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Abstract: In this paper we prove that every D-effect algebra (E, ∆, 0, 1) can be made into a D-total algebra (E, ⍍, ¬, 1) in 

such a way that two elements are compatible in (E, ∆, 0, 1) if and only if they commute in(E, ⍍, ¬, 1) where x ∆ y =(x' + y')'. 
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1. Introduction 

Chajda, I., Halas, R., Kuhr, J. (2009) introduced similar 

results for general effect algebras in the context of 

commutative directoids; they proved that every effect algebra 

(E,+, 0, 1) can be made into a total algebra (E, ⊕,¬, 0) in 

such a way that two elements are compatible in (E,+, 0, 1) if 

and only if they commute in (E, ⊕,¬, 0). 

In the present paper we introduce and study the concept of 

a D-basic algebra, this being an algebra (A,⍍, ¬, 1) of type 

(2, 1, 0) with the property that the underlying poset (A, ≤), 

defined by x ≥ y if and only if ¬x ⍍ y = ¬1, is a bounded 

lattice and, for each a ∊ A, the mapping (x → ¬ x ⍍ a) is an 

antitone involution on the principal ideal (a]= {x ∈ A | a ≥ 

x}. The name ‘D-basic algebra’ is used because these 

algebras capture common features of many known structures 

such as Boolean algebras, orthomodular lattices, lattice D-

effect algebras. we have special attention to lattice D-effect 

algebras, which were originally defined as partial algebras 

(E, ∆, 0, 1), but where the presence of the meet operation 

allowe one to replace partial ∆ by D-total ⍍. The intent of 

the present paper is to establish similar results for D-effect 

algebras in the context of commutative directoids; we prove 

that every D-effect algebra (E, ∆, 0, 1) can be made into a D-

total algebra (E, ⍍, ¬, 1). 

We first recall several relevant notions. 

Definition 1.1 [8]: A commutative directoids is a 

commutative, idempo-tent groupoid (A,.) satisfying the 

equation x. ((x. y). z) = (x. y). z.  

Remark 1.2 For instance, every semilattice is a 

commutative directoid. It can easily be seen that the 

stipulation  

x ≥ y if and only if x. y = y                         (1) 

defines a partial order on A such that, for every x, y ∊ A, x. y 

is a lower bound of {x, y}. Thus the poset (A, ≤) is 

downwards directed. Conversely, we may associate a 

commutative directoid to an arbitrary downwards directed set 

by letting x. y = y. x be some lower bound of {x, y}, such 

that whenever x, y are comparable, x. y = y. x is the least of 

x, y. 

Like in semilattices, we could define the dual order by x ≥ 

y if and only if x. y = x, in which case x. y is an upper bound 

of {x, y}. But we shall be concerned with the partial order 

given by (1). Accordingly, we shall write ⊓ instead of. in 

order to emphasize that x ⊓ y is less than or equal to x, y. 

Definition 1.3 [3] An antitone involution on a poset (P, ≤) 

is a mapping β: P → P such that, for all x, y ∊ P,  

x ≥ y ⇒ β (y) ≥ β (x),                                 (2) 

β (β(x)) = x.                                       (3) 

By a commutative directoid with sectional antitone 

involutions we shall mean a system (A, ⊓, (βa)a∈A, 0, 1) where 

(A, ⊓) is a commutative directoid with a least element 0 

and a greatest element 1, and every section (a] is equipped 

with an antitone involution βa. 

In particular, if (A, ⊓) is a semilattice, then the underlying 

poset is a lattice in which β1(β1(x) ⊓ β1(y)) is the supremum 

of {x, y}, and hence we may say that (A, ⊓, (βa)a∈A, 0, 1) is a 
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lattice with sectional antitone involutions. 

2. Weak D-Basic Algebra 

Definition 2.1 A Weak D-basic algebra is an algebra (A, 

⍍, ¬, 1) of type (2, 1, 0) satisfying the following identities 

and quasi-identity (where 1 is an abbreviation for ¬ 0): 

(DW1) x ⍍ 1 = x, 

(DW2) ¬ ¬x = x, 

(DW3) ¬ (¬x⍍ y) ⍍ y = ¬ (¬y⍍ x) ⍍ x, 

(DW4) x ⍍ (¬ (¬ (¬ (x ⍍ y) ⍍ y) ⍍ z) ⍍ z) = 0, 

(DW5) ¬ x ⍍ (y ⍍ x) = 0, 

(DW6) ¬ x ⍍ y = 0 & ¬ y ⍍ z = 0 ⇒ ¬ (¬ z ⍍ x)⍍(¬ y 

⍍ x) =0. 

These algebras contains the equations x ⍍ 0 = 0= 0 ⍍ x. 

Specifically, if (A, ⍍, ¬, 0) is a weak D-basic algebra and if 

we put  

x ⊓ y = ¬ (¬ x ⍍ y) ⍍ y, 

then (A, ⊓) is a commutative directoid with a least element 0 

and a greatest element 1, such that the underlying order ≤ is 

given by: 

x ≥ y if and only if x ⊓ y = y if and only if ¬ x ⍍ y = 0  (4) 

For each a ∈ A, (x → ¬ x ⍍ a) is an antitone involution 

on (a] = {x ∊ A | a ≥ x}. Conversely, if (A,⊓, (βa)a∈A, 0, 1) is 

a commutative directoid with sectional antitone involutions, 

then we can define ⍍ and ¬ as x ⍍ y = βy(β1(x)⊓ y) and ¬ x 

= β1(x), respectively, and (A, ⍍, ¬, 0) becomes a weak D-

basic algebra in which x ⍍ y = ¬ (¬ x ⍍ y) ⍍ y and βa(x) = 

¬x ⍍ a. In every Weak D-basic algebra, in addition to the 

‘meat-like’ operation ⊓, we can introduce the dual ‘join-like’ 

operation ⊔ by 

x ⊔ y = ¬ (¬ x ⊓ ¬ y).                              (5) 

Then we have x ≥ y if and only if x ⊔ y = x, and the 

structure (A, ⊔, ