRBT (see the black 

asterisk-solid line) and CCM-PET (see the red circle-solid 

line), converged faster than the BPSO (see the blue solid line) 

and PCM-LDT (see the blue dashed line), and had higher 

computation efficiency. 

An interesting phenomenon is worth noticing in 

experiment that particles always converge to two typical 

classes after a successful evolution by the CCM based 

optimizer, i.e. the winners and the losers, see figure 3. In 

figure 3, all the winning particles were unseen because they 

has converged to the global optimun (see the red point), but 

the losers are abandoned and gathered into certain region (see 

the enclosed part by dashed line). Below, we will explain this 

phenomenon in detail. 

We have proved that the weight factor w, the search velocity 

v and the particle position y, in the CCM based optimizer, 

change synchronously and proportionally. Before an evolution 

starts, every individual in a population is initialized with 

random position within the solution space, either far from or 

near to the global optimum. During the evolution, every 

particle will continuously slow down because certain 

monotonically decreasing (sometimes steeply gradient, for 

example the GRB or the PE) track for velocity-updating is 

used. If a particle is too far from the global optimum initially, 

it will lose in a competitive evolution eventually. Contrarily, it 

will win. As a result, particles will present itself a 

two-clustering distribution after the total evolution ends. Such 

space diversity phenomenon usually arises in the early 

evolution stage, under the combinational effect of the CCM 

and some velocity-changing tracks with monotonic decrease 

(sometimes steep gradient, for example the GRBT and the 

PET) feature. Consequently, an interesting but possibly 

important question can be put forward here. That is, how to 

deal with those particles doomed to fail in a competitive 

evolution? Some possible solutions could be suggested as 

follows: (a) Paying no attention to them. Such solution has 

no any help to further improving the CCM based optimizer; 

(b) Stopping updating them timely during the period of 

evolution, thus saving computation cost. But what time 

(when) is appropriate to do so? An evaluation criterion for it 

is indispensable; (c) Using them as a secondary detector to 

search possibly better solution(s) in unexplored regions of the 

solution space, by adaptively changing their search velocity. 

Obviously, a lot of tasks must be done for improvement of 

the PSO algorithm. 

 

Figure 3. Two-Clustering distribution in the CCM-PET optimizer with 400 individuals. 

6. Conclusion 

In the BPSO, the weight factors upon the individual 

variation and the global variation change randomly during 

total evolution. Such deleterious randomness may lead to 

slow convergence at the late evolution stage and particles 

fluctuation around the globally-best solution. It was found 

that performance of the swarm optimizer could be improved 

remarkably, by using some controllable velocity-updating 

modes, especially the CCM for velocity-updating. The 

optimization result indicated that after using the 

combinations of the CCM and some velocity-changing tracks 

(for example GRBT and PET), the modified optimizer 

features relatively high precision and faster convergence. The 
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reason may be that the CCM enables synchronous and 

proportional control imposed on the search velocity, the 

individual variation and the global variation in the 

velocity-updating model, which is beneficial to 

location-probing of the globally-optimal solution in total 

solution space. 

Steep gradient features embedded in the forepart of the 

GRBT and the PET may also contribute to faster 

convergence at the early evolution stage. Just as that pointed 

by Marini and Walczak, a swarm of particles may flow 

through the parameter space defining trajectories which are 

driven by their own and neighbors' best performances [12]. 

Intrinsic functional mechanisms of velocity-updating mode 

on convergence performance of searching particle are thus to 

be studied in depth. Undoubtedly, further research on these 

problems will be made in future. 
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