Hermite-Hadamard Type Integral Inequalities for Log-\(\eta\)-Convex Functions

Mohsen Rostamian Delavar\(^1\), Farhad Sajadian\(^2\)

\(^1\)Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran
\(^2\)Department of Mathematics, Semnan University, Semnan, Iran

Email address: m.rostamian@ub.ac.ir (M. R. Delavar), fsajadian@yahoo.com (F. Sajadian)

*Corresponding author

To cite this article:

Received: September 9, 2016; Accepted: October 17, 2016; Published: November 9, 2016

Abstract: In this paper by using the concept of log-\(\eta\)-convexity of functions some interesting inequalities are investigated. In fact new Hermite-Hadamard type integral inequalities involving log-\(\eta\)-convex function are established. The obtained results have as particular cases those previously obtained for log-convex.

Keywords: Log-\(\eta\)-Convex Functions, Integral Inequalities, Hermite-Hadamard Type Inequalities

1. Introduction and Preliminaries

The elegance in shape and interesting properties of convex functions make it attractive to study this class of function in mathematical analysis specially in applied mathematical analysis. In the last 60 years many efforts have gone on generalization of notion of convexity. In our opinion the following classification in generalization of convex functions holds:

(1) Works that change the form of defining convex functions to a generalized form such as quasi-convex [5], pseudo-convex [16], strongly convex [19], logarithmically convex [18], approximately convex [11], delta-convex[20], h-convex [22], midconvex functions [13], etc.

(2) Works that extend the domain set of convex functions such as E-convex functions [23], \(\alpha\)-convex functions, all works on convex functions from \(\mathbb{R}\) to \(\mathbb{R}\) [3], invex functions [10], etc.

(3) Works that extend the range set of convex functions such as works on functions with range in vector spaces [12], all kind of multivalued convex functions [2, 14], etc.

On the other hand logarithmically convex (log-convex) functions are interesting class of functions to study in many fields of mathematics. They have been found to play an important role in the theory of special functions and mathematical statistics. To see recent works about log-convex functions see [4, 17, 18]).

Motivated by above works, we use the concept of log-\(\eta\)-convex function to establish some new Hermite-Hadamard type integral inequalities involving log-\(\eta\)-convex function. In fact obtained results have as particular cases those previously obtained for log-convex. We start with two definitions and one example.

Let \(f\) be an interval in real line \(\mathbb{R}\). Consider \(\eta: A \times A \rightarrow B\) for appropriate \(A, B \subseteq \mathbb{R}\).

Definition 1. [4] A function \(f: I \rightarrow \mathbb{R}\) is called convex with respect to \(\eta\) (briefly \(\eta\)-convex), if

\[
\eta(tx + (1-t)y) \leq t\eta(f(x), f(y)),
\]

for all \(x, y \in I\) and \(t \in [0,1]\).

In fact above definition geometrically says that if a function is \(\eta\)-convex on \(I\), then its graph between any \(x, y \in I\) is on or under the path starting from \((y, f(y))\) and ending at \((x, f(y) + \eta(f(x), f(y)))\). If \(f(x)\) should be the end point of the path for every \(x, y \in I\), then we have \(\eta(x, y) = x - y\) and the function reduces to a convex one.

Definition 2. Consider \(f: I \rightarrow (0, +\infty)\) and \(\eta: \ln f(I) \times \ln f(I) \rightarrow \mathbb{R}\). If

\[
f(tx + (1-t)y) \leq f(y) \exp(t\eta(\ln f(x), \ln f(y))),
\]

for every \(x, y \in I\) and \(t \in [0,1]\), then \(f\) is called log-\(\eta\)-convex function.

In the above definition if we set \(\eta(x, y) = x - y\), then we recapture the classic definition of a log-convex function. It is clear that \(f: I \rightarrow (0, +\infty)\) is log-\(\eta\)-convex iff \((\ln f)\) is \(\eta\)-
convex and when \(f \) is \(\eta \)-convex then \((\exp f) \) is \(\log\-\eta \)-convex.

The following are two simple examples of \(\log\-\eta \)-convex functions.

