

Mathematics and Computer Science
2020; 5(1): 31-41

http://www.sciencepublishinggroup.com/j/mcs

doi: 10.11648/j.mcs.20200501.14

ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

A Survey of Generative Adversarial Networks Based on
Encoder-Decoder Model

Yi Yin
1, *

, Lin Ouyang
1
, Zhixiang Wu

1
, Shuifang Yin

2

1School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, P. R. China

2School of Science, Wuhan University of Science and Technology, Wuhan, P. R. China

Email address:

*Corresponding author

To cite this article:
Yi Yin, Lin Ouyang, Zhixiang Wu, Shuifang Yin. A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model.

Mathematics and Computer Science. Vol. 5, No. 1, 2020, pp. 31-41. doi: 10.11648/j.mcs.20200501.14

Received: January 17, 2020; Accepted: February 11, 2020; Published: March 10, 2020

Abstract: The generative model is a very important type of model in the field of artificial intelligence in recent years. Such

models can comprehend the data through the neural network, and then create data according to the probability distribution of the

input data, predict the results according to the data characteristics. The whole processing process is "intelligent". At present, two

typical applications of generative model are Generative Adversarial Networks (GAN) model and Encoder-Decoder model, which

have strong ability to generate image data. In the model of GAN, the generator simulates real data, and the discriminator judges

the authenticity of the samples. Its goal is to train a generator to fit the real data perfectly, so that the discriminator cannot

distinguish. In the Encoding-Decoding model, it can be understood as a process of "Encoding→intermediate vector→Decoding",

It is suitable for processing one kind of data to generate another kind of data with the same probability distribution as the original

data. Since most of the data features are intermingled, they are encoded in a complex and disorderly way. But if these features are

extractable, it shows that these features are interpretable, and it will be easier to use these features for coding. Based on this

situation, some research results have been produced by incorporating the Encoder- Decoder into GAN. This paper systematically

analyzes and summarizes the basic concepts and theories of GAN and Encoder-Decoder, as well as their respective advantages

and disadvantages. On this basis, by combing the related work of the two types of models, the main technical routes of the three

types of GAN based on the Encoder Decoder are summarized, the techniques and theories including variational inference, energy

function and correlation transformation of different distribution data are summarized. Finally, the GAN based on the

Encoder-Decoder is summarized.

Keywords: Generative Adversarial Networks, Encoder-Decoder, Variational Inference, Energy Function

1. Introduction

In recent years, with the remarkable improvement of

computer processing ability and the explosive growth of data

in industries, the rapid development in the field of deep

learning knowledge has been brought forward. Among them,

applying generative model to data processing is the most

promising method at present [1, 2]. The Generative

Adversarial Networks (GAN) model [3] and the Encoder-

Decoder model [4] are two successful applications built on the

generative model.

The GAN model consists of a Generator and a

Discriminator. The Generator aims to learn the real data

distribution as much as possible. The purpose of Generator is

to learn the real data distribution as much as possible. The

purpose of Discriminator is to try to determine whether the

input data comes from real data or from generated noise data.

In order to improve the generation ability of Generator, the

generated data is not discriminated by Discriminator. In order

to improve its discriminating ability, Discriminator can more

accurately judge whether the input data is from real data or

generated noise data. Both need to be continuously optimized

to reach the Nash equilibrium state [3, 5].

GAN can effectively solve the problem of the generation of

interpretable data, especially for high- dimensional data, the

32 Yi Yin et al.: A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model

neural network method used does not limit the dimension of

the data, nor does it limit the data type, which greatly broadens

the scope of sample selection for generating data. At the same

time, the neural network can integrate a variety of loss

functions and increase the degree of freedom of design [6].

GAN transforms a random noise vector from a probability

distribution to a probability distribution of the real data set.

GAN creatively trains two neural networks during the training

process. The training process does not require approximate

inference, which improves the training difficulty and

improves the training efficiency.

Encoder-Decoder is a kind of framework, end-to-end is one

of its most prominent features [7]. Encoder denotes that the

input data is converted into a fixed-length intermediate vector,

and Decoder denotes that the previously generated

intermediate vector is converted into output data. Encoder and

Decoder are two kinds of neural network models, which can

adopt arbitrary neural network algorithm according to the

application requirements.

In Encoder-Decoder framework, the dimension of the

intermediate vector is generally much smaller than that of the

input data. Therefore, Encoder can be used to reduce the

dimension. Then, the noise of the intermediate vector can be

increased and the framework can be trained to restore the

original input data as much as possible [8]. In this way, the

intermediate vector has deep features that the original input

data can extract.

Intuitively, the two models have obvious advantages and

disadvantages compared with each other. GAN does not need

pre-modeling, that is, it does not need a pre-hypothesized data

distribution, and the loss function design is easy. As long as

there is a standard, it can be handed to the discriminator for

confrontation training, and finally the generated data can be

obtained. The final generated data and the original data of

Encoder-Decoder need to be the same distribution. However,

GAN cannot directly compare the difference between the

generated data and the original data, but Encoder- Decoder

can do these.

Based on this, scholars have put forward some methods of

combining GAN with Encoder- Decoder and realized some

applications. This paper revolves around the current

mainstream application of Encoder-Decoder to GAN. Chapter

1 outlines the basic theories and concepts of the two models.

Chapter 2 combs the variable-inference method for applying

Encoder-Decoder to the Generator structure based on

probability theory. Chapter 3 introduces the energy function

method of applying Encoder-Decoder to Discriminator

structure based on energy model. Chapter 4 introduces the

association transformation method that combines GAN and

Encoder-Decoder to different distributed data. Chapter 5

summarizes these methods.

