Optimal Prediction of Expected Value of Assets Under Fractal Scaling Exponent Using Seemingly Black-Scholes Parabolic Equation

Bright O. Osu¹, Joy Ijeoma Adindu-Dick²

¹Department of Mathematics, College of Physical and Applied Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
²Department of Mathematics, Faculty of Physical and Biological Sciences, Imo State University, Owerri, Imo State, Nigeria

Email address: megaobrai@hotmail.com (B. O. Osu), ji16adindudick@yahoo.com (J. I. Adindu-Dick)

Received: July 7, 2016; Accepted: July 27, 2016; Published: October 11, 2016

Abstract: Assessing the stock price indices is the foundation of forecasting the market risk. In this paper, we derived a seemingly Black-Scholes parabolic equation. We then solved this equation under given conditions for the optimal prediction of the expected value of assets.

Keywords: Fractal Scaling Exponent, Black-Scholes Equation, Assets Price Return, Optimal Value, Parabolic Equation

1. Introduction

The problem associated with random behavior of stock exchange has been addressed extensively by many authors (see for example, Black and Scholes, 1973; and Black, et al., 1991). The concept of “fractal world” was proposed by Mandelbrot in 1980’s and was based on scale-invariant statistics with power law correlation (Mandelbrot, 1982). Fang et al., (1994) examined the relevance of fractal dynamics in major currency futures market. Fractal dynamics are forms of dynamics characterized by irregular cyclical fluctuations and long term dependence. They estimated directly the fractal structure in currency futures prices based on a time series model of fractional processes. Based on the self-similarity property of fractal, Tokinaga and Moriyasu, (1997) forecasted the time series by the fractal dimension which was obtained via the wavelet transform. Xiong, (2002) also applied the wavelet to measure the fractal dimension of Chinese stock market. Muzy, et al., (2000) estimated the statistical self-similarity exponents from the data and made a quadratic fit for some low order moments. Several studies have examined the cyclic long-term dependence property of financial prices, including stock prices (Greene and Fielitz, 1977; Aydogan and Booth, 1988). These studies used the classical rescaled range (R/S) analysis, first proposed by Hurst (1951) and later refined by Mandelbrot and Wallis, (1969) and Wallis and Matalas, (1970), among others. Using R/S analysis, Greene and Fielitz, (1977) studied 200 daily stock returns of securities listed on the New York stock exchange and they found significant long range dependence. A problem with the classical R/S analysis is that the distribution of its regression-based test statistics is not well defined. As a result, Lo (1991) proposed the use of a modified R/S procedure with improved robustness. The modified R/S procedure has been applied to study dynamic behavior of stock prices (Lo, 1991; and Cheung, et al., 1994). Teferovskey et al., (1999) and Willinger et al., (1999) identified a number of problems associated with Lo’s method. In particular, they showed that Lo’s method has a strong preference for accepting the null hypothesis of no long range dependence. This happens even with long-range dependent synthetic data. To account for the long-range dependence observed in financial data, Cutland et al., (1995) proposed to replace Brownian motion with fractional Brownian motion as the building block of stochastic models for asset prices. An account of the historical development of these ideas can be traced from Cutland et al., (1995), Mandelbrot, (1997) and Shiryaev, (1999). In this paper, we will derive a seemingly Black-Scholes parabolic equation. This equation is being solved under given conditions for the optimal prediction of the expected value of assets.
2. The Model

Consider a portfolio comprising h units of assets in long position and one unit of the option in short position. At time, \(T \) the value of the portfolio is

\[
hP - V, \tag{1}
\]

measured by the fractal index \(C^E(V(E) - V^E(E) \neq 0). \)

After an elapse of time, \(\Delta t \), the value of the portfolio will change by the rate \(h(P + D_1 \Delta t) - AV \) in view of the dividend received on \(h \) units held. By Ito’s lemma this equals

\[
h(uP + hD_1) - (\frac{\partial V}{\partial t} + hP + \frac{\partial V}{\partial P} uP + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2) \Delta t + \frac{\partial V}{\partial P} \Delta P \Delta z
\]

