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1. Introduction

Chajda, 1., Halas, R., Kuhr, J. (2009) introduced similar
results for general effect algebras in the context of
commutative directoids; they proved that every effect algebra
(E,+, 0, 1) can be made into a total algebra (E, [J,~, 0) in
such a way that two elements are compatible in (E,+, 0, 1) if
and only if they commute in (E, [J,—, 0).

In the present paper we introduce and study the concept of
a D-basic algebra, this being an algebra (A,[Al, —, 1) of type
(2, 1, 0) with the property that the underlying poset (A, <),
defined by x > y if and only if =x [A] y = —1, is a bounded
lattice and, for each a € A, the mapping (x — — x [A] a) is an
antitone involution on the principal ideal (a]= {x € A |a >
x}. The name ‘D-basic algebra’ is used because these
algebras capture common features of many known structures
such as Boolean algebras, orthomodular lattices, lattice D-
effect algebras. we have special attention to lattice D-effect
algebras, which were originally defined as partial algebras
(E, A, 0, 1), but where the presence of the meet operation
allowe one to replace partial A by D-total [A]. The intent of
the present paper is to establish similar results for D-effect
algebras in the context of commutative directoids; we prove
that every D-effect algebra (E, A, 0, 1) can be made into a D-
total algebra (E, [Al, —, 1).

We first recall several relevant notions.

Definition 1.1 [8]: A commutative directoids is a
commutative, idempo-tent groupoid (A,.) satisfying the
equation X. ((X. y). z) = (X. y). z.

Remark 1.2 For instance,

every semilattice is a

commutative directoid. It can easily be seen that the
stipulation

x>yifandonlyifx.y=y 1

defines a partial order on A such that, for every x,y € A, x. y
is a lower bound of {x, y}. Thus the poset (A, <) is
downwards directed. Conversely, we may associate a
commutative directoid to an arbitrary downwards directed set
by letting x. y = y. X be some lower bound of {x, y}, such
that whenever X, y are comparable, X. y = y. X is the least of
X, Y.

Like in semilattices, we could define the dual order by x >
y if and only if x. y = X, in which case x. y is an upper bound
of {x, y}. But we shall be concerned with the partial order
given by (1). Accordingly, we shall write M instead of. in
order to emphasize that x M y is less than or equal to x, y.

Definition 1.3 [3] An antitone involution on a poset (P, <)
is a mapping B: P — P such that, for all x, y € P,

xzy=B(y) =B x), 2)
B (Bx)) =x. (3)

By a commutative directoid with sectional antitone
involutions we shall mean a system (A, MM, (B.)aca, 0, 1) where

(A, M) is a commutative directoid with a least element 0
and a greatest element 1, and every section (a] is equipped
with an antitone involution f3,.

In particular, if (A, M) is a semilattice, then the underlying
poset is a lattice in which B,(B;(x) M By(y)) is the supremum
of {x, y}, and hence we may say that (A, M, (Bs)sca, 0, 1) is a
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lattice with sectional antitone involutions.

2. Weak D-Basic Algebra

Definition 2.1 A Weak D-basic algebra is an algebra (A,
[Al, =, 1) of type (2, 1, 0) satisfying the following identities
and quasi-identity (where 1 is an abbreviation for — 0):

DWhHx A 1=x,

(DW2) - x =X,

OW3) - (xA y) @ y =~ (yA % [ x,

OWHxACCCEAY Ey A2 E2 -0,

(DOW3) ~x A (y A x) = 0,

DOW6) ~x Al y=0& -y [N z=0=~(~z A 0By
A x) =0.

