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Abstract: The generative model is a very important type of model in the field of artificial intelligence in recent years. Such 

models can comprehend the data through the neural network, and then create data according to the probability distribution of the 

input data, predict the results according to the data characteristics. The whole processing process is "intelligent". At present, two 

typical applications of generative model are Generative Adversarial Networks (GAN) model and Encoder-Decoder model, which 

have strong ability to generate image data. In the model of GAN, the generator simulates real data, and the discriminator judges 

the authenticity of the samples. Its goal is to train a generator to fit the real data perfectly, so that the discriminator cannot 

distinguish. In the Encoding-Decoding model, it can be understood as a process of "Encoding→intermediate vector→Decoding", 

It is suitable for processing one kind of data to generate another kind of data with the same probability distribution as the original 

data. Since most of the data features are intermingled, they are encoded in a complex and disorderly way. But if these features are 

extractable, it shows that these features are interpretable, and it will be easier to use these features for coding. Based on this 

situation, some research results have been produced by incorporating the Encoder- Decoder into GAN. This paper systematically 

analyzes and summarizes the basic concepts and theories of GAN and Encoder-Decoder, as well as their respective advantages 

and disadvantages. On this basis, by combing the related work of the two types of models, the main technical routes of the three 

types of GAN based on the Encoder Decoder are summarized, the techniques and theories including variational inference, energy 

function and correlation transformation of different distribution data are summarized. Finally, the GAN based on the 

Encoder-Decoder is summarized. 
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1. Introduction 

In recent years, with the remarkable improvement of 

computer processing ability and the explosive growth of data 

in industries, the rapid development in the field of deep 

learning knowledge has been brought forward. Among them, 

applying generative model to data processing is the most 

promising method at present [1, 2]. The Generative 

Adversarial Networks (GAN) model [3] and the Encoder- 

Decoder model [4] are two successful applications built on the 

generative model. 

The GAN model consists of a Generator and a 

Discriminator. The Generator aims to learn the real data 

distribution as much as possible. The purpose of Generator is 

to learn the real data distribution as much as possible. The 

purpose of Discriminator is to try to determine whether the 

input data comes from real data or from generated noise data. 

In order to improve the generation ability of Generator, the 

generated data is not discriminated by Discriminator. In order 

to improve its discriminating ability, Discriminator can more 

accurately judge whether the input data is from real data or 

generated noise data. Both need to be continuously optimized 

to reach the Nash equilibrium state [3, 5]. 

GAN can effectively solve the problem of the generation of 

interpretable data, especially for high- dimensional data, the 



32 Yi Yin et al.:  A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model  

 

neural network method used does not limit the dimension of 

the data, nor does it limit the data type, which greatly broadens 

the scope of sample selection for generating data. At the same 

time, the neural network can integrate a variety of loss 

functions and increase the degree of freedom of design [6]. 

GAN transforms a random noise vector from a probability 

distribution to a probability distribution of the real data set. 

GAN creatively trains two neural networks during the training 

process. The training process does not require approximate 

inference, which improves the training difficulty and 

improves the training efficiency. 

Encoder-Decoder is a kind of framework, end-to-end is one 

of its most prominent features [7]. Encoder denotes that the 

input data is converted into a fixed-length intermediate vector, 

and Decoder denotes that the previously generated 

intermediate vector is converted into output data. Encoder and 

Decoder are two kinds of neural network models, which can 

adopt arbitrary neural network algorithm according to the 

application requirements. 

In Encoder-Decoder framework, the dimension of the 

intermediate vector is generally much smaller than that of the 

input data. Therefore, Encoder can be used to reduce the 

dimension. Then, the noise of the intermediate vector can be 

increased and the framework can be trained to restore the 

original input data as much as possible [8]. In this way, the 

intermediate vector has deep features that the original input 

data can extract. 

Intuitively, the two models have obvious advantages and 

disadvantages compared with each other. GAN does not need 

pre-modeling, that is, it does not need a pre-hypothesized data 

distribution, and the loss function design is easy. As long as 

there is a standard, it can be handed to the discriminator for 

confrontation training, and finally the generated data can be 

obtained. The final generated data and the original data of 

Encoder-Decoder need to be the same distribution. However, 

GAN cannot directly compare the difference between the 

generated data and the original data, but Encoder- Decoder 

can do these. 

Based on this, scholars have put forward some methods of 

combining GAN with Encoder- Decoder and realized some 

applications. This paper revolves around the current 

mainstream application of Encoder-Decoder to GAN. Chapter 

1 outlines the basic theories and concepts of the two models. 

Chapter 2 combs the variable-inference method for applying 

Encoder-Decoder to the Generator structure based on 

probability theory. Chapter 3 introduces the energy function 

method of applying Encoder-Decoder to Discriminator 

structure based on energy model. Chapter 4 introduces the 

association transformation method that combines GAN and 

Encoder-Decoder to different distributed data. Chapter 5 

summarizes these methods. 