OR

\[
h(uP + hD_1) - (\frac{\partial V}{\partial t} + hP + \frac{\partial V}{\partial P} uP + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2) \Delta t
\]

\[
+ (hP - V) r \Delta t.
\]

Thus

\[
D_1 \frac{\partial V}{\partial P} - \left(\frac{\partial V}{\partial t} + \frac{\partial V}{\partial P} uP + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2 \right) = (hP - V) r \Delta t.
\]

So

\[
\frac{\partial V}{\partial t} + (rP - D_1) \frac{\partial V}{\partial P} + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2 = rV. \tag{3}
\]

Proposition 1: Let \(D_1 = 0 \) (where \(D_1 \) is the market price of risk), then the solution of equation (3), which coincides with the solution of

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2 = 0 \tag{4}
\]

with

\[
V(P, t) = 0, \tag{5a}
\]

\[
\frac{\partial V(P, t)}{\partial P} = 0 \forall t, \tag{5b}
\]

and \(P^2 \) is assumed constant, is given by

\[
V(P, t) = V_0 e^{\left(-\frac{2\alpha P^2}{\sigma^2} + \lambda P \right) e^{rt},} \tag{6}
\]

with

\[
\lambda + \frac{4\alpha P^2 - \lambda}{\sigma^2} = 0 \tag{7}
\]

Where \(V \) is the investment output, \(r \) the discount rate, and \(\sigma^2 \) the variance of the stock market price.

Proof: Let \(D_1 = 0 \) (where \(D_1 \) is the market price of risk), then equation (3) becomes

\[
\frac{\partial V}{\partial t} + rP \frac{\partial V}{\partial P} + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2 = rV. \tag{8}
\]

In order to remove the effect of the discount rate (\(r \)) from equation (8), we let \(r = 0 \) and set

\[
V = e^{-rt}V \tag{9a}
\]

and

\[
P = e^{-rt}P. \tag{9b}
\]

Hence equation (8) becomes

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2 = 0. \tag{10}
\]

By the method of separation of variables, we assume a solution of the form \(V = f(P) g(t) \).

Hence

\[
\frac{\partial^2 V}{\partial P^2} = f'' g, \tag{11a}
\]

and

\[
\frac{\partial V}{\partial t} = f g'. \tag{11b}
\]

Substituting equations (11a) and (11b) in equation (10) gives

\[
\frac{\sigma^2 P^2}{2} f'' = -\frac{g'}{g} = \alpha \tag{12}
\]

or

\[
f' = -\frac{2ag}{\sigma^2 P^2} \tag{13a}
\]

and

\[
f'' = \alpha f. \tag{13b}
\]

These are ordinary differential equations for \(f \) and \(g \) with

\[
ln g = \frac{-2 \alpha}{\sigma^2 P^2} t \tag{13a}
\]

and having solution

\[
g(t) = V_0 e^{\frac{-2\alpha P^2}{\sigma^2 t}}. \tag{14}
\]

Also

\[
f'' - \alpha f = 0 \tag{13b}
\]

So that \(\lambda^2 = \alpha \) and \(\lambda = \pm \sqrt{\alpha} \) with solution
\[f(P) = e^{\lambda P}. \]
(15)

Hence, we obtain a special solution of the form
\[V(P,t) = V_0 \exp \left\{ \frac{-2aP^2}{\sigma^2} t + \lambda P \right\}. \]
(16)

But
\[\frac{\partial V}{\partial P} = 0 \]
\[= V_0 \lambda e^{\frac{-2aP^2}{\sigma^2} t + \lambda P} + \frac{4V_0aP^{-3}t}{\sigma^2} e^{\frac{-2aP^2}{\sigma^2} t + \lambda P} \]
\[= \lambda + \frac{4aP^{-3}t}{\sigma^2} \]
(as in equation (7)).