These algebras contains the equations x [A] 0 = 0= 0 [A] x.
Specifically, if (A, [A], —, 0) is a weak D-basic algebra and if
we put

xNy=-CxAy Ay,

then (A, M) is a commutative directoid with a least element 0
and a greatest element 1, such that the underlying order < is
given by:

x>yifand only ifx My=yifand only if ~x [A| y=0 (4)

For eacha € A, (x — — x [A] a) is an antitone involution
on (a] = {x € A | a>x}. Conversely, if (A,M, (Ba)aca, 0, 1) is
a commutative directoid with sectional antitone involutions,
then we can define [A] and — as x [A] y = By(B1(x)M y) and — x
= By(x), respectively, and (A, [A, —, 0) becomes a weak D-
basic algebra in whichx Al y=—(—x [A] y) [Al y and B,(x) =
—x [Al a. In every Weak D-basic algebra, in addition to the
‘meat-like’ operation M, we can introduce the dual ‘join-like’
operation Ll by

xUy=—(xMN"y). &)

Then we have x > y if and only if x U y = X, and the
structure (A, U, M) is a A-lattice in the sense of [9], i.e., both
(A, M) and (A, U) are commutative directoids and the
absorption laws

x M (xUy)=x=xU(x My)are satisfied.

Definition 2.2 A D-basic algebra is an algebra (A, [A], =,
0) of type (2, 1, 0) satisfying the identities (again, 1 = —0)

(DB x Al 1 =x,

(DB2) ~—x=x,

OB3)~(xQAly) Aly=—(Cy A x Ax,

OBH~CxAy) ANy N2 A xNANz=0.

Originally, we required x [A] 0=0=0 [A] x.

Every D-basic algebra is a Weak D-basic algebra, and the
above assignment between weak D-basic algebras and
commutative directoids with sectional antitone involutions,
restricted to D-basic algebras, furnishes a one-to-one
correspondence between D-basic algebras and lattices with
sectional antitone involutions. In other words, a weak D-
basic algebra (A, [N, —, 0) is a D-basic algebra if and only if
(A,N, (Ba)aca, 0, 1) is a lattice with sectional antitone
involutions.

The axioms (DW3) - (DW6) may be rewritten in terms of
> and M as follows:

DW3YxNy=ynx,

DOW4)x=(xNy)n z,

(DW5Y x>y [Al %,

DW6eY x>y &y>z=>—z[ANx>—y[A x.

Moreover, in every weak D-basic algebra we have

x[AJ0=0=0[A x, (6)
1A x=x, @)
~xny)Aly=—xAy. (®)

Indeed, 0 Al x=—1[A] (x [A] 1)=0Dby (DW1) and (DW3),
sox [A] 0=x[A (0 [A] ~x)=0 by (DW2) and (DW5).
Further, | Al x=—=0 A x=C1Ax)[Alx=Cx[A 1) A1
=-—x=xand~xNy)Aly=-CCxQAyQly ANy=
Cx@Alyny=-x[Q@ly.

Proposition 2.3 A D-algebra A = (A, [A], —, 0) satisfying
(DW1)-(DW4) is a Weak D-basic algebra if and only if it
satisfies the identity

“C(xny)ynz) Ax) Ay ANx=0. &)

Proof. Let A be a Weak D-basic algebra. We have x > x I
yandxMNy>(xNy)MNzie, xA(xMNy)=0and—(xN
v) [A] (x N'y) 1 z) =0, which yields

“CEnyng AN CEY) Ax)=0

by (DW6). But—~(x Ny) Al x=—(y M x) [A| x=—y [A]x by
(8), hence A fulfils (9). Conversely, assume that A satisfies
(DW1)-(DW4) and (9). We first observe that x M 1 =~ (—x
A DA 1=—=x=x,whence 0 Al x=—"1A (1N 1)nx)=
0 by (DW4") and (8). This yields 1 [A] x=—0 A x=——1 [A]
x)[Nx=1nNx=xandsoxMN0==(—0[A x) Al x=—x A
x==x [A] (x M 1) 11 1) = 0. Further, =x [A] y = 0 entails x 1
y="(xAlyAly="0Ay=1Qy=y.

Now, if we substitute 0 and —y for z and y, respectively, by
(9) weobtain0=—(—(xN=y) N0 A XA C——y[A x)=
“COAX A Ax=—xA (A x),
which is (DW5). Finally, if = x [A] y = 0 and —~ y [A]z = 0, then
(x My) N z=zand by (9) we have

0=~CxnynzaAx)ACyQAx
=~CzAx QA Cy A,

which settles (DW6). Thus A is a Weak D-basic algebra.

Another central concept is that of a D-effect algebra. We
have a D-effect algebra is a system (E, A, 0, 1) where 0, 1 are
distinguished elements of E and A is a partial binary
operation on E such that

(DEA1) x A y =y A x if one side is defined,

(DEA2) (x Ay) Az=x A (y A z) if one side is defined,

(DEA3) for every x € E there exists a unique x' € E with x'
Ax=0,

(DEA4) if x A 0 is defined then x = 1.

Every D-effect algebra bears a natural partial order given by

x >yifand only if y = x A z for some z € E.
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The poset (E, <) is bounded, 0 is the bottom element and 1
is the top element. If, moreover, (E, <) is a lattice, then (E, A,
0, 1) is called a lattice D-effect algebra. In every D-effect
algebra, a partial binary operation [ can be defined as
follows:
x Oy exists and equals z ifand only if z= (x" A y)".
(Thus x Oy is defined if and only if y > x.) The system (E,
<, 0, 0, 1) so obtained is called a D-poset.
When doing calculations, the following properties of D-
effect algebras and D-posets will be useful:
Remark 2.4
() xAl=x,xO1=x,x0x=1,00x=x"
(2) x>yifandonly ify' > x";
(3) x Ay is defined if and only if x > y' if and only if y >
x'; in this case, x Ay =(x'Oy)' = (y' O x)};
(4) Ifx Ay is defined, then so is x; A y; for all x;> x and
Yi2Y;
(5) xAy=zifand only if x'=y A z'if and only if y' = x
Az,
6) Ifx>y,thenxOy=x'Ay)>2xandx O xOy)=y;
(7) x=2y=2zimplieszOy>z0Oxand (zUOx) O (zOy)
=y O x; inparticular x' Oy' =y O x;
®) x>y=>zimpliesy Ox>zOxand (zOx) O(y Ox) =
zOy.

3. The Relation Between D-Effect
Algebras and Weak D-Basic Algebras

Theorem 3.1 Let A = (A, [A, =, 0) be a Weak D-basic
algebra. Define the partial binary relation A on A as follows:
x Ay is defined if and only if x > —y, and in this case X A y =
x [Al y. Then €(A) = (A, A, 0, 1) is a D-effect algebra if and
only if A satisfies the quasi-identity

x2~y&xNyz—z=>xRAy Nz=x[A (A y.(10)

Moreover, over Weak D-basic algebras, (10) is equivalent
to the identity

CAYANCEAyUz=xU-y) AN Ay U2
Al ). )

Proof. Suppose that €(A) is a D-effect algebra. If x > —y
and x [A| y > —z, then x Ay and (x A y) A z exist, hence y A z
and x A (yA z) also existand (x [A| y) [A| z=(x Ay) Az=x
AyAZ)=xAzAY)=x [ ([ y).

Conversely, let A satisfy (10). We shall verify that €(A) is
a D-algebra:

(EAT1) Assume that a A b is defined. Since a > —b if and
only if b > —a, it follows that b A a is defined, too. By (10)
wehave (1>2~a& 1 [AJa>—b)=>alA|b=b[A a, so that a
>—bentailsaAb=bAa.

(EA2) Let (a Ab) A ¢ be defined, i.e.,a>—"bandaAb=a
[Alb>—c.Sinceb>a[A]b>—c¢c,also b A c=c Ab exists.
Further, by (W6), b >a [A] b> —c impliesc A/ b=—c[Al b
>—(al[Alb)[Ab=—anb=—a,soaA(cAb)=aA(bAc)
is defined. Analogously, if a A (b A ¢) exists, then so does (a
Ab)Ac.By (10) we have (aAb)Ac=@[A|b) Al c=a A

(c[Alb)=aA(cAb)=aA(bAc).