Example 1.

a. Consider a function \(f: \mathbb{R} \to \mathbb{R} \) defined by
\[
f(x) = \begin{cases}
e^{-x}, & x \geq 0; \\ e^x, & x < 0.
\end{cases}
\]
and define a bifunction \(\eta \) as \(\eta(x, y) = -x - y \), for all \(x, y \in \mathbb{R} \). It is not hard to check that \(f \) is a \(\log\-\eta \)-convex function.

b. Define the function \(f: \mathbb{R}^+ = [0, +\infty) \to \mathbb{R}^+ \) by
\[
f(x) = \begin{cases} e^x, & 0 \leq x \leq 1; \\ e, & x > 1.
\end{cases}
\]
and define the bifunction \(\eta: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \) by
\[
\eta(x, y) = \begin{cases} x + y, & x \leq y; \\ 2(x + y), & x > y.
\end{cases}
\]
Then \(f \) is \(\log\-\eta \)-convex.

The following result is of importance [3]:

Theorem 1. Suppose that \(f: I \to \mathbb{R} \) is a \(\eta \)-convex function and \(\eta \) is bounded from above on \(f(I) \times f(I) \). Then \(f \) satisfies a Lipschitz condition on any closed interval \([a, b] \) contained in the interior \(I^* \) of \(I \). Hence, \(f \) is absolutely continuous on \([a, b] \) and continuous on \(I \).

Note. As a consequence of Theorem 1, if \(f: [a, b] \to \mathbb{R} \) is a \(\log\-\eta \)-convex function where \(\eta \) is bounded from above on \(f([a, b]) \times f([a, b]) \), then \(\ln f \) is integrable and \(\exp (\ln f) \) is integrable. For other results see [2, 4].

Some Hermite-Hadamard type inequalities related to \(\log\-\eta \)-convex functions are proved in [3, 4, 7]. Some \(\log\-\eta \)-convex version of this type inequalities are investigated in the following.

\[
\begin{align*}
f\left(\frac{a + b}{2}\right) - \frac{M_{\eta}}{2} & \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \\
\frac{1}{2} [f(a) + f(b)] + \frac{1}{4} \eta(f(a), f(b)) + \eta(f(b), f(a)) & \leq \\
\frac{1}{2} [f(a) + f(b)] + \frac{M_{\eta}}{2}
\end{align*}
\]
providing that \(f: [a, b] \to \mathbb{R} \) is a \(\eta \)-convex function, \(\eta \) is bounded from above on \(\ln f([a, b]) \times \ln f([a, b]) \) and \(M_{\eta} \) is upper bound of \(\eta \).

Now if \(f: [a, b] \to (0, +\infty) \) is \(\log\-\eta \)-convex, since \(\ln f \) is \(\eta \)-convex we have
\[
\begin{align*}
\ln f\left(\frac{a + b}{2}\right) - \frac{M_{\eta}}{2} & \leq \frac{1}{b-a} \int_a^b \ln f(x)dx \leq \\
\frac{1}{2} [\ln f(a) + \ln f(b)] + \frac{1}{4} \eta(\ln f(a), \ln f(b)) + \eta(\ln f(b), \ln f(a)) & \leq \\
\frac{1}{2} [\ln f(a) + \ln f(b)] + \frac{M_{\eta}}{2}
\end{align*}
\]
Consequently
\[
\begin{align*}
\exp (\ln f\left(\frac{a + b}{2}\right) - \frac{M_{\eta}}{2}) & \leq \exp \left(\frac{1}{b-a} \int_a^b \ln f(x)dx \right) \leq \\
\exp \left(\frac{1}{2} [\ln f(a) + \ln f(b)] + \frac{1}{4} \eta(\ln f(a), \ln f(b)) + \eta(\ln f(b), \ln f(a)) \right) & \leq \\
\exp \left(\frac{1}{2} [\ln f(a) + \ln f(b)] + \frac{M_{\eta}}{2} \right).
\end{align*}
\]

Also if we consider
(a) (Arithmetic mean) \(A(a, b) = \frac{a+b}{2} \), for any \(a, b \in \mathbb{R}, \)
(b) (Geometric mean) \(G(a, b) = \sqrt{ab} \), for any \(a, b \in \mathbb{R}^+ \), then we have
\[
f(A(a, b)) \exp \left(-\frac{M_{\eta}}{2} \right) \leq \exp \left(\frac{1}{b-a} \int_a^b \ln f(x)dx \right) \leq \
\exp \left(\frac{1}{2} [\ln f(a) + \ln f(b)] + \frac{M_{\eta}}{2} \right).
\]