2. Basic Concepts

The theory and model of GAN were proposed by Ian

Goodfellow et al. In GAN, any differentiable function can be

expressed as Generator and Discriminator, which are

represented here by differentiable functions � and � . The

noise data is represented by �, and �(�) represents the data

generated by � as far as possible from the probability

distribution of the real data �. Generator continuously learns

the probability distribution of real data, and the goal is to

optimize the input random noise to fit the probability

distribution of real data, which makes the Discriminator

indistinguishable. Discriminator judges whether the received

data is real data or the data �′ generated by the Generator

through the noise data � , and distinguishes the "true" and

"false" data generated by the generated model. The goal of �

here is to realize the two-class discrimination of data sources.

If the data comes from real data �, it is judged as "true" and

marked as 1, and if it is derived from �(�), it is judged as

"false" and marked as 0. The definition �(�)	is defined to

represent the probability distribution
�(�)	of the input �(�)
in the generated model, �(�) is defined to represent the

probability distribution
��
�(�) of � from real data, and its

optimized loss function is defined as:

�(�, �) = ��~�����(�)�log�(�)�	+	��~��(�)�log	(1 − �(�(�)))� (1)

and:

�∗ = "#$min(max+ �(�, �) (2)

The goal of the Generator is to make its own generated data �(�) consistent with the real data � when it is discriminated

by the Discriminator.

When updating the parameters of the discriminative model,

it hopes ,-$�(�) to be as large as possible from real data. For

the �(�) generated from noise data, the larger the log	(1 −�(�(�))) is, the better the max� needs to be solved. When

updating the parameters of the generative model, it hopes �(�(.)) to be as large as possible. At this time, �(�, �) will

become smaller, that is, min� is required for generating the

model. These two confrontation and optimization processes

make the performance of Generator and Discriminator

improve constantly. The final ideal state is that when

Discriminator's discriminating ability cannot correctly

determine the data source, it can be considered that Generator

has learned the real data distribution. The basic structure of

GAN is shown in Figure 1.

Figure 1. The structure of GAN. The noise data is generated by Generator,

and the Discriminator is used to determine whether the data generated by

Generator or the original real data.

 Mathematics and Computer Science 2020; 5(1): 31-41 33

The idea and structure of Encoder-Decoder was proposed

by Ilya Sutskever et al [9]. Encoder-Decoder can be

understood as the process of "encoding→intermediate vector

→decoding". The input data � of the Encoder-Decoder

structure is encoded by the Encoder to obtain the code vector � , Then the output data �/ is obtained after Decoder

processing. Neural network algorithms are often used here as

the structure of the Encoder and Decoder. The model expects

the input vector � to obtain an intermediate vector � through

one neural network algorithm in the Encoder, which is a

dimensionality reduction process. Then, another neural

network in the decoder is used to Decode, and the dimensional

reconstruction is added to obtain the generated data �/ similar

to the input data. By comparing the two sets of data � and �/,
and minimizing the difference between them, the parameters

of the encoder and decoder are trained. The basic framework

of Encoder-Decoder is shown in Figure 2.

Figure 2. The structure of Encoder-Decoder. Data conversion based on a set

of input sequences to generate another set of output sequence.

Encoder-Decoder is an end-to-end model. It is a process of

continuously improving the similarity ℒ between �/ and � in

training.

12
3
245
(�):	� → ��(�):	� → �/� = 8(9� + :)�/ = 8;(9;< + b;)ℒ = min ∥ � − �/ ∥?

 (3)

Because the Encoder-Decoder model and GAN model are

based on different theories, the data processing methods and

the results will be different.

(1) The generated data in GAN comes from some random

noise points, so it is possible to cause mode collapse. If GAN

wants to generate some specific details, it must traverse the

entire distribution of the input data to determine which part of

the input data determines the details [10]. The Encoder-

Decoder can obtain the same type of features as the input data

through the encoding process of the output data, and then

generate the desired content through specific noise, so that the

generated data and input data have the same probability

distribution [11].

(2) The training of GAN model needs to reach Nash

equilibrium, and the method of gradient descent can guarantee

the realization of Nash equilibrium only under the premise of

convex function, and it is not easy to converge when the input

data is discrete or sparse [12]. Although some GAN methods

have been able to solve these problems, GAN is less trainable

than Encoder-Decoder.

(3) GAN uses an Adversarial Networks, and Encoder-

Decoder optimizes not the likelihood itself, which results in

much less identifiable data generated by Encoder-Decoder

than data generated by GAN [13].

(4) If the discriminator in the GAN is well trained, the

generator can perfectly learn the distribution of the training

samples, that is, GAN is progressively consistent, while

Encoder-Decoder is biased.

Based on this, some GAN models based on Encoder-

Decoder are obtained by combining the advantages of

Encoder-Decoder and GAN.

3. Variational Inference Model

Considering GAN as a Possibility Based Model (PBM) is a

commonly recognized method [13]. Since the essence of

Discriminator is to calculate the conditional probability
(�|A) that � belongs to a certain class A, and the essence of

Generator is to calculate the joint probability
(�A) of � in

the whole distribution. For PBM, Generator is the core part,

because in PBM theory, Generator was designed before

Discriminator, and then the divergence between positive and

negative samples was missing in the calculation of Generator.

Discriminator must learn to calculate this divergence to assist

Generator, this also makes the structure design of the

Generator in PBM relatively more complicated [14].

Therefore, the Encoder-Decoder model can be applied to the

Generator structure based on the PBM theory.