(EA3) Clearly, we have ~aAa=0.IfbAa=0,thenb>—
asince b A a is defined, and ~b>a (i.e.,b<—a) since b [A] a
=0.Thusb=—a.

(EA4) Finally, ifa A 0 is defined, thena>—0=1, so a= 1.

It remains to show that (10) and (11) are equivalent over
weak D-basic algebras.

In any weak D-basic algebra, x U —y > —y and, using (8),

xU-yAy=-CxnyyAly=xAy>x@Alyyn—z=
~(~(x[Ay) uz).

Therefore, if (10) holds, then we have

Ay A Ay Uz)=((xu-y) Ay) A C&Ay U
z)=(xU-y) A (~x Ay Uz Ay,

which is (11). On the other hand, (11) evidently implies (10).

Corollary 3.2 Let A = (A, |Al, —, 0) be a D-basic algebra
and let E(A) = (A, A, 0, 1) be as in Theorem 3.1. Then €(A) is
a lattice D-effect algebra if and only if A satisfies the quasi-
identity (10).

However, as the following example shows, this is not true
for Weak D-basic algebras since many different Weak D-
basic algebras can determine the same D-effect algebra.

Example 3.3 Let (A, <) be the poset

1

0

Figure 1. Weak D-basic algebra.

and let the sections (1] = A, (c] and (d] be equipped with the
following antitone involutions:
f:1—-0,0—>1,d—>a,a—d,b—c,c—ob;
Be:c—0,0—>c,b—aa—b,
Bg:d— 0,0 >d,b—>b,a—a,
the other sections admit unique antitone involutions. There are
three possible ways in which we can associate a commutative
directoid to (A, =), and consequently, there are three weak D-
basic algebras with the underlying poset (A, <):
In (table 1.) for ¢ M, d = a we get A, = (A, [A] ,—, 1) where

Table 1. Show the first way to weak D-basic algebra when c 11, d = a.

Al 0 a b c d 1 -
0 0 0 0 0 0 0 1
a 0 0 0 a 0 a d
b 0 0 0 0 b b c
€ 0 a 0 a b € b
d 0 0 b b a d a
1 0 b b ® d 1 0

In (table 2.) for ¢ M, d = b we get A, = (A, [Al»,~, 1) where
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Table 2. Show the second way to weak D-basic algebra when ¢ T, d = b.

A2 0 A B c d 1 -
0 0 0 0 0 0 0 1
a 0 0 0 b 0 a d
b 0 0 0 0 a b c
€ 0 a 0 a b ® b
d 0 0 B b a d a
1 0 a B c d 1 0

In (table 3.) for ¢ M3d = 0 we get A; = (A, [Al;, —, 1) where

Table 3. Show the third way to weak D-basic algebra when c I1;d = 0.

Als 1} a B c d 1 =
0 0 0 0 0 0 0 1
a 0 0 0 C 0 a d
b 0 0 0 0 d b ®
€ 0 a 0 a b ® b
d 0 0 b b a d a
1 0 a b c d 1 0

All these Weak D-basic algebras induce the same D-effect
algebra € (A)) = € (Ay) = € (A;3) = (A, A, 0, 1) that clear in
(table 4.) where

Table 4. Show that the three ways in Weak D-basic algebras induce the same
D-effect algebra.

A 0 A b c d 1 -
0 . 0 1
a . 0 a d
b . 0 b c
c 0 a c b
d . . b a d a
1 0 a b ® d 1 0

Where for any x, y € A we have X A y =. means X A y does
not exist. Let E = (E, A, 0, 1) be a D-effect algebra. Since the
underlying poset (E, <) is bounded, it can be organized into a
commutative directoid (E, M). We shall simply say that the
pair (E, M) is a D-effect algebra with an associated
commutative directoid.

Theorem 3.4 Let (E, M) be a D-effect algebra E = (E, A, 0,
1) with an associated commutative directoid. Define

xAy=xnNy)Ayand —x =X

Then DB (E, N) = (E, [Al, =, 1) is a Weak D-basic algebra
satisfying (10). Moreover, € (DB (E, M)), the D-effect
algebra assigned to DB (E, M) by Theorem 3.1, is just E.