2. Basic Concepts 

The theory and model of GAN were proposed by Ian 

Goodfellow et al. In GAN, any differentiable function can be 

expressed as Generator and Discriminator, which are 

represented here by differentiable functions �  and � . The 

noise data is represented by �, and �(�) represents the data 

generated by �  as far as possible from the probability 

distribution of the real data �. Generator continuously learns 

the probability distribution of real data, and the goal is to 

optimize the input random noise to fit the probability 

distribution of real data, which makes the Discriminator 

indistinguishable. Discriminator judges whether the received 

data is real data or the data �′ generated by the Generator 

through the noise data � , and distinguishes the "true" and 

"false" data generated by the generated model. The goal of � 

here is to realize the two-class discrimination of data sources. 

If the data comes from real data �, it is judged as "true" and 

marked as 1, and if it is derived from �(�), it is judged as 

"false" and marked as 0. The definition �(�)	is defined to 

represent the probability distribution 
�(�)	of the input �(�) 
in the generated model, �(�)  is defined to represent the 

probability distribution 
��
�(�) of � from real data, and its 

optimized loss function is defined as: 

�(�, �) = ��~�����(�)�log�(�)�	+	��~��(�)�log	(1 − �(�(�)))�                      (1) 

and: 

�∗ = "#$min( max+ �(�, �)          (2) 

The goal of the Generator is to make its own generated data �(�) consistent with the real data � when it is discriminated 

by the Discriminator. 

When updating the parameters of the discriminative model, 

it hopes ,-$�(�) to be as large as possible from real data. For 

the �(�) generated from noise data, the larger the log	(1 −�(�(�))) is, the better the max� needs to be solved. When 

updating the parameters of the generative model, it hopes �(�(.)) to be as large as possible. At this time, �(�, �) will 

become smaller, that is, min� is required for generating the 

model. These two confrontation and optimization processes 

make the performance of Generator and Discriminator 

improve constantly. The final ideal state is that when 

Discriminator's discriminating ability cannot correctly 

determine the data source, it can be considered that Generator 

has learned the real data distribution. The basic structure of 

GAN is shown in Figure 1. 

 

Figure 1. The structure of GAN. The noise data is generated by Generator, 

and the Discriminator is used to determine whether the data generated by 

Generator or the original real data. 
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The idea and structure of Encoder-Decoder was proposed 

by Ilya Sutskever et al [9]. Encoder-Decoder can be 

understood as the process of "encoding→intermediate vector 

→decoding". The input data �  of the Encoder-Decoder 

structure is encoded by the Encoder to obtain the code vector � , Then the output data �/  is obtained after Decoder 

processing. Neural network algorithms are often used here as 

the structure of the Encoder and Decoder. The model expects 

the input vector � to obtain an intermediate vector � through 

one neural network algorithm in the Encoder, which is a 

dimensionality reduction process. Then, another neural 

network in the decoder is used to Decode, and the dimensional 

reconstruction is added to obtain the generated data �/ similar 

to the input data. By comparing the two sets of data � and �/, 
and minimizing the difference between them, the parameters 

of the encoder and decoder are trained. The basic framework 

of Encoder-Decoder is shown in Figure 2. 

 

Figure 2. The structure of Encoder-Decoder. Data conversion based on a set 

of input sequences to generate another set of output sequence. 

Encoder-Decoder is an end-to-end model. It is a process of 

continuously improving the similarity ℒ between �/ and � in 

training. 

12
3
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(�):	� → ��(�):	� → �/� = 8(9� + :)�/ = 8;(9;< + b;)ℒ = min ∥ � − �/ ∥?

            (3) 

Because the Encoder-Decoder model and GAN model are 

based on different theories, the data processing methods and 

the results will be different. 

(1) The generated data in GAN comes from some random 

noise points, so it is possible to cause mode collapse. If GAN 

wants to generate some specific details, it must traverse the 

entire distribution of the input data to determine which part of 

the input data determines the details [10]. The Encoder- 

Decoder can obtain the same type of features as the input data 

through the encoding process of the output data, and then 

generate the desired content through specific noise, so that the 

generated data and input data have the same probability 

distribution [11]. 

(2) The training of GAN model needs to reach Nash 

equilibrium, and the method of gradient descent can guarantee 

the realization of Nash equilibrium only under the premise of 

convex function, and it is not easy to converge when the input 

data is discrete or sparse [12]. Although some GAN methods 

have been able to solve these problems, GAN is less trainable 

than Encoder-Decoder. 

(3) GAN uses an Adversarial Networks, and Encoder- 

Decoder optimizes not the likelihood itself, which results in 

much less identifiable data generated by Encoder-Decoder 

than data generated by GAN [13]. 

(4) If the discriminator in the GAN is well trained, the 

generator can perfectly learn the distribution of the training 

samples, that is, GAN is progressively consistent, while 

Encoder-Decoder is biased. 

Based on this, some GAN models based on Encoder- 

Decoder are obtained by combining the advantages of 

Encoder-Decoder and GAN. 