3.1. Variational Self-coding

Assuming that there is a distribution of real random

variables, input data � can be considered as samples

extracted from the whole distribution, but the distribution of

real data is unknown. John Paisley et al. [15] put forward an

idea of approximating the distribution by controllable and

known distribution, assuming that Z obeys some common

distribution, such as normal distribution or uniform

distribution, and then wished to train a model �/ = $(�), and

use the distribution of the model to approximate the

distribution of real data, that is, by transforming the parts to

make the two distributions overlap as much as possible. This

is the idea of Variational Auto Encoder (VAE).

Anders Boesen Lindbo Larsen et al. [16] combined VAE

and GAN to form VAEGAN. Here, VAE includes Encoder and

Decoder, and GAN includes Generator and Discriminator. In

VAE, � is generated by � through Encoder and �/ by �

through Decoder. There are �~Enc(�) = DE(�|�) , �/~Dec(�) =
H(�|�) . The Generator in GAN can be

regarded as the Decoder in VAE. After converting � into �/,
the �/ produced by discriminator is “true” or “false”, and

gives a “score”. Combining VAE and GAN, it can be seen that

the discrimination effect of GAN is better than VAE, but the

training process of VAE is easier than GAN.

Suppose that the input vector � is encoded into an implicit

variable �, and then decoded back to the output vector �/ .
VAE wants to generate �(I) from a prior distribution
H∗(�)
and then generate �(I) from a conditional distribution
H∗(�|�) . However, the real parameter J∗ and the hidden

variable �(I) are unknown, so a general solution is to use the

maximum likelihood estimation to solve the unknown

parameters. However, it is difficult to get J either by solving

34 Yi Yin et al.: A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model

H(�) = K
H(�|�)
H(�)d� or by solving
H(�|�) =
H(�|�)
H(�)
H(�)⁄ , so it needs to be solved by the

variational Bayesian method. DE(�|�) is introduced to approximate the true posterior

distribution
H(�|�) , and the distance from DE(�|�) to
H(�|�) is measured by KL divergence, which is denoted as

�NO�DE(�|�) ∥
H(�)�, then PQRS(T, J; �) = −�NO�DE(�|�) ∥
H(�)� 	+ �V(�|�)�log
H(�|�)�. Assuming that
H(�) is a

known prior Gauss distribution function,
H(�)~W(0, Y) ,

then DE(�|�) = W(.; Z(�, T), 8?(�, T)), then,

	P[\((.;], 8) = �NO�DE(�|�) ∥
H(�)� (4)

= KDE(�|�)log
(�)^. − K DE(�|�)logDE(�|�)^. (5)

= KW(�; Z, 8?)logW(�; 0,1)^. − KW(�; Z, 8?)logW(�; Z, 8?)^. (6)

= _
? (−,-$2a − (Z + 8?) + ,-$2a + (1 + log8?)) (7)

= _
?∑ (1 + logσd? − σd? −]d?)edf_ (8)

For �V(�|�)�log
H(�|�)�, the Monte Carlo method can be used to obtain,

	�V(�|�)�log
H(�|�)� ≈ _
O∑ log
H(�|�(h))Ohf_ (9)

Where �(h) = Z + 8 ∙ j(h), j(h)~W(0, Y).
Finally, the loss function of VAE is,

	ℒQRS = _
?∑ (1 + logσd? − σd? −]d?edf_) + _

O∑ log
H(�|�(h))Ohf_ (10)

The loss function of VAE is,

	ℒk(+,() = log(�l�(�))+	log(1 − �l�(�m<(.))) + 	log	(1 − �l�(�m<(5n<(�)))) (11)

So, the loss function of VAE-GAN is,

ℒ = ℒQRS + ℒoRp (12)

Initially, Generator is similar to the VAE. A vector is

randomly generated, and then the Discriminator determines

the true and false. After that, the Discriminator is fixed, the

gradient descent is used to update the Generator parameters so

that the Discriminator output is as close as possible to 1.

The basic framework of VAEGAN is shown in Figure 3.

3.2. Variational Mutual Information

Figure 3. The structure of VAEGAN. After the input data is processed by

Encoder-Decoder, the similarity between the generated data and the input

data is compared, then the trained Decoder is used as the Generator in the

GAN, and the quality of the generated data is improved by the Discriminator

detection.

From the perspective of feature learning, GAN does not

impose any conditional restrictions on the input random noise,

which means that there is no obvious feature representation of

any dimension of �, so it is impossible to determine what kind

of features can be generated by the noise dimension. Xi Chen

et al. [17] improved the objective function of GAN and

proposed a new GAN model -- InfoGAN, which represents

mutual information. InfoGAN adds an implicit coding < to

the input vector of Generator and uses mutual information to

indicate the degree of correlation between � and <. In order

to express the close relationship between � and < , it is

necessary to maximize the value of mutual information.

Furthermore, the objective function of GAN needs to add

mutual information of � and < as a regularization term. Thus,

based on the loss function of the original GAN, a

regularization constraint is added: Y(<; �(�, <)). Then there,

min(max+ �(�, �) = �(�, �) − λY(<; �(�, <)) (13)

In fact, it is difficult to directly maximize Y(<; �(�, <)).
This involves a posterior probability distribution
(<|�) ,

which is difficult to obtain in practice. At the same time,

because the generator has a high degree of freedom, it is

possible to find an analytical solution during the learning

process, so that
(<|�) =
(�), which causes < to lose its

proper function. Therefore, we need to define an auxiliary

probability distribution D(<|�) to approximate
(<|�) and

obtain the lower bound of
(<|�) . This method is called

variational mutual information maximization.