Proof. First, we prove that foreacha € E, B, x »> x'Aais
an anititone involution on (a]. For all x € (a], we have x' A a
is defined since x' > a', and x' A a < a. Thus f, is well defined.
We also have B, (B, (x)) = (x' A a)' A a=x because, by (v), (x'
Aa) Aa=xifand onlyif (x' Aa)"=aAx' Finally, ifa>x >
y, then B,(y) = y' A a > x' A a = B,(x), proving that B, is an
anititone involution.

We know that if we put x[Al;y = B, (B; (x) M y) and ~x =
x', then (E, [Al;,~, 1) becomes a Weak D-basic algebra. But
XAy=B,Bx)Ny)=(xADNy)Ay=xNy)'Ay=x
[Al y. Therefore, DB (E, M) is a Weak D-basic algebra.

Now, we prove that DB (E, M) satisfies the quasi-identity
(10). It is obvious that whenever x A y is defined in E (i.e., x

x <> yifand only if there is zsuch that x, y>zand z 0 x > y.

2y ="y).

Thenx AJ y=x My)Ay=xAy. Hence if x >~y and x
Ay>—zthenxAy) Alz=xAy)Az=xA(yAz)=xA
(z Ay)=x[A (z [A] y), which settles (10). The last assertion
is clear.

Example 3.5 Let E be the D-effect algebra we have
obtained in Example 3.3. If we put ¢ M; d = a then DB (E,
My) is just the Weak D-basic algebra A, from Example 3.3.
Analogously, if ¢ M, d = b then DB (E, M,) = A,, and for ¢ M3
d =0 we have DB (E, M3) = A;.

There is a one-to-one correspondence between Weak D-basic
algebras satisfying (10) (respectively, (11)) and pairs (E, M)
where E = (E, A, 0, 1) is a D-effect algebra with an associated
commutative directoid (E, ). Namely, the assignment

A —(E(A), N,

where € (A) is as in Theorem 3.1 andx My==(—x A y) [A
y, is a bijection the inverse of which is

(E,n) — DB (E, ),

where DB (E, M) is defined in Theorem 3.4.

Let E = (E, A, 0, 1) be a D-effect algebra. When
constructing (E, M), we so far have not taken care of existing
infima we only required that x My =y M x is min{X, y}
provided x, y are comparable. Of course, this means that DB
(E, M) need not be a D-basic algebra even though E is a
lattice D-effect algebra. The situation can be improved if we
define M in such a way that the following condition holds:

If inf{x, y} exists, then x My =y N x = inf{x, y}. (12)

Corollary 3.6 Let (E, M) be a D-effect algebra with an
associated commutative directoid that satisfies the condition
(12). Then DB (E, M) is a weak D-basic algebra, and if E is a
lattice D-effect algebra, then DB (E, M) is a D-basic algebra.

Proof. By Theorem 3.4, DB (E, M) is a Weak D-basic
algebra. Further, we know that DB (E, M) is a D-basic
algebra if and only if the corresponding commutative
directoid with sectional antitone involutions (E, M, (B.)aca, 0,
1), where B, (x) = x' A a for x < a, is actually a lattice with
sectional antitone involutions, which is the case when (E, M)
is a semilattice. Hence, if E is a lattice D-effect algebra, then,
owing to (12), (E, M) is a semilattice, and it follows that DB
(E, N) is a D-basic algebra.

4. Compatibility in D-Effect Algebra

Difination 4.1 We shall say that two elements X, y in a D-
effect algebra E are said to be compatible (in symbols x < y)
if there existu, v € E such thatu>x,y>vandx Du=v Oy.
This is equivalent to the existence of z € E with x, y >z, z [J
x>yandzUOy>x.ButzOx>y>zimplieszOy>z U (z
Ox)=x, and conversely,zy>x>zentailszOx >z U (z
Oy) =y. Therefore,

(13)
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In general we have:

Proposition 4.2 Let (E, 1) and DB (E, M) be as in Theorem
3.4.Foreveryx,y € E, ifx A] y=y [Al x, then x & y.