3. Variational Inference Model 

Considering GAN as a Possibility Based Model (PBM) is a 

commonly recognized method [13]. Since the essence of 

Discriminator is to calculate the conditional probability 
(�|A) that � belongs to a certain class A, and the essence of 

Generator is to calculate the joint probability 
(�A) of � in 

the whole distribution. For PBM, Generator is the core part, 

because in PBM theory, Generator was designed before 

Discriminator, and then the divergence between positive and 

negative samples was missing in the calculation of Generator. 

Discriminator must learn to calculate this divergence to assist 

Generator, this also makes the structure design of the 

Generator in PBM relatively more complicated [14]. 

Therefore, the Encoder-Decoder model can be applied to the 

Generator structure based on the PBM theory. 

3.1. Variational Self-coding 

Assuming that there is a distribution of real random 

variables, input data �  can be considered as samples 

extracted from the whole distribution, but the distribution of 

real data is unknown. John Paisley et al. [15] put forward an 

idea of approximating the distribution by controllable and 

known distribution, assuming that Z obeys some common 

distribution, such as normal distribution or uniform 

distribution, and then wished to train a model �/ = $(�), and 

use the distribution of the model to approximate the 

distribution of real data, that is, by transforming the parts to 

make the two distributions overlap as much as possible. This 

is the idea of Variational Auto Encoder (VAE). 

Anders Boesen Lindbo Larsen et al. [16] combined VAE 

and GAN to form VAEGAN. Here, VAE includes Encoder and 

Decoder, and GAN includes Generator and Discriminator. In 

VAE, �  is generated by �  through Encoder and �/  by � 

through Decoder. There are �~Enc(�) = DE(�|�) , �/~Dec(�) = 
H(�|�) . The Generator in GAN can be 

regarded as the Decoder in VAE. After converting � into �/, 
the �/  produced by discriminator is “true” or “false”, and 

gives a “score”. Combining VAE and GAN, it can be seen that 

the discrimination effect of GAN is better than VAE, but the 

training process of VAE is easier than GAN. 

Suppose that the input vector � is encoded into an implicit 

variable �, and then decoded back to the output vector �/ . 
VAE wants to generate �(I) from a prior distribution 
H∗(�) 
and then generate �(I)  from a conditional distribution 
H∗(�|�) . However, the real parameter J∗  and the hidden 

variable �(I) are unknown, so a general solution is to use the 

maximum likelihood estimation to solve the unknown 

parameters. However, it is difficult to get J either by solving 
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H(�) = K
H(�|�)
H(�)d�  or by solving 
H(�|�) =
H(�|�) 
H(�) 
H(�)⁄ , so it needs to be solved by the 

variational Bayesian method. DE(�|�) is introduced to approximate the true posterior 

distribution 
H(�|�) , and the distance from DE(�|�)  to 
H(�|�) is measured by KL divergence, which is denoted as 

�NO�DE(�|�) ∥ 
H(�)�, then PQRS(T, J; �) = −�NO�DE(�|�) ∥ 
H(�)� 	+ �V(�|�)�log
H(�|�)�. Assuming that 
H(�) is a 

known prior Gauss distribution function, 
H(�)~W(0, Y) , 

then DE(�|�) = W(.; Z(�, T), 8?(�, T)), then, 

	P[\((.; ], 8) = �NO�DE(�|�) ∥ 
H(�)�                                (4) 

= KDE(�|�)log
(�)^. − K DE(�|�)logDE(�|�)^.                           (5) 

= KW(�; Z, 8?)logW(�; 0,1)^. − KW(�; Z, 8?)logW(�; Z, 8?)^.                     (6) 

= _
? (−,-$2a − (Z + 8?) + ,-$2a + (1 + log8?))                          (7) 

= _
?∑ (1 + logσd? − σd? − ]d?)edf_                                   (8) 

For �V(�|�)�log
H(�|�)�, the Monte Carlo method can be used to obtain, 

	�V(�|�)�log
H(�|�)� ≈ _
O∑ log
H(�|�(h))Ohf_                              (9) 

Where �(h) = Z + 8 ∙ j(h), j(h)~W(0, Y). 
Finally, the loss function of VAE is, 

	ℒQRS = _
?∑ (1 + logσd? − σd? − ]d?edf_ ) + _

O∑ log
H(�|�(h))Ohf_                      (10) 

The loss function of VAE is, 

	ℒk(+,() = log(�l�(�))+	log(1 − �l�(�m<(.))) + 	log	(1 − �l�(�m<(5n<(�))))             (11) 

So, the loss function of VAE-GAN is, 

ℒ = ℒQRS + ℒoRp               (12) 

Initially, Generator is similar to the VAE. A vector is 

randomly generated, and then the Discriminator determines 

the true and false. After that, the Discriminator is fixed, the 

gradient descent is used to update the Generator parameters so 

that the Discriminator output is as close as possible to 1. 

The basic framework of VAEGAN is shown in Figure 3. 

3.2. Variational Mutual Information 

 

Figure 3. The structure of VAEGAN. After the input data is processed by 

Encoder-Decoder, the similarity between the generated data and the input 

data is compared, then the trained Decoder is used as the Generator in the 

GAN, and the quality of the generated data is improved by the Discriminator 

detection. 