Solving for \(P \) in the above equation gives
\[P^{-3} = \frac{-\lambda}{4at}. \]
and
\[P = \left(\frac{-4at}{\lambda a} \right)^{\frac{1}{3}}. \]

Equating this result to equation (9b) gives
\[e^{-rt} \overline{P}_t = \left(\frac{-4at}{\lambda a^2} \right)^{\frac{1}{3}} \]
and
\[\overline{P}_t = \left(\frac{-4at}{\lambda a^2} \right)^{\frac{1}{3}} e^{-rt}. \]
(17)

Equating equation (9a) to equation (16) gives
\[V(P,t) = V_0 \exp \left\{ \frac{-2aP^2}{\sigma^2} t + \lambda P \right\} e^{-rt} \]
(18)

Proposition 2: Let \(D_1 = 0 \) (where \(D_1 \) is the market price of risk), then the solution of equation (3) where \(P^2 \) is not a constant, coincides with the solution of
\[\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2 = 0. \]
(19)

with
\[V(P,t) = 0 \]
(20a)
and
\[\frac{\partial V(P,t)}{\partial P} = 0 \quad \forall t, \]
(20b)
is given by
\[V(P,t) = V_0 e^{-\frac{1}{2}\sigma^2 P^2 + \lambda P} \{ A P^2 + B \} \]
(21)
with
\[AA_1 P^{\lambda_2 - 1} + B \lambda_2 P^{\lambda_2 - 1} = 0 \]
(22)
where \(V \) is the investment output, \(r \) the discount rate, \(\sigma^2 \) the variance of the stock market price, \(A \) and \(B \) are arbitrary constants.

Proof: From equation (8), to equation (9b) we have equation (3) reduced to
\[\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial P^2} \sigma^2 P^2 = 0. \]
(23)

By the method of separation of variables, let the solution of equation (23) be \(V = f(P)g(t) \). Hence, \(\frac{\partial V}{\partial t} = f'g \) and \(\frac{\partial^2 V}{\partial P^2} = f''g \). Equation (23) becomes \(f'g + \frac{1}{2} f''g \sigma^2 P^2 = 0 \). Therefore
\[\frac{1}{2} f''g \sigma^2 P^2 = -f'g. \]
(24)

By separation of variables equation (24) becomes
\[p^2 f'' - \alpha^2 f = 0 \]
(25)
From equation (25) we have
\[p^2 \frac{f''}{f} = \alpha^2 \]
\[p^2 f'' - \alpha^2 f = 0 \]
(26)
We then solve equation (26) using Euler’s substitution method.
Let \(P = e^{-t} \), then
\[lnP = t, \]
and
\[\frac{dt}{P} = \frac{1}{P}. \]
(27)

Also
\[\frac{df}{P} = \frac{df}{dt} \frac{dt}{P} = \frac{1}{P} \frac{df}{dt}, \]
(28)

\begin{align*}
\frac{d^2 f}{P^2} &= \frac{d}{P} \left(\frac{1}{P} \frac{df}{dt} \right) + \frac{1}{P} \frac{d}{dt} \left(\frac{df}{dt} \right) + \frac{df}{dt} \frac{dt}{P} \left(\frac{1}{P} \right), \\
\text{and} \quad \frac{d^2 f}{P^2} &= \frac{1}{P^2} \left(\frac{d^2 f}{dt^2} + \frac{df}{dt} \right). \\
\end{align*}
(29)

Equation (26) becomes
\[\frac{d^2 f}{dt^2} - \alpha^2 f = 0. \]
(30)
Let \(f = e^{\lambda t} \) be the solution of equation (30), hence \(f' = \lambda e^{\lambda t}; f'' = \lambda^2 e^{\lambda t} \). Equation (30) becomes
\[\lambda^2 e^{\lambda t} - \lambda e^{\lambda t} - \alpha^2 e^{\lambda t} = 0. \]
Our auxiliary equation becomes
\[\lambda^2 - \lambda - \alpha^2 = 0. \]
Therefore
$$\lambda_1 = \frac{1 + \sqrt{1 + 4a^2}}{2}$$ \quad (31)$$
and

$$\lambda_2 = \frac{1 - \sqrt{1 + 4a^2}}{2}.$$ \quad (32)