Also if \(f_1 \) and \(f_2 \) are positive increasing functions on \([0, 1] \), then
\[
\int_0^1 f_1(x)dx \int_0^1 f_2(x)dx \leq \int_0^1 f_1(x) f_2(x)dx.
\]

Also if \(f_1 \) and \(f_2 \) are positive decreasing functions on \([0, 1] \) and \(K \) is an upper bound for \(f_1 \) and \(f_2 \), then \(K - f_1 \) and \(K - f_2 \) are positive increasing functions and we have
\[
\int_0^1 (K - f_1(x))dx \int_0^1 (K - f_2(x))dx \\
\leq \int_0^1 (K - f_1(x))(K - f_2(x))dx,
\]
which gives again
\[
\int_0^1 f_1(x)dx \int_0^1 f_2(x)dx \leq \int_0^1 f_1(x) f_2(x)dx.
\]

2. Main Results

In this section by using \(\log\-\eta \)-convexity property of a function some inequalities which generalize those previously obtained for log-convex functions are given.
Theorem 3. Let \(f: I \to (0, +\infty) \) be a log-\(\eta \)-convex function with \(\eta \) bounded from above on \(\ln f([a, b]) \times \ln f([a, b]) \) and \(M_\eta \) be the upper bound of the function \(\eta \).

\[
A((f(a))^2 \frac{1}{2\eta(\ln f(b), \ln f(a))}, (f(b))^2 \frac{1}{2\eta(\ln f(a), \ln f(b))}) \exp (2M_\eta - 1)
\]

Proof. For any \(x, y \in I \) and \(t \in [0, 1] \),

\[
\begin{align*}
(f(tx + (1 - t)y) &\leq f(x) \exp (t\eta(\ln f(x), \ln f(y))), \\
(f(tx + (1 - t)y) &\leq f(x) \exp ((1 - t)\eta(\ln f(y), \ln f(x))), \\
\end{align*}
\]

and

\[
\begin{align*}
(f(yx + (1 - t)x) &\leq f(x) \exp (t\eta(\ln f(y), \ln f(x))), \\
(f(yx + (1 - t)x) &\leq f(x) \exp ((1 - t)\eta(\ln f(x), \ln f(y))).
\end{align*}
\]

Then for \(t = 1/2 \)

\[
f\left(\frac{x + y}{2}\right) \leq f(x) \exp \frac{1}{2}\eta(\ln f(x), \ln f(y)),
\]

and

\[
f\left(\frac{x + y}{2}\right) \leq f(x) \exp \frac{1}{2}\eta(\ln f(y), \ln f(x)).
\]

So

\[
f\left(\frac{x + b}{2}\right) \exp (-\frac{M_\eta}{2}) \leq G(f(ta + (1 - t)b), f((1 - t)a + tb)).
\]

Now the left side of (4) is a consequence of (5) with integration over \(t \in [0, 1] \).

For the right side of (4), using the elementary inequality

\[
G(x, y) \leq K(x, y) := \sqrt{x^2 + y^2} \quad (x, y \geq 0)
\]

and relations

\[
\begin{align*}
(f(tx + (1 - t)b) &\leq f(b) \exp \{t\eta(\ln f(a), \ln f(b))\}, \\
(f((1 - t)a + tb) &\leq f(b) \exp \{(1 - t)\eta(\ln f(a), \ln f(b))\},
\end{align*}
\]

we get

\[
\begin{align*}
\frac{1}{b - a} \int_a^b f(x) &\left(f(a + b - x)dx
\right) \\
= \int_0^1 f(\text{ta} + (1 - t)b) f((1 - t)a + tb) dt \\
1/2 \int_0^1 \{f(\text{ta} + (1 - t)b)\} dt + \int_0^1 \{f((1 - t)a + tb)\} dt \leq \\
\frac{1}{2} \int_0^1 \{f(b)\} \exp (\{t\eta(\ln f(a), \ln f(b))\}) dt \\
+ \frac{1}{2} \int_0^1 (f(b)) \exp ((1 - t)\eta(\ln f(a), \ln f(b))) dt =
\frac{1}{2} \int_0^1 \{f(b)\} \exp (2t\eta(\ln f(a), \ln f(b))) dt \\
+ \frac{1}{2} \int_0^1 (f(b)) \exp (2(1 - t)\eta(\ln f(a), \ln f(b))) dt =
\end{align*}
\]