Y(<; �(�, <))= −r(<|�(�, <)) + r(<) (14)

 Mathematics and Computer Science 2020; 5(1): 31-41 35

= ��~((�,s)��st~�(s|�) log
(<;|�)� + r(<) (15)

= ��~((�,s)��NO(
(∙ |�) ∥ D(∙ |�))uvvvvvvwvvvvvvx
yz

	+ �st~�(s|�) log D(<;|�)� + r(<) (16)

≥ ��~((�,s)��st~�(s|�) log D(<;|�)� + r(<) (17)

= �s~�(s),�~((�,s)�log D(<|�)� + r(<) (18)

≜ P}(�, ~) (19)

When r(<) is maximum, the maximum value of mutual

information is obtained. The objective function is equivalent

to:

min(max+ �(�, �) = �(�, �) − λP}(�, ~) (20)

InfoGAN model uses DCGAN as its network structure [18,

19]. Input < and . to Generator, and input the generated data

and real data randomly to Discriminator for judgment. ~ and

D share the convolution layer. The probability distribution of ~ output C. Here G and ~ can be seen as Encoder-Decoder

structures, and � and � are models in GAN. The basic

framework of InfoGAN is shown in Figure 4.

3.3. Adversary Inference

The ALI (Adversarially Learned Inference) method

proposed by Vincent Dumoulin et al. [20] and the BiGAN

(Bidirectional GAN) method proposed by Jeff Donahue et al.

[21] use an adversarial method to jointly train a generation

network as Encoder and an inference network as Decoder.

Encoder maps � to a data space and encodes it to get .̂ .

Decoder decodes the � inverse map called the latent variable

and get �/. D needs to recognize (�, �̂) and (�/, �), judging

that it is generated by Encoder or Decoder. Here, . =](�) +8(�) ∙ �, �~W(0, Y), D(�|�) = W(Z(�), 8?(�)Y).

Figure 4. The structure of InfoGAN. Add an implicit encoding in addition to

the noise data and maximize their mutual information.

In ALI, Encoder and Decoder work independently, and their

mapping and sampling processes are performed independently.

They generate joint distributions respectively, and then give

them to Discriminator to determine whether they are the same

distribution. The joint distribution of the Encoder is D(�, �) =D(�)D(�|�) , and the joint distribution of the Decoder is
(�, �) =
(�)
(�|�). When D(�, �) and
(�, �) match, all D(�) and
(�) matches and all D(�|�) and
(�|�)
matches can be assumed. Thus, the loss function is:

min(max+ �(�, �) = �V(�)�log	(�(�, ��(�)))]+	��(�)�log	(1 − �(��(�), �))� (21)

= ∬D(�)D(�|�) log(�(�, �)) ^�^� +∬
(�)
(�|�)log	(1 − �(�, �))^�^� (22)

The basic framework of ALI is shown in Figure 5.

Figure 5. The structure of ALI/BiGAN. The input data is mapped by the

Encoder to obtain the latent variable, and the noise data is converted into

generated data by the Generator, and the two sets of data are discriminated by

the Discriminator.

3.4. Adversary Inference

The IntroVAE method proposed by Huaibo Huang et al. [22]

introduces GAN into the VAE, ignores the Discriminator

structure in GAN and the Decoder structure in AutoEncoder,

and achieves a Self-introspective learning. That is, the model

itself can judge the quality of its generated samples and make

improvements to improve the performance of the model.

P�\ = −5V�(�|�),-$
H(�|.) (23)

P[\(= �NO(DE(.|�) ∥
(.)) (24)

Here, P�\ is a loss function.

IntroVAE is implemented by training Encoder to make the

hidden variables of real image close to the prior distribution,

while the hidden variables of fake image far away from the

prior distribution. At the same time, training generator can

make the hidden variables of fake image close to the prior

distribution. That is:

P� = P[\((.) + � ∑ �� − P[\((.�)���f�,� 	+ 	�? ∑ ∥ ��,I − �I ∥�?�If_ (25)

P(= �∑ P[\((5n<(�)) +�f�,� �P�\(�) (26)

36 Yi Yin et al.: A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model

Here, �∙�� = max	(0,∙), � and � are superparametric, and �� is the reconstructed sample.

Unlike GAN and AutoEncoder [23], Encoder and generator

in IntroVAE are adversarial, but they also ensure that the error

between the output image and the real image is as small as

possible. For real data, this method is consistent with the

traditional VAE method and keeps the stability of

AutoEncoder. For fake data, this method of confrontation

improves the quality of the generated images.

4. Energy Function Model

Considering GAN as an energy-based model (EBM) is

another design idea of GAN [24]. It treats the Discriminator as

an energy function with no explicit probability interpretation

and is trained to assign low energy values to regions of high

energy values. The EBM is based on the construction of the

Discriminator, and the Discriminator requires a negative

sample in the calculation process, which is then provided by

the Generator. This shows that the structure design of

Discriminator in EBM is more abundant. Therefore, the

Encoder-Decoder model can be applied to the Discriminator

structure based on EBM theory.

4.1. Energy Function

The EBGAN (Energy-Based GAN) method proposed by

Junbo Zhao et al. [25] applies the concept of energy function

to the Discriminator, and the Discriminator uses the

Encoder-Decoder structure. � is regarded as an energy

function, which gives low energy to real data and high energy

to generated data. Finally, a mean square error including real

and fake data is output through Discriminator. The loss

functions of Generator and Discriminator are:

�+(�, .) = �(�) + �� − �(�(.))�� (27)

=	∥ �m<�5n<(�)� − � ∥ 	+	��−∥ �m<(5n<(�(.))) ∥�� (28)

�((.) =∥ �(�(.)) ∥=∥ �m<(5n<(�(.))) − �(.) ∥ (29)

Where �∙�� = max	(0,∙) means that in �+ , when the

reconstruction error of the fake data is less than a certain value �, �∙�� is positive, otherwise it is 0. Regarding the pattern

collapse problem of GAN, EBGAN uses the Pulling-away

Term method to generate diverse data from Generator:

���(�) = _
�(��_)∑ ∑ � ��t��∥��∥∥��∥�

?
d�II (30)

The idea of EBGAN is that the generated fake data will

generate a vector after Encoder. The cosine similarity between

each two vectors is calculated separately, and then the mean

value is calculated. The closer the two vectors are orthogonal,

the smaller the value of ���(�).
In EBGAN, Generator is based on Oakam's razor principle,

while Discriminator is based on giving higher energy to the

sample. The basic framework of EBGAN is shown in Figure

6.