From the perspective of feature learning, GAN does not 

impose any conditional restrictions on the input random noise, 

which means that there is no obvious feature representation of 

any dimension of �, so it is impossible to determine what kind 

of features can be generated by the noise dimension. Xi Chen 

et al. [17] improved the objective function of GAN and 

proposed a new GAN model -- InfoGAN, which represents 

mutual information. InfoGAN adds an implicit coding < to 

the input vector of Generator and uses mutual information to 

indicate the degree of correlation between � and <. In order 

to express the close relationship between �  and < , it is 

necessary to maximize the value of mutual information. 

Furthermore, the objective function of GAN needs to add 

mutual information of � and < as a regularization term. Thus, 

based on the loss function of the original GAN, a 

regularization constraint is added: Y(<; �(�, <)). Then there, 

min( max+ �(�, �) = �(�, �) − λY(<; �(�, <))    (13) 

In fact, it is difficult to directly maximize Y(<; �(�, <)). 
This involves a posterior probability distribution 
(<|�) , 

which is difficult to obtain in practice. At the same time, 

because the generator has a high degree of freedom, it is 

possible to find an analytical solution during the learning 

process, so that 
(<|�) = 
(�), which causes < to lose its 

proper function. Therefore, we need to define an auxiliary 

probability distribution D(<|�)  to approximate 
(<|�)  and 

obtain the lower bound of 
(<|�) . This method is called 

variational mutual information maximization. 

Y(<; �(�, <))= −r(<|�(�, <)) + r(<)                                  (14) 
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= ��~((�,s)��st~�(s|�) log 
(<;|�)� + r(<)                                (15) 

= ��~((�,s)��NO(
(∙ |�) ∥ D(∙ |�))uvvvvvvwvvvvvvx
yz

	+ �st~�(s|�) log D(<;|�)� + r(<)                      (16) 

≥ ��~((�,s)��st~�(s|�) log D(<;|�)� + r(<)                                (17) 

= �s~�(s),�~((�,s)�log D(<|�)� + r(<)                                   (18) 

≜ P}(�, ~)                                              (19) 

When r(<) is maximum, the maximum value of mutual 

information is obtained. The objective function is equivalent 

to: 

min( max+ �(�, �) = �(�, �) − λP}(�, ~)     (20) 

InfoGAN model uses DCGAN as its network structure [18, 

19]. Input < and . to Generator, and input the generated data 

and real data randomly to Discriminator for judgment. ~ and 

D share the convolution layer. The probability distribution of ~ output C. Here G and ~ can be seen as Encoder-Decoder 

structures, and �  and �  are models in GAN. The basic 

framework of InfoGAN is shown in Figure 4. 

3.3. Adversary Inference 

The ALI (Adversarially Learned Inference) method 

proposed by Vincent Dumoulin et al. [20] and the BiGAN 

(Bidirectional GAN) method proposed by Jeff Donahue et al. 

[21] use an adversarial method to jointly train a generation 

network as Encoder and an inference network as Decoder. 

Encoder maps �  to a data space and encodes it to get .̂ . 

Decoder decodes the � inverse map called the latent variable 

and get �/. D needs to recognize (�, �̂) and (�/, �), judging 

that it is generated by Encoder or Decoder. Here, . = ](�) +8(�) ∙ �, �~W(0, Y), D(�|�) = W(Z(�), 8?(�)Y). 

 

Figure 4. The structure of InfoGAN. Add an implicit encoding in addition to 

the noise data and maximize their mutual information. 

In ALI, Encoder and Decoder work independently, and their 

mapping and sampling processes are performed independently. 

They generate joint distributions respectively, and then give 

them to Discriminator to determine whether they are the same 

distribution. The joint distribution of the Encoder is D(�, �) =D(�)D(�|�) , and the joint distribution of the Decoder is 
(�, �) = 
(�)
(�|�). When D(�, �) and 
(�, �) match, all D(�)  and 
(�)  matches and all D(�|�)  and 
(�|�) 
matches can be assumed. Thus, the loss function is: 

min( max+ �(�, �) = �V(�)�log	(�(�, ��(�)))]+	��(�)�log	( 1 − �(��(�), �))�               (21) 

= ∬D(�)D(�|�) log( �(�, �)) ^�^� +∬
(�)
(�|�)log	(1 − �(�, �))^�^�                (22) 

The basic framework of ALI is shown in Figure 5. 

 

Figure 5. The structure of ALI/BiGAN. The input data is mapped by the 

Encoder to obtain the latent variable, and the noise data is converted into 

generated data by the Generator, and the two sets of data are discriminated by 

the Discriminator. 

3.4. Adversary Inference 

The IntroVAE method proposed by Huaibo Huang et al. [22] 

introduces GAN into the VAE, ignores the Discriminator 

structure in GAN and the Decoder structure in AutoEncoder, 

and achieves a Self-introspective learning. That is, the model 

itself can judge the quality of its generated samples and make 

improvements to improve the performance of the model. 

