Mathematics Letters

2017; 3(6): 71-76

http://www.sciencepublishinggroup.com/j/ml

doi: 10.11648/j.ml.20170306.13

ISSN: 2575-503X (Print); ISSN: 2575-5056 (Online)

D-Effect Algebra Can Be Made into a D-Total Algebra

Ahmed Allam¹, Nabila Mikhaeel¹, Huda Merdach²

¹Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

Email address:

merdach.2.11@gmail.com (H. Merdach), huda merdach@du.edu.eg (H. Merdach)

To cite this article:

Ahmed Allam, Nabila Mikhaeel, Huda Merdach. D-Effect Algebra Can Be Made into a D-Total Algebra. *Mathematics Letters*. Vol. 3, No. 6, 2017, pp. 71-76. doi: 10.11648/j.ml.20170306.13

Received: April 11, 2017; Accepted: May 20, 2017; Published: November 28, 2017

Abstract: In this paper we prove that every *D-effect algebra* (E, Δ , 0, 1) can be made into a *D-total algebra* (E, Δ , \neg , 1) in such a way that two elements are compatible in (E, Δ , 0, 1) if and only if they commute in (E, Δ , \neg , 1) where x Δ y = (x' + y')'.

Keywords: D-Basic Algebra, Weak D-Basic Algebra, Antitone Involution, D-Effect Algebra, D-Total Algebra

1. Introduction

Chajda, I., Halas, R., Kuhr, J. (2009) introduced similar results for general effect algebras in the context of commutative directoids; they proved that every effect algebra (E,+,0,1) can be made into a total algebra $(E,\oplus,\neg,0)$ in such a way that two elements are compatible in (E,+,0,1) if and only if they commute in $(E,\oplus,\neg,0)$.

In the present paper we introduce and study the concept of a D-basic algebra, this being an algebra $(A, \overline{\triangle}, \neg, 1)$ of type (2, 1, 0) with the property that the underlying poset (A, \leq) , defined by $x \ge y$ if and only if $\neg x \ \underline{\land} \ y = \neg 1$, is a bounded lattice and, for each $a \in A$, the mapping $(x \to \neg x \triangle a)$ is an antitone involution on the principal ideal (a)= $\{x \in A \mid a \ge a\}$ x}. The name 'D-basic algebra' is used because these algebras capture common features of many known structures such as Boolean algebras, orthomodular lattices, lattice Deffect algebras. we have special attention to lattice D-effect algebras, which were originally defined as partial algebras $(E, \Delta, 0, 1)$, but where the presence of the meet operation allowe one to replace partial Δ by D-total $\overline{\Delta}$. The intent of the present paper is to establish similar results for D-effect algebras in the context of commutative directoids; we prove that every *D-effect algebra* (E, Δ , 0, 1) can be made into a Dtotal algebra (E, $\overline{\triangle}$, \neg , 1).

We first recall several relevant notions.

Definition 1.1 [8]: A *commutative directoids* is a commutative, idempotent groupoid (A,.) satisfying the equation x. ((x, y), z) = (x, y), z.

Remark 1.2 For instance, every semilattice is a

commutative directoid. It can easily be seen that the stipulation

$$x \ge y$$
 if and only if x. $y = y$ (1)

defines a partial order on A such that, for every $x, y \in A$, x. y is a lower bound of $\{x, y\}$. Thus the poset (A, \le) is downwards directed. *Conversely*, we may associate a commutative directoid to an arbitrary downwards directed set by letting x. y = y. x be some lower bound of $\{x, y\}$, such that whenever x, y are comparable, x. y = y. x is the least of x. y

Like in semilattices, we could define the dual order by $x \ge y$ if and only if x. y = x, in which case x. y is an upper bound of $\{x, y\}$. But we shall be concerned with the partial order given by (1). Accordingly, we shall write \sqcap instead of. in order to emphasize that $x \sqcap y$ is less than or equal to x, y.

Definition 1.3 [3] An *antitone involution* on a poset (P, \leq) is a mapping $\beta: P \rightarrow P$ such that, for all $x, y \in P$,

$$x \ge y \Rightarrow \beta(y) \ge \beta(x),$$
 (2)

$$\beta \left(\beta(\mathbf{x}) \right) = \mathbf{x}. \tag{3}$$

By a commutative directoid with sectional antitone involutions we shall mean a system $(A, \sqcap, (\beta_a)_{a \in A}, 0, 1)$ where

 (A, \sqcap) is a commutative directoid with a least element 0 and a greatest element 1, and every section (a] is equipped with an antitone involution β_a .

In particular, if (A, \sqcap) is a semilattice, then the underlying poset is a lattice in which $\beta_1(\beta_1(x) \sqcap \beta_1(y))$ is the supremum of $\{x, y\}$, and hence we may say that $(A, \sqcap, (\beta_a)_{a \in A}, 0, 1)$ is a

²Department of Mathematics, Faculty of Science, Damietta University, Damietta, Egypt

lattice with sectional antitone involutions.

2. Weak D-Basic Algebra

Definition 2.1 A *Weak D-basic algebra* is an algebra (A, \square , \neg , 1) of type (2, 1, 0) satisfying the following identities and quasi-identity (where 1 is an abbreviation for \neg 0):

(DW1)
$$x \triangle 1 = x$$
,

$$(DW2) \neg \overline{\neg x} = x,$$

$$(DW3) \neg (\neg x \triangle y) \triangle y = \neg (\neg y \triangle x) \triangle x,$$

(DW4)
$$x \triangle (\neg (\neg (x \triangle y) \triangle y) \triangle z) \triangle z) = 0$$
,

$$(DW5) \neg x \triangle (y \triangle x) = 0,$$

These algebras contains the equations $x \triangle 0 = 0 = 0 \triangle x$. Specifically, if $(A, \triangle, \neg, 0)$ is a *weak D-basic algebra* and if we put

$$x \sqcap y = \neg (\neg x \triangle y) \triangle y$$

then (A, \sqcap) is a commutative directoid with a least element 0 and a greatest element 1, such that the underlying order \leq is given by:

$$x \ge y$$
 if and only if $x \sqcap y = y$ if and only if $\neg x \boxtimes y = 0$ (4)

For each $a \in A$, $(x \to \neg x \ \underline{\triangle} \ a)$ is an antitone involution on $(a] = \{x \in A \mid a \ge x\}$. Conversely, if $(A, \sqcap, (\beta_a)_{a \in A}, 0, 1)$ is a commutative directoid with sectional antitone involutions, then we can define $\underline{\triangle}$ and \neg as $x \ \underline{\triangle} \ y = \beta_y(\beta_1(x) \sqcap y)$ and $\neg x = \beta_1(x)$, respectively, and $(A, \ \underline{\triangle}, \neg, 0)$ becomes a *weak D-basic algebra* in which $x \ \underline{\triangle} \ y = \neg (\neg x \ \underline{\triangle} \ y) \ \underline{\triangle} \ y$ and $\beta_a(x) = \neg x \ \underline{\triangle} \ a$. In every *Weak D-basic algebra*, in addition to the 'meat-like' operation \sqcap , we can introduce the dual 'join-like' operation \sqcup by

$$x \sqcup y = \neg (\neg x \sqcap \neg y). \tag{5}$$

Then we have $x \ge y$ if and only if $x \sqcup y = x$, and the structure (A, \sqcup, \sqcap) is a λ -lattice in the sense of [9], i.e., both (A, \sqcap) and (A, \sqcup) are commutative directoids and the absorption laws

 $x \sqcap (x \sqcup y) = x = x \sqcup (x \sqcap y)$ are satisfied.

Definition 2.2 A *D-basic algebra* is an algebra (A, \square , \neg , 0) of type (2, 1, 0) satisfying the identities (again, $1 = \neg 0$)

(DB1)
$$x \triangle 1 = x$$
,

$$(DB2) \neg \neg x = x$$

(DB3)
$$\neg (\neg x \triangle y) \triangle y = \neg (\neg y \triangle x) \triangle x$$
,

$$(DB4) \neg (\neg (\neg (x \ \underline{\triangle} \ y) \ \underline{\triangle} \ y) \ \underline{\triangle} \ z) \ \underline{\triangle} \ (x \ \underline{\triangle} \ z) = 0.$$

Originally, we required $x \triangle 0 = 0 = 0 \triangle x$.

Every *D-basic algebra* is a *Weak D-basic algebra*, and the above assignment between *weak D-basic algebras* and commutative directoids with sectional antitone involutions, restricted to *D-basic algebras*, furnishes a one-to-one correspondence between *D-basic algebras* and lattices with sectional antitone involutions. In other words, a weak *D-basic algebra* (A, \square , \neg , 0) is a *D-basic algebra* if and only if (A, \sqcap , (β_a) $_{a \in A}$, 0, 1) is a lattice with sectional antitone involutions.

The axioms (DW3) - (DW6) may be rewritten in terms of \geq and \sqcap as follows:

(DW3') $x \sqcap y = y \sqcap x$,

(DW4') $x \ge (x \sqcap y) \sqcap z$,

(DW5') $x \ge y \Delta x$,

Moreover, in every weak D-basic algebra we have

$$x \triangle 0 = 0 = 0 \triangle x, \tag{6}$$

$$1 \ \overline{\triangle} \ \mathbf{x} = \mathbf{x},\tag{7}$$

$$\neg (x \sqcap y) \boxtimes y = \neg x \boxtimes y. \tag{8}$$

Indeed, $0 \triangle x = \neg 1 \triangle (x \triangle 1) = 0$ by (DW1) and (DW5), so $x \triangle 0 = x \triangle (0 \triangle \neg x) = 0$ by (DW2) and (DW5). Further, $1 \triangle x = \neg 0 \triangle x = (\neg 1 \triangle x) \triangle x = (\neg x \triangle 1) \triangle 1 = \neg \neg x = x$ and $\neg (x \sqcap y) \triangle y = \neg (\neg (\neg x \triangle y) \triangle y) \triangle y = (\neg x \triangle y) \cap y = \neg x \triangle y$.