Figure 6. The structure of EBGAN. If the input data comes from real data, the

data after decoding is basically lossless. If the input data comes from noise,

the decoded data is quite different from the original data.

4.2. Boundary Equilibrium

David Berthelot et al. applied the encoder to the

Discriminator in GAN and proposed BEGAN (Boundary

Equilibrium GAN) [26]. Different from other GAN methods,

most of them start with reconstructing the sample distribution,

BEGAN starts from the perspective of reconstruction error

distribution, it matches the loss between real samples and

generated samples in self-encoder based on Wasserstein

Distance.

The loss function between the input data in Discriminator

passing through Encoder and the output data generated by

Decoder is as follows:

ℒ(�) = |� − �(�)| (31)

This formula is used to measure the difference between the

two distributions. i.e. loss_real distribution formed by real

data and loss_fake distribution formed by Generator's fake

data. Wasserstein Distance is used to measure the distance

between the two distributions, thus improving Discriminator's

ability to distinguish between true and false.

Assuming that the Loss distributions generated by real data

and fake data are represented by]_ and]? respectively. It is

found by experiments that the reconstruction errors of each

input data are independent and identically distributed and

obey normal distribution. Thus, two one-dimensional normal

distributions, loss_real and loss_fake, are denoted as Z_ = W(�_, <_), Z? = W(�?, <?), where �_, �? and <_, <?

are the mean and variance of loss_real and loss_fake,

respectively. Their Wasserstein Distance is defined as:

9(Z_, Z?) = inf�∈ (¡¢,¡£) �(�¢,�£)~��|�_ − �?|� (32)

Here, �_ and �? are random samples subject to Z_ and Z? respectively. Their joint distribution obeys ¤, all possible

forms of ¤ constitute a probability space Γ(Z_, Z?). The joint

distribution of the smallest value in Γ(Z_, Z?) is the target

distribution. Its expected value �(�¢,�£)~��|�_ − �?|�	 is the

distance required. Discriminator hopes that the distance

becomes larger, but the optimal solution of ¤ is unknown. It is

very difficult to solve it directly, and it needs to be

approximated by a variable lower bound. The lower bounds of

 Mathematics and Computer Science 2020; 5(1): 31-41 37

9(Z_, Z?) can be determined by Jensen inequality.

inf	5�|�_ − �?|� ≥ inf |���_ − �?�| = |�_ −�?| (33)

so,

9(Z_, Z?) ≥ |�_ −�?| (34)

For the discriminator, there are two ways to increase the

value of 9(Z_, Z?):
9(Z_, Z?) ≥ �_ −�?, �_ → ∞	& �? → 0 (35)

9(Z_, Z?) ≥ �? −�_, �? → ∞	& �_ → 0 (36)

Intuitively, when the Discriminator is trained well, the error

of real data is expected to be the smallest, that is, �_ → 0.

Therefore, 9(Z_, Z?) ≥ �? −�_ . In this way, the goal of

maximizing Discriminator can be equivalent to minimizing �_ −�? , while the goal of Gnerator is to minimize the

distance between two distributions, which can be achieved by

minimizing �?.

Finally,

ℒ+ = �_ −�? = �(ℒ(�)) − �(ℒ(�(.+))) (37)

	ℒ(= �(ℒ(�(.+))) (38)

When the loss in Generator and Discriminator are

respectively equalized, the Discriminator cannot distinguish

between true and false. At this time, 9(Z_, Z?) → 0, so there

are:

�(ℒ(�)) = �(ℒ(�(.+))) (39)

Since the Generator's generation process is slower than the

Discriminator during the training process, which will lead to

unstable training. Therefore, a coefficient ¨
 is added to ℒ+

to balance the difference between them.

ℒ+ = �(ℒ(�) − ¨
 ∙ �(ℒ(�(.+))) (40)

¨
�_ = ¨
 + ©ª(¤ℒ(�) − ℒ(�(.())) (41)

among of them:

¤ = �(ℒ(((�«)))�(ℒ(�)) (42)

¤ is a hyperparameter, taking 0.001.

5. Association Transformation of

Different Distribution Data

For the problem of inter-association and transformation

style of image datasets with different probability distributions,

the integration of Encoder-Decoder with GAN has made great

progress in recent years. The problem is actually to learn a

mapping function. In the case that the underlying data does not

change the distribution, the style conversion of different image

data sets is performed by finding correspondences such as

similar semantics. And this conversion is unsupervised

learning.

Ming-Yu Liu et al. extended the distribution
(�) to the

joint distribution
(�_, �?) and proposed CoGAN to deal

with domain adaptation problems [27]. CoGAN considered

learning a combination of two domain types to get a joint

distribution with different attributes. CoGAN consists of two

GANs, each for a domain type image. If the two GANs are

directly trained independently to process image adaptation

problems of two different domain types, the generated results

will lead to the inner product
(�_)
(�?) of the two edge

distributions being not equal to their joint distribution
(�_, �?) , which makes the GAN unable to learn a joint

distribution with different attributes. In COGAN, the weights

of two gas in some layers of the generator are shared and

constrained, so that COGAN can learn a joint distribution

when there is no correlation between two domain types.