From equation (27) we have \(\ln P = t\), but \(f = e^{\lambda t}\), hence \(f = P^\lambda\). Our general solution becomes

$$f(P) = AP^{\lambda_1} + BP^{\lambda_2}. \quad (33)$$

From equation (25) we have

$$\frac{2g}{\sigma^2} = \alpha^2.$$ \quad (34)

The solution of equation (34) becomes

$$g(t) = V_0 e^{-\frac{1}{2} \alpha^2 t^2}. \quad (35)$$

But \(V(P,t) = f(P)g(t)\), from equations (33) and (35) we have

$$V(P,t) = V_0 e^{-\frac{1}{2} \alpha^2 t^2} \{AP^{\lambda_1} + BP^{\lambda_2}\}. \quad (36)$$

But

$$\frac{\partial V}{\partial P} = 0$$

$$= V_0 e^{-\frac{1}{2} \alpha^2 t^2} \{A\lambda_1 P^{\lambda_1 - 1} + B\lambda_2 P^{\lambda_2 - 1}\}$$

$$= A\lambda_1 P^{\lambda_1 - 1} + B\lambda_2 P^{\lambda_2 - 1} \text{ (as in equation (22)).}$$

Solving for \(P\) in the above equation gives

$$P^{(\lambda_1 - \lambda_2)} = \frac{-B\lambda_2}{A\lambda_1}$$

and

$$P = \left(\frac{-B\lambda_2}{A\lambda_1}\right)^{\frac{1}{\lambda_1 - \lambda_2}}.$$ (37)

Equating this result to equation (9b) gives

$$e^{-rt} \bar{P}_t = \left(\frac{-B\lambda_2}{A\lambda_1}\right)^{\frac{1}{\lambda_1 - \lambda_2}} e^{rt}.$$ (38)

Equating equation (9a) to equation (36) gives

$$V(P,t) = V_0 e^{-\frac{1}{2} \alpha^2 t^2 + rt} \{AP^{\lambda_1} + BP^{\lambda_2}\}$$ \quad (39)

where \(A\) and \(B\) are arbitrary constants; \(\lambda_1\) and \(\lambda_2\) are as defined in equations (31) and (32).

Proposition 3: For \(D_1 \neq 0\), the solution of equation (3) is given as:

$$V(P) = \left(\frac{\alpha g}{\sigma^2 P}\right)^p \left\{A e^{\lambda_1 \frac{\alpha g}{2P}} + B e^{\lambda_2 \frac{\alpha g}{2P}}\right\}. \quad (40)$$

Proof

We take

$$Z = \frac{g}{P}; V(P) = Z^p W(Z) \quad (41)$$

Thus

$$\frac{dz}{dP} = -\frac{\alpha}{P^2} = -\frac{1}{\alpha} Z^2$$

$$\frac{dV}{dP} = \frac{dV}{dZ} \frac{dZ}{dP}$$

$$= -\frac{1}{\alpha} Z^2 (\beta Z^{\beta - 1} W + Z^\beta \frac{dW}{dZ})$$

$$= -\frac{1}{\alpha} (\beta Z^{\beta + 1} W + Z^{\beta + 2} \frac{dW}{dZ}).$$

Hence

$$\frac{d^2 V}{dp^2} = \frac{d^2 V}{dZ^2} \frac{dZ}{dp}$$

$$= -\frac{1}{\alpha} Z^2 (\beta (\beta + 1) Z^\beta W + \beta Z^{\beta + 1} \frac{dW}{dZ} + (\beta + 2) Z^{\beta + 1} \frac{dW}{dZ} + Z^{\beta + 2} \frac{d^2 W}{dZ^2}).$$

In this case \(V\) is not dependent on \(r\). Substituting into the given differential equation we have

$$r Z^\beta W = \frac{\sigma^2}{2} \left(\beta (\beta + 1) Z^\beta W + \beta Z^{\beta + 1} \frac{dW}{dZ} + (\beta + 2) Z^{\beta + 1} \frac{dW}{dZ} + Z^{\beta + 2} \frac{d^2 W}{dZ^2}\right). \quad (42)$$