Proposition 2.3 A *D-algebra* $A = (A, \Delta, \neg, 0)$ satisfying (DW1)–(DW4) is a *Weak D-basic algebra* if and only if it satisfies the identity

$$\neg (\neg ((x \sqcap y) \sqcap z) \boxtimes x) \boxtimes (\neg y \boxtimes x) = 0.$$
 (9)

Proof. Let A be a *Weak D-basic algebra*. We have $x \ge x \sqcap y$ and $x \sqcap y \ge (x \sqcap y) \sqcap z$, i.e., $\neg x \bigwedge (x \sqcap y) = 0$ and $\neg (x \sqcap y) \bigwedge (x \sqcap y) \sqcap z) = 0$, which yields

$$\neg (\neg ((x \sqcap y) \sqcap z) \boxtimes x) \boxtimes (\neg (x \sqcap y) \boxtimes x) = 0$$

by (DW6). But \neg (x \sqcap y) \triangle x = \neg (y \sqcap x) \triangle x = \neg y \triangle x by (8), hence A fulfils (9). *Conversely*, assume that A satisfies (DW1)–(DW4) and (9). We first observe that x \sqcap 1 = \neg (\neg x \triangle 1) \triangle 1= \neg \neg x = x, whence 0 \triangle x = \neg 1 \triangle ((1 \sqcap 1) \sqcap x) = 0 by (DW4') and (8). This yields 1 \triangle x = \neg 0 \triangle x = \neg 1 \triangle x) \triangle x = 1 \sqcap x = x and so x \sqcap 0 = \neg (\neg 0 \triangle x) \triangle x = \neg x \triangle ((x \sqcap 1) \sqcap 1) = 0. Further, \neg x \triangle y = 0 entails x \sqcap y = \neg (\neg x \triangle y) \triangle y = \neg 0 \triangle y = 1 \triangle y = y.

Now, if we substitute 0 and $\neg y$ for z and y, respectively, by (9) we obtain $0 = \neg (\neg ((x \sqcap \neg y) \sqcap 0) \boxtimes x) \boxtimes (\neg \neg y \boxtimes x) = \neg (\neg 0 \boxtimes x) \boxtimes (y \boxtimes x) = \neg x \boxtimes (y \boxtimes x)$, which is (DW5). Finally, if $\neg x \boxtimes y = 0$ and $\neg y \boxtimes z = 0$, then $(x \sqcap y) \sqcap z = z$ and by (9) we have

which settles (DW6). Thus A is a Weak D-basic algebra.

Another central concept is that of a *D-effect algebra*. We have a *D-effect algebra* is a system (E, Δ , 0, 1) where 0, 1 are distinguished elements of E and Δ is a partial binary operation on E such that

(DEA1) $x \Delta y = y \Delta x$ if one side is defined,

(DEA2) $(x \Delta y) \Delta z = x \Delta (y \Delta z)$ if one side is defined,

(DEA3) for every $x \in E$ there exists a unique $x' \in E$ with $x' \Delta x = 0$,

(DEA4) if $x \triangle 0$ is defined then x = 1.

Every *D-effect algebra* bears a natural partial order given by $x \ge y$ if and only if $y = x \Delta z$ for some $z \in E$.

The poset (E, \leq) is bounded, 0 is the bottom element and 1 is the top element. If, moreover, (E, \leq) is a lattice, then $(E, \Delta, 0, 1)$ is called a *lattice D-effect algebra*. In every *D-effect algebra*, a partial binary operation ∇ can be defined as follows:

 $x \nabla y$ exists and equals z if and only if $z = (x' \Delta y)'$.

(Thus $x \nabla y$ is defined if and only if $y \ge x$.) The system (E, \le , ∇ , 0, 1) so obtained is called a *D-poset*.

When doing calculations, the following properties of *D*-effect algebras and *D*-posets will be useful:

Remark 2.4

- (1) $x \Delta 1 = x, x \nabla 1 = x, x \nabla x = 1, 0 \nabla x = x'$;
- (2) $x \ge y$ if and only if $y' \ge x'$;
- (3) $x \Delta y$ is defined if and only if $x \ge y'$ if and only if $y \ge x'$; in this case, $x \Delta y = (x' \nabla y)' = (y' \nabla x)'$;
- (4) If $x \Delta y$ is defined, then so is $x_1 \Delta y_1$ for all $x_1 \ge x$ and $y_1 \ge y$;
- (5) $x \Delta y = z$ if and only if $x' = y \Delta z'$ if and only if $y' = x \Delta z'$;
- (6) If $x \ge y$, then $x \nabla y = (x' \Delta y)' \ge x$ and $x \nabla (x \nabla y) = y$;
- (7) $x \ge y \ge z$ implies $z \nabla y \ge z \nabla x$ and $(z \nabla x) \nabla (z \nabla y) = y \nabla x$; in particular $x' \nabla y' = y \nabla x$;
- (8) $x \ge y \ge z$ implies $y \nabla x \ge z \nabla x$ and $(z \nabla x) \nabla (y \nabla x) = z \nabla y$.