with the same argument we can obtain that

\[
\min \{1, (f(b)\} \frac{1}{2\eta(\ln f(a), \ln f(b))} (\exp (2M_\eta) - 1) \leq (\text{f(a)})^2 \frac{1}{2\eta(\ln f(b), \ln f(a))} (\exp (2M_\eta) - 1) \leq
\]

where for the last inequality we used the property that \(\min \{c, d\} \leq \frac{c + d}{2} \).

When a log-\(\eta \)-convex function is positive and increasing, we can use Theorem 2 to obtain the following inequalities as well.

Theorem 4. Let \(f: I \to (0, +\infty) \) be an increasing log-\(\eta \)-
convex function with \(\eta \) bounded from above on \(\ln f (b) \times \ln f (l) \). Also consider \(a, b \in I \quad (a < b) \), \(\eta (\ln f (b), \ln f (a)) > 0 \) and \(M_\eta \neq 0 \). Then

\[
\frac{8f (b) - a}{M_\eta (b - a)} (\exp (\eta (\ln f (b), \ln f (a))) - 1) \int_a^b f (x) dx \leq \frac{1}{b - a} \int_a^b f (x) dx + \frac{\exp (4 M_\eta) - 1}{4 \exp (\eta (\ln f (b), \ln f (a)))^2} f^4 (a) + 8.
\]

Proof. For any \(t \in [0, 1] \) we have

\[
f (tb + (1 - t)a) \leq f (a) \exp (t \eta (\ln f (b), \ln f (a)))
\]

and for every \(x, y \in \mathbb{R} \) we have [6],

\[
8xy \leq x^4 + y^4 + 8.
\]

So we can write

\[
8f (tb + (1 - t)a) f (a) \exp (t \eta (\ln f (b), \ln f (a))) \leq f^4 (tb + (1 - t)a) + f^4 (a) \exp (4t \eta (\ln f (b), \ln f (a))) + 8
\]

Then

\[
\int_0^1 8f (tb + (1 - t)a) f (a) \exp (t \eta (\ln f (b), \ln f (a))) dt \leq \int_0^1 f^4 (tb + (1 - t)a) + f^4 (a) \exp (4t \eta (\ln f (b), \ln f (a))) + 8.
\]

Also

\[
\int_0^1 f (tb + (1 - t)a) dt \int_0^1 f (a) \exp (t \eta (\ln f (b), \ln f (a))) dt \leq \int_0^1 f (tb + (1 - t)a) f (a) \exp (t \eta (\ln f (b), \ln f (a))) dt.
\]

Therefore we have

\[
8 \int_0^1 f (tb + (1 - t)a) \int_0^1 f (a) \exp (t \eta (\ln f (b), \ln f (a))) dt \leq \int_0^1 f^4 (tb + (1 - t)a) + f^4 (a) \exp (4t \eta (\ln f (b), \ln f (a))) + 8.
\]

On the other hand

\[
\int_0^1 f (tb + (1 - t)a) dt = \frac{1}{b - a} \int_a^b f (x) dx
\]

\[
\int_0^1 f (a) \exp (t \eta (\ln f (b), \ln f (a))) dt = \frac{\exp (\eta (\ln f (b), \ln f (a))) - 1}{\eta (\ln f (b), \ln f (a))} \left(\exp (\eta (\ln f (b), \ln f (a))) - 1 \right)
\]

\[
\int_0^1 f^4 (a) \exp (4t \eta (\ln f (b), \ln f (a))) dt = \frac{\exp (4 \eta (\ln f (b), \ln f (a))) - 1}{4 \exp (\eta (\ln f (b), \ln f (a)))^2} f^4 (a) + 8.
\]

Hence

\[
\frac{8f (a)}{\eta (\ln f (b), \ln f (a)) (b - a)} \left(\exp (\eta (\ln f (b), \ln f (a))) - 1 \right) \int_a^b f (x) dx \leq \frac{1}{b - a} \int_a^b f (x) dx + \frac{\exp (4 M_\eta) - 1}{4 \exp (\eta (\ln f (b), \ln f (a)))^2} f^4 (a) + 8.
\]

which gives

\[
\frac{8f (a)}{M_\eta (b - a)} (\exp (\eta (\ln f (b), \ln f (a))) - 1) \int_a^b f (x) dx \leq \frac{1}{b - a} \int_a^b f^4 (x) dx + \frac{\exp (4 M_\eta) - 1}{4 \exp (\eta (\ln f (b), \ln f (a)))^2} f^4 (a) + 8.
\]

The following result is obtained for the multiplication of two positive increasing log-\(\eta \)-convex functions under some special conditions.