Because in the deep network of generator, the weight sharing

of high-level semantic information, it can be seen that the

GAN 's Discriminator can decompose the semantic

information of the high-level, and the bottom layer in the

Generator is still the content in different domain types.

Specifically, Cogan is composed of GAN1 and GAN2.

Each GAN generates and distinguishes images of its own

domain type. In training, two Generators need to share a part

of the weight of the upper layer in the deep network. which is:

$_(.) = $_(¬¢)($_(¬¢�_)(⋯$_(?)($_(_)(.)))) (43)

$?(.) = $?(¬£)($?(¬£�_)(⋯$?(?)($?(_)(.)))) (44)

The discriminator needs to share part of the weights in the

lower layer of the deep network. which is:

^_(�_) = ^_(�¢)(^_(�¢�_)(⋯^_(?)(^_(_)(�_)))) (45)

^?(�?) = ^?(�£)(^?(�£�_)(⋯^?(?)(^?(_)(�?)))) (46)

finally:

�(�, �) = ��¢~�(�¢)�log�_(�_)� +	��~�(�)�log(1 − �_(�_(.)))� +	��£~�(�£)�log�?(�?)� +	��~�(�)�log(1 − �?(�?(.)))� (47)

When the weights of all Generators of GAN1 and GAN2 in

CoGAN are shared, Generator1 and Generator2 can be

collectively regarded as an Encoder. The basic framework of

CoGAN is shown in Figure 7.

Compared with the structure of Encoder-Decoder

introduced by COGAN, Guillaume Lample et al. integrated

GAN into Encoder-Decoder and proposed the structure of

Fader Networks [28]. Fader networks combines Encoder and

Discriminator to form a generation discrimination

combination of GAN. After the Encoder generates the data 5�,

the Encoder continuously discriminates whether 5� is related

to the attribute A of the original data through the

Discriminator. Continuously optimizing the process can

achieve the stripping of 5� and A. Finally, when the decoder

generates the new image data, it can add some attributes of A

that meet the needs, thus achieving the purpose of controlling

38 Yi Yin et al.: A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model

Figure 7. The structure of EBGAN. By sharing the weights of the latter layers

of networks in Encoder1 and Encoder2, the structure of the two probability

distributions in feature extraction can be similar. And the weights of the

former layers of networks in Decoder1 and Decoder2 can be shared.

the image to be generated as required.

Thus, the Discriminator discriminates whether �(�) is

related to A and its expression is:

ℒ�I�(J�I�|J��s) = − _
¬∑ log®H��¯(A|�H°±²(�))(�,³)∈+ (48)

J�I� and J��s represent the weights of the Discriminator

and Encoder, Discriminator is to maximize the correlation

between �(�) and A. In addition, the final generated image is

very similar to the original image, then:

ℒ�\(J��s , J��s) = _
¬∑ ∥ ���s(�,³)∈+ (�H°±²(�), A) − � ∥?? (49)

ℒ(J��s, J��s|J�I�) = P�\(J��s, J��s) = −	©\ 	log®H��¯(1 − A|5H°±²(�)) (50)

Here ©\ > 0. ©\ needs to be adjusted precisely. A larger ©\ will limit the amount of information about � contained in �(�), which resulting in image blurring. A smaller ©\ will

limit the discriminator's dependence on A . The basic

framework of Fader Networks is shown in Figure 8.

Figure 8. The structure of Fader Networks. Discriminator judges whether

Encoder produces data from Encoder1 or Encoder2, forcing Encoder1 and

Encoder2 to generate eigenvectors approximating the same probability

distribution to deceive Discriminator.

Jun-Yan Zhu et al. designed CycleGAN to convert images

into styles [29]. That is, there are two differently distributed

image data �_ and �? . CycleGAN can convert the

distribution of samples in �_ space into the distribution of �?

space. Therefore, the goal of CycleGAN is to learn the

mapping from �_ to �?.

There is a generator that can convert the images in the �_

space to the distribution in the �? space, which is set to ��¢ .

For ��¢ , it is necessary to determine whether it is real or not

by Discriminator and set it to ��£ , thus forming a GAN. The

loss function expression is:

	ℒoRp(��¢ , ��£ , µ_, µ?) = ��£~�(¶£)�log�¶£(�?)� + 	��¢~�(¶¢)�log	(1 − �¶£(G(�_)))] (51)

However, such an approach can easily lead to a pattern

collapse problem, that is, G(�_) converts a large number of

images in µ_ space into some small images in µ? space. In

this regard, CycleGAN also learned the mapping from µ? to µ_, namely G_(G?(�?)) ≈ �?, �?(�_(�_)) ≈ �_. This loss is

called the cyclic consistency loss and is defined as:

	ℒ¸¹¸(�¶¢ , �¶£ , µ_, µ?) = ��£~�(¶£)�∥ �_(�?(�?)) − �? ∥_� + 	��¢~�(¶¢)�∥ �?(�_(�_)) − �_ ∥_� (52)

At the same time, we need to introduce a discriminator for �¶£, which is set to �¶¢ . Finally, the loss function consists of three

parts:

ℒ = ℒoRp(�¶¢ , �¶£ , µ_, µ?) 	+ 	ℒoRp(�¶£ , �¶¢ , µ_, µ?) 	+ 	ℒ¸¹¸(�¶¢ , �¶£ , µ_, µ?) (53)

Figure 9. The structure of CycleGAN. Two mirrored GANs, one Generator

generates a fake image, and the other generators need to generate images that

can deceive Discriminator of different probability distributions, the generated

face image and real image have reasonable loss values.