3. The Relation Between D-Effect Algebras and Weak D-Basic Algebras

Theorem 3.1 Let $A = (A, \Delta, \neg, 0)$ be a *Weak D-basic algebra*. Define the partial binary relation Δ on A as follows: $x \Delta y$ is defined if and only if $x \ge \neg y$, and in this case $x \Delta y = x \Delta y$. Then $\mathcal{E}(A) = (A, \Delta, 0, 1)$ is a D-effect algebra if and only if A satisfies the quasi-identity

$$x \ge \neg y \& x \boxed{\lambda} y \ge \neg z \Rightarrow (x \boxed{\lambda} y) \boxed{\lambda} z = x \boxed{\lambda} (z \boxed{\lambda} y). (10)$$

Moreover, over Weak D-basic algebras, (10) is equivalent to the identity

$$(x \boxtimes y) \boxtimes (\neg (x \boxtimes y) \sqcup z) = (x \sqcup \neg y) \boxtimes ((\neg (x \boxtimes y) \sqcup z) \\ \boxtimes y). \tag{11}$$

Proof. Suppose that $\mathcal{E}(A)$ is a *D-effect algebra*. If $x \ge \neg y$ and $x \boxed{\Delta} y \ge \neg z$, then $x \Delta y$ and $(x \Delta y) \Delta z$ exist, hence $y \Delta z$ and $x \Delta (y \Delta z)$ also exist and $(x \boxed{\Delta} y) \boxed{\Delta} z = (x \Delta y) \Delta z = x \Delta (y \Delta z) = x \Delta (z \Delta y) = x \boxed{\Delta} (z \boxed{\Delta} y)$.

Conversely, let A satisfy (10). We shall verify that $\mathcal{E}(A)$ is a D-algebra:

(EA1) Assume that a Δ b is defined. Since a $\geq \neg$ b if and only if $b \geq \neg a$, it follows that b Δ a is defined, too. By (10) we have $(1 \geq \neg a \& 1 \ \underline{\triangle} \ a \geq \neg b) \Rightarrow a \ \underline{\triangle} \ b = b \ \underline{\triangle} \ a$, so that a $\geq \neg$ b entails a Δ b = b Δ a.

(EA2) Let $(a \Delta b) \Delta c$ be defined, i.e., $a \ge \neg b$ and $a \Delta b = a$ $\triangle b \ge \neg c$. Since $b \ge a$ $\triangle b \ge \neg c$, also $b \Delta c = c \Delta b$ exists. Further, by (W6), $b \ge a$ $\triangle b \ge \neg c$ implies c $\triangle b = \neg c$ $\triangle b \ge \neg c$ implies c $\triangle b = \neg c$ $\triangle b \ge \neg c$ is defined. Analogously, if $a \Delta (b \Delta c)$ exists, then so does $(a \Delta b) \Delta c$. By (10) we have $(a \Delta b) \Delta c = (a \triangle b) \triangle c = a \triangle b$

 $(c \triangle b) = a \triangle (c \triangle b) = a \triangle (b \triangle c).$

(EA3) Clearly, we have \neg a \triangle a = 0. If b \triangle a = 0, then b $\ge \neg$ a since b \triangle a is defined, and \neg b \ge a (i.e., b $\le \neg$ a) since b \triangle a = 0. Thus b = \neg a.

(EA4) Finally, if a Δ 0 is defined, then a $\geq \neg$ 0 = 1, so a= 1. It remains to show that (10) and (11) are equivalent over weak *D*-basic algebras.

In any weak *D*-basic algebra, $x \sqcup \neg y \ge \neg y$ and, using (8),

$$(x \mathrel{\sqcup} \neg y) \mathrel{\boxtimes} y = \neg (\neg x \mathrel{\sqcap} y) \mathrel{\boxtimes} y = x \mathrel{\boxtimes} y \geq (x \mathrel{\boxtimes} y) \mathrel{\sqcap} \neg z = \neg (\neg (x \mathrel{\boxtimes} y) \mathrel{\sqcup} z).$$

Therefore, if (10) holds, then we have

which is (11). On the other hand, (11) evidently implies (10).

Corollary 3.2 Let $A = (A, \Delta, \neg, 0)$ be a *D-basic algebra* and let $\mathcal{E}(A) = (A, \Delta, 0, 1)$ be as in Theorem 3.1. Then $\mathcal{E}(A)$ is a *lattice D-effect algebra* if and only if A satisfies the quasi-identity (10).

However, as the following example shows, this is not true for *Weak D-basic algebras* since many different *Weak D-basic algebras* can determine the same *D-effect algebra*.

Example 3.3 Let (A, \leq) be the poset

Figure 1. Weak D-basic algebra.

and let the sections (1] = A, (c] and (d] be equipped with the following antitone involutions:

$$\begin{split} \beta_1 &: 1 \rightarrow 0, \, 0 \rightarrow 1, \, d \rightarrow a, \, a \rightarrow d, \, b \rightarrow c, \, c \rightarrow b; \\ \beta_c &: c \rightarrow 0, \, 0 \rightarrow c, \, b \rightarrow a, \, a \rightarrow b, \end{split}$$

$$\beta_d$$
: $d \rightarrow 0$, $0 \rightarrow d$, $b \rightarrow b$, $a \rightarrow a$,

the other sections admit unique antitone involutions. There are three possible ways in which we can associate a commutative directoid to (A, \ge) , and consequently, there are three *weak D-basic algebras* with the underlying poset (A, \le) :

Table 1. Show the first way to weak D-basic algebra when $c \sqcap_1 d = a$.