Theorem 5. Let \(f, g : I \to (0, +\infty) \) be increasing log-\(\eta \)-convex functions with \(\eta \) bounded from above on \(\ln f (b) \times \ln f (l) \). Also consider \(a, b \in I \) with \(a < b \), \(\eta (\ln f (b), \ln f (b)) < 0 \), \(\eta (\ln g (a), \ln g (b)) < 0 \) and \(M_\eta \neq 0 \). Then the following inequality holds:

\[
\frac{\exp (M) - 1}{M_\eta (b - a)} f (b) g (x) dx + g (b) \int_a^b f (x) dx \leq \frac{f (b) g (b)}{P} [\exp (P) - 1] + \frac{1}{b - a} \int_a^b f (x) g (x) dx,
\]

where

\[
M = \min \{ \eta (\ln f (a), \ln f (b)), \eta (\ln g (a), \ln g (b)) \} \quad \text{and} \quad P = \eta (\ln f (a), \ln f (b)) + \eta (\ln g (a), \ln g (b)).
\]

Proof. Since \(f, g \) are log-\(\eta \)-convex functions, we have

\[
f (ta + (1 - t)b) \leq f (b) \exp (t \eta (\ln f (a), \ln f (b))) \quad \text{and} \quad g (ta + (1 - t)b) \leq g (b) \exp (t \eta (\ln g (a), \ln g (b)))
\]

for all \(t \in [0, 1] \). So
Therefor one can write:
\[
\begin{align*}
\{f(ta + (1 - t)b)|g(b)\exp (\theta ln (g(a), ln g(b)))\} + (7)
\{g(ta + (1 - t)b)|f(b)\exp (\theta ln (f(a), ln f(b)))\} \leq
\{f(b)g(b)\exp (\theta ln (f(a), ln f(b)))\} + f(ta + (1 - t)b)g(ta + (1 - t)b).
\end{align*}
\]
Integration from (7) over \([0, 1]\) gives
\[
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (g(a), ln g(b)))dt + \int_{0}^{1} g(ta + (1 - t)b)f(b)\exp (\theta ln (f(a), ln f(b)))dt \geq
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (f(a), ln f(b)))dt + \int_{0}^{1} f(ta + (1 - t)b)g(ta + (1 - t)b)dt + \int_{0}^{1} (f(b)g(b)\exp (\theta P) + f(ta + (1 - t)b)g(ta + (1 - t)b)dt.
\]
On the other hand
\[
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (g(a), ln g(b)))dt + \int_{0}^{1} g(ta + (1 - t)b)f(b)\exp (\theta ln (f(a), ln f(b)))dt \geq
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (f(a), ln f(b)))dt + \int_{0}^{1} g(ta + (1 - t)b)g(ta + (1 - t)b)dt + \int_{0}^{1} (f(b)g(b)\exp (\theta P) + f(ta + (1 - t)b)g(ta + (1 - t)b)dt.
\]
Using an elementary inequality between real numbers leads to an inequality related to square of a positive increasing log-\(\eta\)-convex function.

Theorem 7. Let \(f : I \rightarrow (0, +\infty)\) be an increasing log-\(\eta\)-convex function with \(\eta\) bounded from above on \([0, 1]\) and \(f(f)\). Also consider \(a, b \in I\) with \(a < b\) and \(\eta(ln f(b), ln f(a)) > 0\). Then the following inequality holds:
\[
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (g(a), ln g(b)))dt + \int_{0}^{1} g(ta + (1 - t)b)f(b)\exp (\theta ln (f(a), ln f(b)))dt \geq
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (f(a), ln f(b)))dt + \int_{0}^{1} g(ta + (1 - t)b)g(ta + (1 - t)b)dt + \int_{0}^{1} (f(b)g(b)\exp (\theta P) + f(ta + (1 - t)b)g(ta + (1 - t)b)dt.
\]
Proof. Change the role of \(a\) and \(b\) in proof of Theorem 5. Using an elementary inequality between real numbers leads to an inequality related to square of a positive increasing log-\(\eta\)-convex function.