The basic framework of CycleGAN is shown in Figure 9.

When using CycleGAN, it is found that although CycleGAN

can achieve cross domain style transformation, but it is unstable

and needs to be adjusted repeatedly. Amelie Royer et al.

Introduced the application of Encoder-Decoder structure and

combined it with CycleGAN to form XGAN [30].

There are two two encoders, decoder and discriminator in

XGAN, and it has one classifier. The discriminator in XGAN

acts similarly to CycleGAN. XGAN let �_ get 5�¢ through

encoder1, then generate ��£ through decoder2, then output 5�£ with ��£ as the input of encoder2, final calculate the

distance between 5�¢ and 5�£ as loss function.

In XGAN, the loss function of two pairs of self-Encoders is:

 Mathematics and Computer Science 2020; 5(1): 31-41 39

 	ℒº»¸ = ��¢~�(¶¢)|�_ − ^_(m_(�_)| 	+ 	��£~�(¶£)|�? − ^?(m?(�?))| (54)

The classifier in XGAN is used to distinguish the images in

different domains after coding.

If the encoded image is still distinguishable, the encoded

information has not only feature information but also domain

information. If it cannot be distinguished, it means that the

encoded information is feature information common to the

two domains.

ℒ¼½¾¾ = ��¢~�(¶¢)ℓ(1, <(m_(�_))) 	+	��¢~�(¶¢)ℓ(2, <(m?(�?))) (55)

ℓ is a loss function for classification.

Two encoders need to maintain feature consistency when

encoding two fields. The loss of consistency is:

	ℒÀ»Á = ��¢~�(¶¢)|m_(�_) − m?(^?(m_(�_)))| 	+ 	��£~�(¶£)|m?(�?) − m_(^_(m?(�?)))| (56)

The Discriminator loss is:

ℒoRp,�¢⟶�£
= ��¢~�(¶¢)[log�(�_)] + 	��£~�(¶£)[log	(1 − �(^_(m?(�?)))] (57)

	ℒoRp,�£⟶�¢
= ��£~�(¶£)[log�(�?)] +	��¢~�(¶¢)[log	(1 − �(^?(m_(�_)))] (58)

XGAN introduces an optional function which means teacher loss. When there is prior knowledge, this function can be

integrated into XGAN 's model. It is asymmetric.

ℒÃ»½¸Ä = ��¢~�(¶¢) ∥ T(�_) − m_(�_) ∥ (59)

finally,

ℒÆoRp = ℒº»¸ +Ç¼ℒ¼½¾¾ + ÇÀℒÀ»Á +ÇoℒoRp + ÇÃℒÃ»½¸Ä (60)

The basic framework of XGAN is shown in Figure 10.

Figure 10. The structure of XGAN. XGAN maintains feature-to-feature consistency by calculating the similarity of latent through two loops.

Asha Anoosheh et al. proposed ComboGAN [31] to apply

the Encoder-Decoder structure to different distribution

problems of image data. Let �_ get 5�¢ through Encoder1,

then generate ��£ through Decoder2, then output 5�£ as input

of Encoder2, and finally generate ��¢ through Decoder1. The

distance between 5�¢ and ��¢ is calculated as a loss function.

The basic framework of combogan is shown in Figure 11.

Jianlin Su proposed the model of O-GAN (original general

advanced network) considering that the structure of

Discriminator is similar to Encoder [32]. The Discriminator

output is the scalar of classification, the Encoder output is a

vector, so the Discriminator is written as a composite function

�(�) ≜ È(m(�)), where È is the mapping from noise space

to discrimination space. Here, in order to realize the functions

of generator and discriminator, O-GAN adds a Pearson

coefficient as the regularization term:

Figure 11. The structure of ComboGAN. ComboGAN uses cyclic consistency to maintain the similarity between pixel-to-pixel.

È, m = argmin�,� ��~�(�),�~�(�) [log	(È(m(�)) 	+ log	(1 − È(m(�(.)))) − ©Ê(., m(�(.)))] (61)

40 Yi Yin et al.: A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model

� = argmin(��~�(�) [log	(È(m(�(.)))) 	− ©Ê(., m(�(.)))] (62)

Among them,

Ê(., .̂) =
_

�
�(�)×�
�(�̂)
	 ∙ ∑ (

�Ì
If_ .I − avg(.))(.̂I − avg(.̂))/n� (63)

In this way, the discriminator is divided into two parts,

where m is the decoder. For È, avg(m(�)) is directly used in

O-GAN. That is, È(m(�)) = avg(m(�)).

6. Summary

GAN and Encoder-Decoder are both generative models.

Their output is determined by the input. A model can be used

to learn a characteristic representation of the input. And both

models are directly learning from input samples, so it is not

necessary for label information. Specifically, for the

generation model in GAN, it is no longer necessary to need a

rigorously formatted generated data representation like the

traditional model, which directly avoids the computability of

the model due to the complexity of the data, and also avoids

the inability of data input or generation due to the complexity

of the model. However, GAN has the possibility of mode

collapse, and the input data needs to be continuous.

Encoder-Decoder is composed of two multilayer neural

networks. Input data and output data need to express the

same probability distribution with the same number of nodes.

The significance of the model lies in the middle vector layer,

which represents "dimension reduction" and maintains the

feature distribution of input data to the greatest extent. The

data generated by the Encoder-Decoder is lost due to

dimensionality reduction after dimension reduction. Based on

the advantages and disadvantages of the two models, a new

model can be generated by combining them, which can

overcome their shortcomings and produce data information

that can meet the needs better.