Δ_1	0	a	b	c	d	1	_	
0	0	0	0	0	0	0	1	
a	0	0	0	a	0	a	d	
b	0	0	0	0	b	b	c	
c	0	a	0	a	b	c	b	
d	0	0	b	b	a	d	a	
1	0	b	b	c	d	1	0	

In (table 2.) for c \sqcap_2 d = b we get $A_2 = (A, \overline{\Delta}_2, \overline{}, 1)$ where

Table 2. Show the second way to weak D-basic algebra when $c \sqcap_2 d = b$.

Δ_2	0	A	В	c	d	1	Г
0	0	0	0	0	0	0	1
a	0	0	0	b	0	a	d
b	0	0	0	0	a	b	c
c	0	a	0	a	b	c	b
d	0	0	В	b	a	d	a
1	0	a	В	c	d	1	0

In (table 3.) for $c \sqcap_3 d = 0$ we get $A_3 = (A, \Lambda_3, \neg, 1)$ where

Table 3. Show the third way to weak D-basic algebra when $c \sqcap_3 d = 0$.

A 3	0	a	В	с	d	1	7
0	0	0	0	0	0	0	1
a	0	0	0	C	0	a	d
b	0	0	0	0	d	b	c
c	0	a	0	a	b	c	b
d	0	0	b	b	a	d	a
1	0	a	b	c	d	1	0

All these *Weak D-basic algebras* induce the same *D-effect algebra* $\mathcal{E}(A_1) = \mathcal{E}(A_2) = \mathcal{E}(A_3) = (A, \Delta, 0, 1)$ that clear in *(table 4.)* where

Table 4. Show that the three ways in Weak D-basic algebras induce the same D-effect algebra.

Δ	0	A	b	c	d	1	7
0						0	1
a					0	a	d
b				0		b	c
c			0	a	b	c	b
d		0		b	a	d	a
1	0	a	b	c	d	1	0

Where for any $x, y \in A$ we have $x \Delta y =$. means $x \Delta y$ does not exist. Let $E = (E, \Delta, 0, 1)$ be a *D-effect algebra*. Since the underlying poset (E, \leq) is bounded, it can be organized into a commutative directoid (E, \sqcap) . We shall simply say that the pair (E, \sqcap) is a *D-effect algebra* with an associated commutative directoid.

Theorem 3.4 Let (E, \sqcap) be a *D-effect algebra* $E = (E, \Delta, 0, 1)$ with an associated commutative directoid. Define

$$x \triangle y = (x' \cap y)' \triangle y$$
 and $\neg x = x'$.

Then DB $(E, \sqcap) = (E, \underline{\square}, \neg, 1)$ is a *Weak D-basic algebra* satisfying (10). *Moreover*, \mathcal{E} (DB (E, \sqcap)), the *D-effect algebra* assigned to DB (E, \sqcap) by *Theorem 3.1*, is just E.

Proof. First, we prove that for each $a \in E$, $\beta_a \colon x \to x' \Delta a$ is an antitione involution on (a]. For all $x \in (a]$, we have $x' \Delta a$ is defined since $x' \ge a'$, and $x' \Delta a \le a$. Thus β_a is well defined. We also have β_a (β_a (x)) = ($x' \Delta a$)' $\Delta a = x$ because, by ($x' \Delta a$)' $\Delta a = x$ if and only if ($x' \Delta a$)'' = $x' \Delta a$. Finally, if $x' \Delta a \ge x' \Delta a$ is an antitione involution.

We know that if we put $x \underline{\triangle}_1 y = \beta_y$ (β_1 (x) $\exists y$) and $\exists x = x'$, then (E, $\underline{\triangle}_1$, $\exists y = \beta_y$) becomes a *Weak D-basic algebra*. But $x \underline{\triangle}_1 y = \beta_y$ (β_1 (x) $\exists y = y$) $\exists y = x$ $\exists y \in y \in y$. Therefore, DB (E, $\exists y \in y \in y$) is a *Weak D-basic algebra*.

Now, we prove that DB (E, \sqcap) satisfies the quasi-identity (10). It is obvious that whenever x Δ y is defined in E (i.e., x

 $\geq y' = \neg y$).

Then $x \triangle y = (x' \cap y)' \triangle y = x \triangle y$. Hence if $x \ge \neg y$ and $x \triangle y \ge \neg z$, then $(x \triangle y) \triangle z = (x \triangle y) \triangle z = x \triangle (y \triangle z) = x \triangle (z \triangle y) = x \triangle (z \triangle y)$, which settles (10). The last assertion is clear.

Example 3.5 Let E be the *D-effect algebra* we have obtained in Example 3.3. If we put $c \sqcap_1 d = a$ then DB (E, \sqcap_1) is just the *Weak D-basic algebra* A_1 from Example 3.3. Analogously, if $c \sqcap_2 d = b$ then DB (E, \sqcap_2) = A_2 , and for $c \sqcap_3 d = 0$ we have DB (E, \sqcap_3) = A_3 .