P�\ = −5V�(�|�),-$
H(�|.)          (23) 

P[\( = �NO(DE(.|�) ∥ 
(.))         (24) 

Here, P�\  is a loss function. 

IntroVAE is implemented by training Encoder to make the 

hidden variables of real image close to the prior distribution, 

while the hidden variables of fake image far away from the 

prior distribution. At the same time, training generator can 

make the hidden variables of fake image close to the prior 

distribution. That is: 

P� = P[\((.) + � ∑ �� − P[\((.�)���f�,� 	+ 	�? ∑ ∥ ��,I − �I ∥�?�If_  (25) 

P( = �∑ P[\((5n<(�)) +�f�,� �P�\(�)      (26) 



36 Yi Yin et al.:  A Survey of Generative Adversarial Networks Based on Encoder-Decoder Model  

 

Here, �∙�� = max	(0,∙), � and � are superparametric, and ��  is the reconstructed sample. 

Unlike GAN and AutoEncoder [23], Encoder and generator 

in IntroVAE are adversarial, but they also ensure that the error 

between the output image and the real image is as small as 

possible. For real data, this method is consistent with the 

traditional VAE method and keeps the stability of 

AutoEncoder. For fake data, this method of confrontation 

improves the quality of the generated images. 

4. Energy Function Model 

Considering GAN as an energy-based model (EBM) is 

another design idea of GAN [24]. It treats the Discriminator as 

an energy function with no explicit probability interpretation 

and is trained to assign low energy values to regions of high 

energy values. The EBM is based on the construction of the 

Discriminator, and the Discriminator requires a negative 

sample in the calculation process, which is then provided by 

the Generator. This shows that the structure design of 

Discriminator in EBM is more abundant. Therefore, the 

Encoder-Decoder model can be applied to the Discriminator 

structure based on EBM theory. 

4.1. Energy Function 

The EBGAN (Energy-Based GAN) method proposed by 

Junbo Zhao et al. [25] applies the concept of energy function 

to the Discriminator, and the Discriminator uses the 

Encoder-Decoder structure. �  is regarded as an energy 

function, which gives low energy to real data and high energy 

to generated data. Finally, a mean square error including real 

and fake data is output through Discriminator. The loss 

functions of Generator and Discriminator are: 

�+(�, .) = �(�) + �� − �(�(.))��        (27) 

=	∥ �m<�5n<(�)� − � ∥ 	+	��−∥ �m<(5n<(�(.))) ∥�� (28) 

�((.) =∥ �(�(.)) ∥=∥ �m<(5n<(�(.))) − �(.) ∥   (29) 

Where �∙�� = max	(0,∙)  means that in �+ , when the 

reconstruction error of the fake data is less than a certain value �, �∙�� is positive, otherwise it is 0. Regarding the pattern 

collapse problem of GAN, EBGAN uses the Pulling-away 

Term method to generate diverse data from Generator: 

���(�) = _
�(��_)∑ ∑ � ��t��∥��∥∥��∥�

?
d�II  (30) 

The idea of EBGAN is that the generated fake data will 

generate a vector after Encoder. The cosine similarity between 

each two vectors is calculated separately, and then the mean 

value is calculated. The closer the two vectors are orthogonal, 

the smaller the value of ���(�). 
In EBGAN, Generator is based on Oakam's razor principle, 

while Discriminator is based on giving higher energy to the 

sample. The basic framework of EBGAN is shown in Figure 

6. 

 

Figure 6. The structure of EBGAN. If the input data comes from real data, the 

data after decoding is basically lossless. If the input data comes from noise, 

the decoded data is quite different from the original data. 

4.2. Boundary Equilibrium 

David Berthelot et al. applied the encoder to the 

Discriminator in GAN and proposed BEGAN (Boundary 

Equilibrium GAN) [26]. Different from other GAN methods, 

most of them start with reconstructing the sample distribution, 

BEGAN starts from the perspective of reconstruction error 

distribution, it matches the loss between real samples and 

generated samples in self-encoder based on Wasserstein 

Distance. 

The loss function between the input data in Discriminator 

passing through Encoder and the output data generated by 

Decoder is as follows: 

ℒ(�) = |� − �(�)|               (31) 

This formula is used to measure the difference between the 

two distributions. i.e. loss_real distribution formed by real 

data and loss_fake distribution formed by Generator's fake 

data. Wasserstein Distance is used to measure the distance 

between the two distributions, thus improving Discriminator's 

ability to distinguish between true and false. 