References

[1] Sabuncu M R, Yeo B T T, Van Leemput K, et al. A generative
model for image segmentation based on label fusion [J]. IEEE
transactions on medical imaging, 2010, 29 (10): 1714-1729.

[2] Wang C, Chang X, Xin Y, et al. Evolutionary Generative
Adversarial Networks [J]. IEEE Transactions on Evolutionary
Computation, 2019.

[3] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative
adversarial nets [C]. Advances in neural information
processing systems. 2014: 2672-2680.

[4] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep
convolutional encoder-decoder architecture for image
segmentation [J]. IEEE transactions on pattern analysis and
machine intelligence, 2017, 39 (12): 2481-2495.

[5] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image
super-resolution using a generative adversarial network [C].
Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017: 4681-4690.

[6] Denton E L, Chintala S, Fergus R. Deep generative image
models using a laplacian pyramid of adversarial networks [C].
Advances in neural information processing systems. 2015:
1486-1494.

[7] Kendall A, Badrinarayanan V, Cipolla R. Bayesian segnet:
Model uncertainty in deep convolutional encoder-decoder
architectures for scene understanding [J]. arXiv preprint arXiv:
1511.02680, 2015.

[8] Sordoni, Alessandro, Bengio, et al. A Hierarchical Recurrent
Encoder-Decoder For Generative Context-Aware Query
Suggestion [J]. Computer Science, 2015: 553-562.

[9] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning
with neural networks [C]. Advances in neural information
processing systems. 2014: 3104-3112.

[10] Creswell A, White T, Dumoulin V, et al. Generative adversarial
networks: An overview [J]. IEEE Signal Processing Magazine,
2018, 35 (1): 53-65.

[11] Zhang H, Goodfellow I, Metaxas D, et al. Self-attention
generative adversarial networks [J]. arXiv preprint arXiv:
1805.08318, 2018.

[12] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase
representations using RNN encoder-decoder for statistical
machine translation [J]. arXiv preprint arXiv: 1406.1078, 2014.

[13] Choi Y, Choi M, Kim M, et al. Stargan: Unified generative
adversarial networks for multi-domain image-to-image
translation [C]. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018: 8789-8797.

[14] Alonso-Monsalve S, Whitehead L H. Image-based model parameter
optimisation using Model-Assisted Generative Adversarial
Networks [J]. arXiv preprint arXiv: 1812.00879, 2018.

[15] Paisley J, Blei D, Jordan M. Variational Bayesian inference
with stochastic search [J]. arXiv preprint arXiv: 1206.6430,
2012.

[16] Larsen A B L, Sønderby S K, Larochelle H, et al. Autoencoding
beyond pixels using a learned similarity metric [J]. arXiv
preprint arXiv: 1512.09300, 2015.

[17] Chen X, Duan Y, Houthooft R, et al. Infogan: Interpretable
representation learning by information maximizing generative
adversarial nets [C]. Advances in neural information
processing systems. 2016: 2172-2180.

[18] Radford A, Metz L, Chintala S. Unsupervised representation
learning with deep convolutional generative adversarial
networks [J]. arXiv preprint arXiv: 1511.06434, 2015.

[19] Kurutach T, Tamar A, Yang G, et al. Learning plannable
representations with causal infogan [C]. Advances in Neural
Information Processing Systems. 2018: 8733-8744.

[20] Dumoulin V, Belghazi I, Poole B, et al. Adversarially learned
inference [J]. arXiv preprint arXiv: 1606.00704, 2016.

[21] Donahue J, Krähenbühl P, Darrell T. Adversarial feature
learning [J]. arXiv preprint arXiv: 1605.09782, 2016.

 Mathematics and Computer Science 2020; 5(1): 31-41 41

[22] Huang H, He R, Sun Z, et al. Introvae: Introspective variational
autoencoders for photographic image synthesis [C]. Advances
in Neural Information Processing Systems. 2018: 52-63.

[23] Ng A. Sparse autoencoder [J]. CS294A Lecture notes, 2011, 72
(2011): 1-19.

[24] Poultney C, Chopra S, Cun Y L. Efficient learning of sparse
representations with an energy-based model [C]. Advances in
neural information processing systems. 2007: 1137-1144.

[25] Zhao J, Mathieu M, LeCun Y. Energy-based generative
adversarial network [J]. arXiv preprint arXiv: 1609.03126, 2016.

[26] Berthelot D, Schumm T, Metz L. Began: Boundary equilibrium
generative adversarial networks [J]. arXiv preprint arXiv: 1703.
10717, 2017.

[27] Liu M Y, Tuzel O. Coupled generative adversarial networks [C].
Advances in neural information processing systems. 2016:
469-477.

[28] Lample G, Zeghidour N, Usunier N, et al. Fader networks:
Manipulating images by sliding attributes [C]. Advances in
Neural Information Processing Systems. 2017: 5967-5976.

[29] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image
translation using cycle-consistent adversarial networks [C].
Proceedings of the IEEE international conference on computer
vision. 2017: 2223-2232.

[30] Royer A, Bousmalis K, Gouws S, et al. Xgan: Unsupervised
image-to-image translation for many-to-many mappings [J].
arXiv preprint arXiv: 1711.05139, 2017.

[31] Anoosheh A, Agustsson E, Timofte R, et al. Combogan:
Unrestrained scalability for image domain translation [C].
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2018: 783-790.

[32] Su J. O-GAN: Extremely Concise Approach for Auto-
Encoding Generative Adversarial Networks [J]. arXiv preprint
arXiv: 1903.01931, 2019.