There is a one-to-one correspondence between *Weak D-basic algebras* satisfying (10) (respectively, (11)) and pairs (E, \sqcap) where $E = (E, \Delta, 0, 1)$ is a *D-effect algebra* with an associated commutative directoid (E, \sqcap) . Namely, the assignment

$$A \rightarrow (\mathcal{E}(A), \sqcap),$$

where $\mathcal{E}(A)$ is as in Theorem 3.1 and $x \sqcap y = \neg (\neg x \boxtimes y) \boxtimes y$, is a bijection the inverse of which is

$$(E, \sqcap) \rightarrow DB (E, \sqcap),$$

where DB (E, \sqcap) is defined in Theorem 3.4.

Let $E = (E, \Delta, 0, 1)$ be a D-effect algebra. When constructing (E, Π) , we so far have not taken care of existing infima we only required that $x \Pi y = y \Pi x$ is $\min\{x, y\}$ provided x, y are comparable. Of course, this means that DB (E, Π) need not be a *D-basic algebra* even though E is a *lattice D-effect algebra*. The situation can be improved if we define Π in such a way that the following condition holds:

If
$$\inf\{x, y\}$$
 exists, then $x \sqcap y = y \sqcap x = \inf\{x, y\}$. (12)

Corollary 3.6 Let (E, \sqcap) be a *D-effect algebra* with an associated commutative directoid that satisfies the condition (12). Then DB (E, \sqcap) is a *weak D-basic algebra*, and if E is *a lattice D-effect algebra*, then DB (E, \sqcap) is a *D-basic algebra*.

Proof. By *Theorem 3.4*, DB (E, \sqcap) is a *Weak D-basic algebra*. Further, we know that DB (E, \sqcap) is a *D-basic algebra* if and only if the corresponding commutative directoid with sectional antitone involutions (E, \sqcap , $(\beta_a)_{a \in A}$, 0, 1), where $\beta_a(x) = x' \Delta$ a for $x \le a$, is actually a lattice with sectional antitone involutions, which is the case when (E, \sqcap) is a semilattice. Hence, if E is a *lattice D-effect algebra*, then, owing to (12), (E, \sqcap) is a semilattice, and it follows that DB (E, \sqcap) is a *D-basic algebra*.

4. Compatibility in D-Effect Algebra

Difination 4.1 We shall say that two elements x, y in a *Deffect algebra* E are said to be *compatible* (in symbols $x \leftrightarrow y$) if there exist u, $v \in E$ such that $u \ge x$, $y \ge v$ and $x \nabla u = v \nabla y$. This is equivalent to the existence of $z \in E$ with $x, y \ge z, z \nabla x \ge y$ and $z \nabla y \ge x$. But $z \nabla x \ge y \ge z$ implies $z \nabla y \ge z \nabla (z \nabla x) = x$, and conversely, $z \nabla y \ge x \ge z$ entails $z \nabla x \ge z \nabla (z \nabla y) = y$. Therefore,

In general we have:

Proposition 4.2 Let (E, \sqcap) and DB (E, \sqcap) be as in *Theorem* 3.4. For every $x, y \in E$, if $x \boxtimes y = y \boxtimes x$, then $x \leftrightarrow y$.

Proof. Let $z = x \boxtimes y = y \boxtimes x$, i.e., $(x' \sqcap y)' \Delta y = (y' \sqcap x)' \Delta x$. Then $x, y \ge z$ and $z \nabla x = ((y' \sqcap x)' \Delta x) \nabla x = (y' \sqcap x)' \ge y$, so that $x \leftrightarrow y$.

The reverse implication fails to be true. Let E be the D-

effect algebra from Examples 3.3 and 3.5. It can easily be seen that every two elements are compatible, while Δ_i in A2 and A3 is not commutative (for instance, $a \leftrightarrow c$, but a $\Delta_i c \neq c$ Δ_i a for i = 2, 3).

In order to overcome this disadvantage, we define the 'meet-like' operation \sqcap in a *D-effect algebra* $E = (E, \Delta, 0, 1)$ in the following way:

If
$$x \leftrightarrow y$$
, then $x \sqcap y = y \sqcap x = z$ where $z \le x$, y and $z \nabla x \ge y$. At the same time, $x' \sqcap y' = y' \sqcap x' = (x \nabla (z \nabla y))'$. (14)

We must show that the condition is correct.

If $z \le x$, y and $z \nabla x \ge y$, then $x \nabla (z \nabla y) = y \nabla (z \nabla x)$. Indeed, if we put $w = x \nabla (z \nabla y)$ then $w \Delta (z \nabla y) = x$ and $w \Delta (z \nabla y) \Delta (z \nabla x) = x \Delta (z \nabla x) = z$, whence $w \Delta (z \nabla x) = z \nabla (z \nabla y) = y$. So $w = y \nabla (z \nabla x)$ and $(x \nabla (z \nabla y))' = (y \nabla (z \nabla x))'$.

Obviously, $w' \le x'$, y'.

We have w' ∇ x' = x ∇ w = x ∇ (x ∇ (z ∇ y)) = z ∇ y = y' ∇ z' \geq y'. by using remark 2.4(ii)

Finally, $(x' \nabla (w' \nabla y'))' = z$. Indeed, $(x' \nabla (w' \nabla y'))' = x \Delta (w' \nabla y') = x \Delta (y \nabla w)$, thus $(x' \nabla (w' \nabla y'))' = z$ if and only if $y \nabla w = z \nabla x$, which is true since $y \nabla w = y \nabla (y \nabla (z \nabla x)) = z \nabla x$.