Assuming that the Loss distributions generated by real data 

and fake data are represented by ]_ and ]? respectively. It is 

found by experiments that the reconstruction errors of each 

input data are independent and identically distributed and 

obey normal distribution. Thus, two one-dimensional normal 

distributions, loss_real and loss_fake, are denoted as Z_ = W(�_, <_), Z? = W(�?, <?), where �_, �? and <_, <? 

are the mean and variance of loss_real and loss_fake, 

respectively. Their Wasserstein Distance is defined as: 

9(Z_, Z?) = inf�∈ (¡¢,¡£) �(�¢,�£)~��|�_ − �?|�     (32) 

Here, �_  and �?  are random samples subject to Z_  and Z? respectively. Their joint distribution obeys ¤, all possible 

forms of ¤ constitute a probability space Γ(Z_, Z?). The joint 

distribution of the smallest value in Γ(Z_, Z?) is the target 

distribution. Its expected value �(�¢,�£)~��|�_ − �?|�	 is the 

distance required. Discriminator hopes that the distance 

becomes larger, but the optimal solution of ¤ is unknown. It is 

very difficult to solve it directly, and it needs to be 

approximated by a variable lower bound. The lower bounds of 
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9(Z_, Z?) can be determined by Jensen inequality. 

inf	5�|�_ − �?|� ≥ inf |���_ − �?�| = |�_ −�?|   (33) 

so, 

9(Z_, Z?) ≥ |�_ −�?|            (34) 

For the discriminator, there are two ways to increase the 

value of 9(Z_, Z?): 
9(Z_, Z?) ≥ �_ −�?, �_ → ∞	& �? → 0     (35) 

9(Z_, Z?) ≥ �? −�_, �? → ∞	& �_ → 0     (36) 

Intuitively, when the Discriminator is trained well, the error 

of real data is expected to be the smallest, that is, �_ → 0. 

Therefore, 9(Z_, Z?) ≥ �? −�_ . In this way, the goal of 

maximizing Discriminator can be equivalent to minimizing �_ −�? , while the goal of Gnerator is to minimize the 

distance between two distributions, which can be achieved by 

minimizing �?. 

Finally, 

ℒ+ = �_ −�? = �(ℒ(�)) − �(ℒ(�(.+)))     (37) 

	ℒ( = �(ℒ(�(.+)))              (38) 

When the loss in Generator and Discriminator are 

respectively equalized, the Discriminator cannot distinguish 

between true and false. At this time, 9(Z_, Z?) → 0, so there 

are: 

�(ℒ(�)) = �(ℒ(�(.+)))           (39) 

Since the Generator's generation process is slower than the 

Discriminator during the training process, which will lead to 

unstable training. Therefore, a coefficient ¨
 is added to ℒ+ 

to balance the difference between them. 

ℒ+ = �(ℒ(�) − ¨
 ∙ �(ℒ(�(.+)))       (40) 

¨
�_ = ¨
 + ©ª(¤ℒ(�) − ℒ(�(.()))      (41) 

among of them: 

¤ = �(ℒ(((�«)))�(ℒ(�))               (42) 

¤ is a hyperparameter, taking 0.001. 

5. Association Transformation of 

Different Distribution Data 

For the problem of inter-association and transformation 

style of image datasets with different probability distributions, 

the integration of Encoder-Decoder with GAN has made great 

progress in recent years. The problem is actually to learn a 

mapping function. In the case that the underlying data does not 

change the distribution, the style conversion of different image 

data sets is performed by finding correspondences such as 

similar semantics. And this conversion is unsupervised 

learning. 

Ming-Yu Liu et al. extended the distribution 
(�) to the 

joint distribution 
(�_, �?)  and proposed CoGAN to deal 

with domain adaptation problems [27]. CoGAN considered 

learning a combination of two domain types to get a joint 

distribution with different attributes. CoGAN consists of two 

GANs, each for a domain type image. If the two GANs are 

directly trained independently to process image adaptation 

problems of two different domain types, the generated results 

will lead to the inner product 
(�_)
(�?) of the two edge 

distributions being not equal to their joint distribution 
(�_, �?) , which makes the GAN unable to learn a joint 

distribution with different attributes. In COGAN, the weights 

of two gas in some layers of the generator are shared and 

constrained, so that COGAN can learn a joint distribution 

when there is no correlation between two domain types. 

Because in the deep network of generator, the weight sharing 

of high-level semantic information, it can be seen that the 

GAN 's Discriminator can decompose the semantic 

information of the high-level, and the bottom layer in the 

Generator is still the content in different domain types. 

Specifically, Cogan is composed of GAN1 and GAN2. 

Each GAN generates and distinguishes images of its own 

domain type. In training, two Generators need to share a part 

of the weight of the upper layer in the deep network. which is: 

$_(.) = $_(¬¢)($_(¬¢�_)(⋯$_(?)($_(_)(.))))      (43) 

$?(.) = $?(¬£)($?(¬£�_)(⋯$?(?)($?(_)(.))))      (44) 

The discriminator needs to share part of the weights in the 

lower layer of the deep network. which is: 

^_(�_) = ^_(�¢)(^_(�¢�_)(⋯^_(?)(^_(_)(�_))))     (45) 

^?(�?) = ^?(�£)(^?(�£�_)(⋯^?(?)(^?(_)(�?))))     (46) 

finally: 

�(�, �) = ��¢~�(�¢)�log�_(�_)� +	��~�(�)�log(1 − �_(�_(.)))� +	��£~�(�£)�log�?(�?)� +	��~�(�)�log(1 − �?(�?(.)))�   (47) 

When the weights of all Generators of GAN1 and GAN2 in 

CoGAN are shared, Generator1 and Generator2 can be 

collectively regarded as an Encoder. The basic framework of 

CoGAN is shown in Figure 7. 