Theorem 7. Let \(f : I \rightarrow (0, +\infty)\) be an increasing log-\(\eta\)-convex function with \(\eta\) bounded from above on \([0, 1]\) and \(f(f)\). Also consider \(a, b \in I\) with \(a < b\) and \(\eta(ln f(b), ln f(a)) > 0\). Then the following inequality holds:
\[
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (g(a), ln g(b)))dt + \int_{0}^{1} g(ta + (1 - t)b)f(b)\exp (\theta ln (f(a), ln f(b)))dt \geq
\int_{0}^{1} f(ta + (1 - t)b)b(b)\exp (\theta ln (f(a), ln f(b)))dt + \int_{0}^{1} g(ta + (1 - t)b)g(ta + (1 - t)b)dt + \int_{0}^{1} (f(b)g(b)\exp (\theta P) + f(ta + (1 - t)b)g(ta + (1 - t)b)dt.
\]
and the fact that \(\eta \) is bounded from above we have
\[
\begin{align*}
f^2(ta + (1-t)b) + f^2(a) \exp (2(1-t)M_{\eta}) + f^2(b) \exp (2M_{\eta}) \geq & \quad (8) \\
f(ta + (1-t)b)f(b) \exp (tM_{\eta}) + f(ta + (1-t)b)f(a) \exp ((1-t)M_{\eta}) + f(a)f(b) \exp (M_{\eta}).
\end{align*}
\]

Then by integration over \(t \in [0,1] \) in (8),
\[
\begin{align*}
\int_0^1 f^2(ta + (1-t)b)dt + \int_0^1 f^2(a) \exp (2(1-t)M_{\eta})dt + \int_0^1 f^2(b) \exp (2M_{\eta})dt \geq \\
\int_0^1 f(ta + (1-t)b)f(b) \exp (tM_{\eta})dt + \int_0^1 f(ta + (1-t)b)f(a) \exp ((1-t)M_{\eta})dt + \int_0^1 f(a)f(b) \exp (M_{\eta})dt.
\end{align*}
\]

It is easy to check the following from (9):
\[
\begin{align*}
\frac{1}{b-a} \int_a^b f^2(x)dx + f^2(a)\left(1-\frac{\exp (2M_{\eta})}{2M_{\eta}}\right) + f^2(b)\left(\frac{\exp (2M_{\eta})}{2M_{\eta}}\right) \geq & \\
\frac{1}{b-a} \int_a^b f(x)dx \cdot f(b)\int_0^1 \exp (tM_{\eta})dt + \frac{1}{b-a} \int_a^b f(x)dx \cdot f(a)\int_0^1 \exp ((1-t)M_{\eta})dt \quad & (9) \\
+ f(a)\left(1-\frac{\exp (M_{\eta})}{M_{\eta}}\right) \frac{1}{b-a} \int_a^b f(x)dx = \\
\frac{f(b)\left(\exp (M_{\eta}) - 1\right)}{M_{\eta}} \left[f(a) + f(b) \right] \frac{1}{b-a} \int_a^b f(x)dx = \\
\frac{\exp (M_{\eta}) - 1}{M_{\eta}} f(a) + f(b) \int_a^b f(x)dx = \\
\frac{f^2(a)}{b-a} + f^2(b)\left(\frac{\exp (2M_{\eta}) - 1}{2M_{\eta}}\right) + \frac{1}{b-a} \int_a^b f^2(x)dx.
\end{align*}
\]

3. Conclusion

Logarithmically convex (log-convex) functions have some nice results in mathematical inequalities and are of interest in many areas of mathematics. They play a valuable and important role in the theory of special functions and mathematical statistics. On the other hand it should be noticed that in new problems related to convexity, generalized notions about convexity are required to obtain applicable results. One of these generalizations may be notion of log-\(\eta \)-convex functions which results in many interesting integral inequalities such as generalized form of Hermite-Hadamard type integral inequalities.

References