Also observe that the condition (14) is 'compatible' with (12) in the sense that we may take $z = \inf\{x, y\}$ whenever inf $\{x, y\}$ exists. More precisely, if $x \sqcap y = \inf\{x, y\}$ and $x \leftrightarrow y$, then $(x \sqcap y) \nabla x \geq y$, and if, in addition, also inf $\{x', y'\}$ exists, then $\inf\{x', y'\} = x' \sqcap y' = (x \nabla ((x \sqcap y) \nabla y))'$.

Indeed, $x \leftrightarrow y$ yields the existence of z with $z \le x$, y and z ∇ x \ge y. Since x \sqcap y = inf{x, y}, we have z \le x \sqcap y \le x, whence y \le z ∇ x \ge (x \sqcap y) ∇ x.

Further, assume that $\inf\{x', y'\}$ exists (equivalently, $\sup\{x, y\}$ exists). We have to show that $x \nabla((x \sqcap y) \nabla y) = \sup\{x, y\}$. Let $w = x \nabla ((x \sqcap y) \nabla y)$. By what we have established above we know that $w = y \nabla ((x \sqcap y) \nabla x)$ and $w \ge x$, y. Thus $w \ge \sup\{x, y\} \ge x$, y, whence

$$\sup \{x, y\} \nabla w \ge x \nabla w = x \nabla (x \nabla ((x \sqcap y) \nabla y)) = (x \sqcap y) \nabla y,$$

$$\sup \{x, y\} \nabla w \ge y \nabla w = y \nabla (y \nabla ((x \sqcap y) \nabla x)) = (x \sqcap y) \nabla x.$$

It is known that sup $\{(x \sqcap y)\nabla y, (x \sqcap y)\nabla x\} = 1$ if $x \sqcap y$ is $\inf\{x, y\}$, and consequently, the above inequalities imply $\sup\{x, y\}\nabla w = 1$, so that $\sup\{x, y\} = w$ as desired.

Summarizing, we have proved that in every *D-effect algebra* $E = (E, \Delta, 0, 1)$, the operation \square can always be defined in such a way that it obeys the requirements of the condition (14). The next result says, that x, y are compatible in E if and only if x, y commute in DB $(E, \square) = (E, \underline{\square}, \neg, 0)$.

Theorem 4.3 Let (E, \sqcap) be a *D-effect algebra* with an associated commutative directoid satisfying condition (14). Then DB (E, \sqcap) is a *Weak D-basic algebra* such that, for all $x, y \in E$, the following are equivalent:

(i) $x \leftrightarrow y$,

(ii) $(x \sqcap y) \nabla y = x \nabla (x \sqcup y)$,

(iii) $x \triangle y = y \triangle x$.

Proof. (i) ⇔ (ii): Let $x \leftrightarrow y$. Then $(x \sqcap y) \nabla y \ge x$ and $x \sqcup y = (x' \sqcap y')' = x \nabla ((x \sqcap y) \nabla y)$, whence $x \nabla (x \sqcup y) = x \nabla (x\nabla((x \sqcap y)\nabla y)) = (x \sqcap y) \nabla y$. Conversely, if $(x \sqcap y) \nabla y = x \nabla (x \sqcup y)$, then certainly $x \leftrightarrow y$ because $x \sqcap y \le x$, y and $(x \sqcap y) \nabla y \ge x$.

(i) \Leftrightarrow (iii): By Proposition 4.2 we know that $x \boxtimes y = y \boxtimes x$ implies $x \leftrightarrow y$. Hence, Then alsox' $\leftrightarrow y$, which means $(x' \sqcap y) \nabla y = x' \nabla (x' \sqcup y)$ by (ii). We then have $(x \boxtimes y)' = ((x' \sqcap y)' \Delta y)' = (x' \sqcap y) \nabla y = x' \nabla (x' \sqcup y) = (x' \sqcup y)' \nabla x = (y' \sqcap x) \nabla x = ((y' \sqcap x)' \Delta x)' = (y \boxtimes x)'$, thus $x \boxtimes y = y \boxtimes x$.

Definition 4.4 By a *block* of a *Weak D-basic algebra* (A, \triangle , \neg , 0) we mean a subset DB of A which is maximal with respect to the property that $x \triangle y = y \triangle x$ for all $x, y \in DB$. It is evident that every element of A is contained in a block.

Theorem 4.5 Let (E, \sqcap) be a *D-effect algebra* with an associated commutative directoid satisfying the condition (14). Assume that for all $x, y, z \in E$, if $x \leftrightarrow y, x \leftrightarrow z$ and $y \Delta z$ is defined, then $x \leftrightarrow y \Delta z$. Then a block DB of DB (E, \sqcap) is a subalgebra of DB (E, \sqcap) if and only if $x \sqcap y \in DB$ for all $x, y \in DB$.