Compared with the structure of Encoder-Decoder 

introduced by COGAN, Guillaume Lample et al. integrated 

GAN into Encoder-Decoder and proposed the structure of 

Fader Networks [28]. Fader networks combines Encoder and 

Discriminator to form a generation discrimination 

combination of GAN. After the Encoder generates the data 5�, 

the Encoder continuously discriminates whether 5� is related 

to the attribute A  of the original data through the 

Discriminator. Continuously optimizing the process can 

achieve the stripping of 5� and A. Finally, when the decoder 

generates the new image data, it can add some attributes of A 

that meet the needs, thus achieving the purpose of controlling 
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Figure 7. The structure of EBGAN. By sharing the weights of the latter layers 

of networks in Encoder1 and Encoder2, the structure of the two probability 

distributions in feature extraction can be similar. And the weights of the 

former layers of networks in Decoder1 and Decoder2 can be shared. 

the image to be generated as required. 

Thus, the Discriminator discriminates whether �(�)  is 

related to A and its expression is: 

ℒ�I�(J�I�|J��s) = − _
¬∑ log®H��¯(A|�H°±²(�))(�,³)∈+   (48) 

J�I�  and J��s  represent the weights of the Discriminator 

and Encoder, Discriminator is to maximize the correlation 

between �(�) and A. In addition, the final generated image is 

very similar to the original image, then: 

ℒ�\(J��s , J��s) = _
¬∑ ∥ ���s(�,³)∈+ (�H°±²(�), A) − � ∥?? (49) 

ℒ(J��s, J��s|J�I�) = P�\(J��s, J��s) = −	©\ 	log®H��¯(1 − A|5H°±²(�)) (50) 

Here ©\ > 0. ©\ needs to be adjusted precisely. A larger ©\ will limit the amount of information about � contained in �(�), which resulting in image blurring. A smaller ©\ will 

limit the discriminator's dependence on A . The basic 

framework of Fader Networks is shown in Figure 8. 

 

Figure 8. The structure of Fader Networks. Discriminator judges whether 

Encoder produces data from Encoder1 or Encoder2, forcing Encoder1 and 

Encoder2 to generate eigenvectors approximating the same probability 

distribution to deceive Discriminator. 

Jun-Yan Zhu et al. designed CycleGAN to convert images 

into styles [29]. That is, there are two differently distributed 

image data �_  and �? . CycleGAN can convert the 

distribution of samples in �_ space into the distribution of �? 

space. Therefore, the goal of CycleGAN is to learn the 

mapping from �_ to �?. 

There is a generator that can convert the images in the �_ 

space to the distribution in the �? space, which is set to ��¢ . 

For ��¢ , it is necessary to determine whether it is real or not 

by Discriminator and set it to ��£ , thus forming a GAN. The 

loss function expression is: 

	ℒoRp(��¢ , ��£ , µ_, µ?) = ��£~�(¶£)�log�¶£(�?)� + 	��¢~�(¶¢)�log	(1 − �¶£(G(�_)))]             (51) 

However, such an approach can easily lead to a pattern 

collapse problem, that is, G(�_) converts a large number of 

images in µ_ space into some small images in µ? space. In 

this regard, CycleGAN also learned the mapping from µ? to µ_, namely G_(G?(�?)) ≈ �?, �?(�_(�_)) ≈ �_. This loss is 

called the cyclic consistency loss and is defined as: 

	ℒ¸¹¸(�¶¢ , �¶£ , µ_, µ?) = ��£~�(¶£)�∥ �_(�?(�?)) − �? ∥_� + 	��¢~�(¶¢)�∥ �?(�_(�_)) − �_ ∥_�       (52) 

At the same time, we need to introduce a discriminator for �¶£, which is set to �¶¢ . Finally, the loss function consists of three 

parts: 

ℒ = ℒoRp(�¶¢ , �¶£ , µ_, µ?) 	+ 	ℒoRp(�¶£ , �¶¢ , µ_, µ?) 	+ 	ℒ¸¹¸(�¶¢ , �¶£ , µ_, µ?)              (53) 

 

Figure 9. The structure of CycleGAN. Two mirrored GANs, one Generator 

generates a fake image, and the other generators need to generate images that 

can deceive Discriminator of different probability distributions, the generated 

face image and real image have reasonable loss values. 

The basic framework of CycleGAN is shown in Figure 9. 

When using CycleGAN, it is found that although CycleGAN 

can achieve cross domain style transformation, but it is unstable 

and needs to be adjusted repeatedly. Amelie Royer et al. 

Introduced the application of Encoder-Decoder structure and 

combined it with CycleGAN to form XGAN [30]. 

There are two two encoders, decoder and discriminator in 

XGAN, and it has one classifier. The discriminator in XGAN 

acts similarly to CycleGAN. XGAN let �_ get 5�¢  through 

encoder1, then generate ��£  through decoder2, then output 5�£  with ��£  as the input of encoder2, final calculate the 

distance between 5�¢  and 5�£  as loss function. 