Proof Letz=x N y=y Al x,ie, XMy Ay=(y nx)
Ax.Thenx,y>zandzOx=(y' N x)Ax)Ox=(y' N x)>
y, so that x & y.

The reverse implication fails to be true. Let E be the D-

IfxeoythenxMNy=yMNx=zwherez<x,yand z [l x>y. Atthe same time,x' My =y' Nx'=(x Oz Ovy)).

We must show that the condition is correct.

Ifz<x,yandzUOx2>y,thenx O (z0Oy)=y O (z UOx).
Indeed, if weputw=x 0 (zOy)thenwA (zOy)=xand w
AzOyAEzOx)=xA(zUOx)=2z whencew A (zOx)=2z
OOy =y.Sow=yO@EOx)andxOzOy)'=(y O(z
0 x))"

Obviously, w' <x', y'"

We have w' O x' = xOw = x0(x0 (zOy)) =z0y=y' 0 z' >
y'. by using remark 2.4(ii)

Finally, (x' O (w' 0 y") = z. Indeed, X' O (W' O y")'=x A
W Oy)=xA(yOw), thus (x' O (W' Oy") =z if and only
ify Ow=2z0x, whichis true sincey Ow=y O (y O (zUO
x)) =z UOx.

effect algebra from Examples 3.3 and 3.5. It can casily be
seen that every two elements are compatible, while [A]; in A2
and A3 is not commutative (for instance, a <> ¢, but a [A]; ¢ #
c[Ajafori=2,3).

In order to overcome this disadvantage, we define the
‘meet-like’ operation MM in a D-effect algebra E = (E, A, 0, 1)
in the following way:

(14

Also observe that the condition (14) is ‘compatible’ with
(12) in the sense that we may take z = inf {x, y} whenever inf
{x, y} exists. More precisely, if x My =inf {X, y} and x &y,
then (x M y) O x >y, and if, in addition, also inf {x', y'}
exists, then inf {x", y'} =x'Ny' =x0O((xNy) Oy)).

Indeed, x < y yields the existence of z with z < x, y and z
Ox >y. Since x Ny = inf{x, y}, we have z<x My < x,
whencey<z[Ox>(xNy)Ox.

Further, assume that inf{x', y'} exists (equivalently, sup{x,
y} exists). We have to show that x 0((x M y) O y) = sup{x,
y}. Let w=x 0O ((x M y) O y). By what we have established
above we know that w=y O ((x M y) O x) and w > x, y. Thus
w > sup{X, y} =X, y, whence

sup {x, y} Ow>xOw=xOxO(xNy) Oy)=xny) dy,

sup {x, y} Ow>yOw=yO@yO(xny Ox)=xMNy)Ox.

It is known that sup {(x M y)dy, (x 0 y)Ox} =1ifx N
y is inf{x, y}, and consequently, the above inequalities
imply sup{x, y}[0 w =1, so that sup{x, y} = w as desired.

Summarizing, we have proved that in every D-effect
algebra E = (E, A, 0, 1), the operation M can always be
defined in such a way that it obeys the requirements of the
condition (14). The next result says, that x, y are
compatible in E if and only if x, y commute in DB (E, 1)
=(E, A, —, 0).

Theorem 4.3 Let (E, M) be a D-effect algebra with an
associated commutative directoid satisfying condition (14).
Then DB (E, M) is a Weak D-basic algebra such that, for all
x, y € E, the following are equivalent:

DHxey,

(i) xNy) Oy=xU(xUy),

(i) x Ay =y [A x.

Proof. () & (ii): Letx & y. Then (x N y) Dy>x and x U
y=x'Ny)=x0O(xMNy)Oy), whence x I (x U'y) =x
OxO((x N y)dy)) =(x Ny)Oy. Conversely, if(x Ny) Oy =
x O (x U y), then certainly x <> y because x My < x, y and (x
Ny)Oy>x.