Proof. Let DB be a block of DB (E, \sqcap). In view of Theorem 4.3, DB is a maximal set of pairwise compatible elements (i.e., DB is a maximal subset of E such that $x \leftrightarrow y$ for all $x, y \in DB$). Since $x \leftrightarrow 0$ and $x \leftrightarrow 1$ for each $x \in E$ (this follows at once from (13)), it is plain that 0, $1 \in DB$. Also, $x \leftrightarrow y$ if and only if $x' \leftrightarrow y$, hence $x \in DB$ if and only if $x' \leftrightarrow y \in DB$.

Suppose DB is closed under \sqcap . If $x, y \in DB$, then also $(x' \sqcap y)' \in DB$. Thus $(x' \sqcap y)' \leftrightarrow z$ and $y \leftrightarrow z$ for every $z \in DB$, whence $x \boxtimes y = (x' \sqcap y)' \Delta y \in DB$, proving that DB is a subalgebra of DB (E, \sqcap) . Conversely, if DB is a subalgebra of DB (E, \sqcap) , then it is automatically closed with respect to \sqcap because $x \sqcap y = \neg (\neg x \boxtimes y) \boxtimes y$. The condition that $x \leftrightarrow y$ and $x \leftrightarrow z$ together yield $x \leftrightarrow y \Delta z$ (if $y \Delta z$ exists) holds in *lattice D-effect algebras*, however, the next example shows that the operation Δ in *Theorem 4.5* cannot be omitted.

Example 4.6 Let E be the set consisting of the following pairs of integers: 0 = (0, 0), a = (1, 2), b = (1, 1), c = (2, 1), d = (2, 3), e = (3, 3), f = (3, 2), g = (2, 2) and 1 = (4, 4). If we equip E with Δ defined as the restriction to E of Δ , then $E = (E, \Delta, 0)$ becomes a *D-effect algebra*. The underlying poset of E is as follows (notice that $(x, y) \geq (u, v)$ if and only if (x, y) = (u, v), or x > u & y > v) where

 $(x, y) \triangle (u, v) = ((x, y)' + (u, v)')'$ and + is the usual point in addition and ((x, y)' = (4 - x, 4 - y)):

Figure 2. D-effect algebra.

Table 5. Show that $E \setminus \{g\}$ is a block of the assigned weak D-basic algebra $DB(E, \Gamma)$,

Δ	0	A	b	C	d	e	f	g	1	7
0	0	0	0	0	0	0	0	0	0	1
a	0	a	0	0	a	a	0	b	a	f
b	0	0	0	0	b	0	b	0	b	e
c	0	0	0	C	0	c	c	b	c	d
d	0	A	b	0	d	a	b	g	d	c
e	0	A	0	C	a	g	c	b	e	b
f	0	0	b	C	b	c	f	b	f	a
g	0	A	0	C	a	b	b	0	g	G
1	0	A	b	C	d	e	f	g	1	0

It is obvious that $a \leftrightarrow e$, but a is not compatible with g = e Δ e. Indeed, the only common lower bound of a, g is 0, and 0 ∇ a = f \geq g as well as 0 ∇ g = g \geq a, thus a \leftrightarrow g by (13).

In accordance with the conditions (12) and (14), we put $f \sqcap e = c$ (= $f \Delta e$) and $e \sqcap d = a$ (= $e \Delta d$); in the other cases \sqcap coincides with inf. A direct inspection shows that $E \setminus \{g\}$

is a block of the assigned *weak D-basic algebra* DB(E, \sqcap) (see the table below (*table 5*.) which is closed under \sqcap , but it is not closed under \boxtimes as e Δ e = g. On the other hand, {0, b, e, g, 1} is both a block and a subalgebra of DB (E, \sqcap).

References

- Allam, A. A. E. M., Mikhaeel, N. N., & Merdach, H. H. (2016). Commutative groupoid algebra. Journal of Mathematical and Computational Science, 6(2), 262.
- [2] Chajda, I., and Länger, H.: "States on basic algebras." Mathematica Bohemica 142.2 (2017): 197-210.
- [3] Chajda, I., Halas, R., Kuhr, J.: Every effect algebra can be made into a total algebra. Algebra universalis. 61(2): 139-150 (2009).
- [4] Chajda, I., Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carolin. 44(4): 577-585 (2003).
- [5] Chajda, I., Halaš, R., Kuhr, J.: Many-valued quantum algebras. Algebra Universalis 60, 63–90 (2009).
- [6] Chajda, I., Halaš, R., Kuhr, J.: Semilattice Structures. Heldermann, Lemgo (2007).
- [7] Dvurečenskij, A., and Hyčko, M.: "Hyper effect algebras." Fuzzy Sets and Systems (2017).
- [8] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logic. Found. Phys. 24, 1325–1346 (1994).
- [9] Jezek, J., Quackenbush, R.: Directoids: algebraic models of up-directed sets. Algebra Universalis 27, 49–69 (1990).
- [10] Kopka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994).
- [11] Kühr, J., Chajda, I., and Halaš, R.: "The join of the variety of MV-algebras and the variety of orthomodular lattices." International Journal of Theoretical Physics 54. 12: 2244 -2244(2015).
- [12] Searle, SR., Khuri, AI.: Matrix algebra useful for statistics. John Wiley & Sons; (2017).
- [13] Stefan, F., Ronco, M., and Showers, P.: "Polytopes and algebras of grafted trees: Stellohedra." arXiv preprint arXiv: 1608.08546 (2016).