Cancelling by \(Z^\beta\) and collecting like terms we have

$$0 = \frac{\sigma^2}{2} Z^2 \frac{d^2 W}{dZ^2} + \frac{dW}{dZ} \left(\beta^2 (\beta + 1) Z - r Z + \frac{D_1}{\alpha} Z^2\right)$$

$$+ W \left(\frac{\sigma^2}{2} \beta (\beta + 1) - r \beta + \beta \frac{D_1}{\alpha} Z\right) - rw.$$ (43)

Or

$$0 = \frac{\sigma^2}{2} Z^2 \frac{d^2 W}{dZ^2} + \frac{dW}{dZ} Z \left(\beta^2 (\beta + 1) - r + \frac{D_1}{\alpha} Z\right) + W \left(\frac{\sigma^2}{2} \beta (\beta + 1) - r (\beta + 1) + \beta \frac{D_1}{\alpha} Z\right).$$

Let

$$\beta = 0 \text{ and } = \frac{D_1}{\alpha} Z.$$ (44)

We obtain
\[Z^2 \frac{d^2 W}{dz^2} + 2Z \frac{dW}{dz} - \frac{4W}{\sigma^2} = 0. \] (44)

Let \(\lambda_1 \) and \(\lambda_2 \) be the roots of the equation, then

\[\lambda_1 + \lambda_2 = -\frac{2}{Z} \]
\[\lambda_1 \lambda_2 = -\frac{2r}{Z^2 \sigma^2}. \]

Now,

\[\frac{d^2 W}{dz^2} - (\lambda_1 + \lambda_2) \frac{dW}{dz} - \lambda_1 \lambda_2 W = 0 \]

or

\[\frac{d}{dz} \left(\frac{dW}{dz} - \lambda_2 W \right) = \lambda_1 \left(\frac{dW}{dz} - \lambda_2 W \right) \]

Then

\[\frac{dW}{dz} = Y, Y = \left(\frac{dW}{dz} - \lambda_2 W \right) \]

Which gives \(Y = Ce^{\lambda_2 z} \) with solution

\[e^{-\lambda_2 z} W = \int C e^{(\lambda_1 - \lambda_2)z} dz + B \] (45)

(Where C and B are arbitrary constants).

Hence

\[W(z) = Ae^{\lambda_1 z} + Be^{\lambda_2 z} \] (46)

\[V(P) = Z^\beta W(Z) = \left(\frac{\alpha}{p} \right)^{\beta} \left\{ Ae^{\lambda_1 \frac{\alpha}{pP}} + Be^{\lambda_2 \frac{\alpha}{pP}} \right\} V(P) \]

\[= \left(\frac{\alpha q^n}{2p} \right)^{\beta} \left\{ Ae^{\lambda_1 \frac{\alpha q^n}{pP}} + Be^{\lambda_2 \frac{\alpha q^n}{pP}} \right\}. \] (47)

3. Conclusion

The Models: equations (6), (21) and (39) suggest the optimal prediction of the expected value of assets under fractal scaling exponent \(C^\Phi(E) - V^\Phi(E) \) which we obtained. We derived a seemingly Black Scholes parabolic equation and its solution under given conditions for the prediction of assets values given the fractal exponent. Considering equation (6), we observed that when \(\alpha = 0, \alpha = 0 \), the equation reduces to \(V(P, t) = V_0 e^{rt} \). This means that the expected value is being determined by the interest rate and time. If \(a = 4, \alpha = 2q_n^2 \), equation (6) reduces to \(V(P, t) = V_0 \exp \left\{ -4q_n^2 t + \frac{2q_n^2}{\sigma^2} \right\} e^{rt} \), this also means that the growth rate depends on the investment output increases. On the other hand, if \(a_1 \) and \(a_2 \) are negative, the equation decays exponentially. The other hand, if \(a_1 \) or \(a_2 \) is positive, the equation grows exponentially.

References