(i) © (iii): By Proposition 4.2 we know that x A y =y [A
x implies x <> y. Hence, Then alsox' <> y, which means (x' N
y) Oy=x"0(x'Uy) by (ii). We then have (x [A] y)' = ((x'
YAy =x'Ny) Uy=x'0x"Uy)=xUy)Ox=(y nx)
Ox=((y' M x)Ax)'=(y[A x), thus x [A] y = y[A] x.

Definition 4.4 By a block of a Weak D-basic algebra (A,
[Al, =, 0) we mean a subset DB of A which is maximal with
respect to the property that x [A] y =y [A] x for all x, y € DB.
It is evident that every element of A is contained in a block.

Theorem 4.5 Let (E, M) be a D-effect algebra with an
associated commutative directoid satisfying the condition
(14). Assume that forallx,y,z€ E,ifx - y,x <> zand y
A z is defined, then x <> y A z. Then a block DB of DB (E,
M) is a subalgebra of DB (E, M) if and only if x N y € DB
for all x, y € DB.

Proof. Let DB be a block of DB (E, M). In view of
Theorem 4.3, DB is a maximal set of pairwise compatible
elements (i.e., DB is a maximal subset of E such that x «
y for all x, y € DB). Since x «» 0 and x <> 1 for each x € E
(this follows at once from (13)), it is plain that 0, 1 € DB.
Also, x < y if and only if x' <> y, hence x € DB if and
only if ~x =x' € DB.

Suppose DB is closed under M. If x, y € DB, then also
(x'My) eDB. Thus (xX' My) < zandy < z for every z €
DB, whence x [A] y = (x' M y)' Ay € DB, proving that DB
is a subalgebra of DB (E, M). Conversely, if DB is a
subalgebra of DB (E, M), then it is automatically closed
with respect to M because x My =—(—x [Al y) [Al y. The
condition that x <> y and x < z together yield x <> y A z
(if y A z exists) holds in lattice D-effect algebras,
however, the next example shows that the operation A in
Theorem 4.5 cannot be omitted.

Example 4.6 Let E be the set consisting of the following
pairs of integers: 0 = (0, 0), a = (1, 2), b=(1, 1), ¢c =
2,1),d=(2,3),e=@3,3),f=3,2),g=(2,2)and 1 =
(4, 4). If we equip E with A defined as the restriction to E
of [Al, then E = (E, A, 0) becomes a D-effect algebra. The
underlying poset of E is as follows (notice that (x, y) >
(u, v) if and only if (x, y) = (u, v), or x > u & y > v) where
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%, y) Al (u, v) = ((x, y)' + (u, v))' and + is the usual point
in addition and ((x, y)' = (4 - x, 4 - y)):

1

0

Figure 2. D-effect algebra.

Table 5. Show that E \ {g} is a block of the assigned weak D-basic algebra
DB (E, 1),

is a block of the assigned weak D-basic algebra DB(E, )
(see the table below (table 5.) which is closed under M, but it
is not closed under [A] as € A € = g. On the other hand, {0, b,
e, g, 1} is both a block and a subalgebra of DB (E, M).

A 0 A b C d e f g 1 -
0 0 0 0 0 0 0 0 0 0 1
a 0 a 0 0 a a 0 b a f
b 0 0 0 0 b 0 b 0 b e
® 0 0 0 C 0 c ®© b © d
d 0 A b 0 d a b g d c
e 0 A 0 C a g G b e b
f 0 0 b C b c f b f a
g 0 A 0 C a b b 0 g G
1 0 A b C d e f g 1 0

It is obvious that a <> e, but a is not compatible with g=e¢
A e. Indeed, the only common lower bound of a, g is 0, and 0
Oa=fxgaswellas0 0 g=g % a, thus a «» g by (13).

In accordance with the conditions (12) and (14), we put
frme=c(=fAe)and e M d=a (=e¢ A d); in the other cases
M coincides with inf. A direct inspection shows that E \ {g}
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