In XGAN, the loss function of two pairs of self-Encoders is: 
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 	ℒº»¸ = ��¢~�(¶¢)|�_ − ^_(m_(�_)| 	+ 	��£~�(¶£)|�? − ^?(m?(�?))|                (54) 

The classifier in XGAN is used to distinguish the images in 

different domains after coding. 

If the encoded image is still distinguishable, the encoded 

information has not only feature information but also domain 

information. If it cannot be distinguished, it means that the 

encoded information is feature information common to the 

two domains. 

ℒ¼½¾¾ = ��¢~�(¶¢)ℓ(1, <(m_(�_))) 	+	��¢~�(¶¢)ℓ(2, <(m?(�?))) (55) 

ℓ is a loss function for classification. 

Two encoders need to maintain feature consistency when 

encoding two fields. The loss of consistency is: 

	ℒÀ»Á = ��¢~�(¶¢)|m_(�_) − m?(^?(m_(�_)))| 	+ 	��£~�(¶£)|m?(�?) − m_(^_(m?(�?)))|               (56) 

The Discriminator loss is: 

ℒoRp,�¢⟶�£
= ��¢~�(¶¢)[log�(�_)] + 	��£~�(¶£)[log	(1 − �(^_(m?(�?)))]                   (57) 

	ℒoRp,�£⟶�¢
= ��£~�(¶£)[log�(�?)] +	��¢~�(¶¢)[log	(1 − �(^?(m_(�_)))]                   (58) 

XGAN introduces an optional function which means teacher loss. When there is prior knowledge, this function can be 

integrated into XGAN 's model. It is asymmetric. 

ℒÃ»½¸Ä = ��¢~�(¶¢) ∥ T(�_) − m_(�_) ∥                                   (59) 

finally, 

ℒÆoRp = ℒº»¸ +Ç¼ℒ¼½¾¾ + ÇÀℒÀ»Á +ÇoℒoRp + ÇÃℒÃ»½¸Ä                         (60) 

The basic framework of XGAN is shown in Figure 10. 

 

Figure 10. The structure of XGAN. XGAN maintains feature-to-feature consistency by calculating the similarity of latent through two loops. 

Asha Anoosheh et al. proposed ComboGAN [31] to apply 

the Encoder-Decoder structure to different distribution 

problems of image data. Let �_  get 5�¢  through Encoder1, 

then generate ��£  through Decoder2, then output 5�£  as input 

of Encoder2, and finally generate ��¢  through Decoder1. The 

distance between 5�¢  and ��¢  is calculated as a loss function. 

The basic framework of combogan is shown in Figure 11. 

Jianlin Su proposed the model of O-GAN (original general 

advanced network) considering that the structure of 

Discriminator is similar to Encoder [32]. The Discriminator 

output is the scalar of classification, the Encoder output is a 

vector, so the Discriminator is written as a composite function 

�(�) ≜ È(m(�)), where È is the mapping from noise space 

to discrimination space. Here, in order to realize the functions 

of generator and discriminator, O-GAN adds a Pearson 

coefficient as the regularization term: 

 

Figure 11. The structure of ComboGAN. ComboGAN uses cyclic consistency to maintain the similarity between pixel-to-pixel. 

È, m = argmin�,� ��~�(�),�~�(�) [log	(È(m(�)) 	+ log	(1 − È(m(�(.)))) − ©Ê(., m(�(.)))]            (61) 
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� = argmin( ��~�(�) [log	(È(m(�(.)))) 	− ©Ê(., m(�(.)))]                       (62) 

Among them, 

Ê(., .̂) =
_

�
�(�)×�
�(�̂)
	 ∙ ∑ (

�Ì
If_ .I − avg(.))(.̂I − avg(.̂))/n�                       (63) 

In this way, the discriminator is divided into two parts, 

where m is the decoder. For È, avg(m(�)) is directly used in 

O-GAN. That is, È(m(�)) = avg(m(�)). 

6. Summary 

GAN and Encoder-Decoder are both generative models. 

Their output is determined by the input. A model can be used 

to learn a characteristic representation of the input. And both 

models are directly learning from input samples, so it is not 

necessary for label information. Specifically, for the 

generation model in GAN, it is no longer necessary to need a 

rigorously formatted generated data representation like the 

traditional model, which directly avoids the computability of 

the model due to the complexity of the data, and also avoids 

the inability of data input or generation due to the complexity 

of the model. However, GAN has the possibility of mode 

collapse, and the input data needs to be continuous. 

Encoder-Decoder is composed of two multilayer neural 

networks. Input data and output data need to express the 

same probability distribution with the same number of nodes. 

The significance of the model lies in the middle vector layer, 

which represents "dimension reduction" and maintains the 

feature distribution of input data to the greatest extent. The 

data generated by the Encoder-Decoder is lost due to 

dimensionality reduction after dimension reduction. Based on 

the advantages and disadvantages of the two models, a new 

model can be generated by combining them, which can 

overcome their shortcomings and produce data information 

that can meet the needs better. 
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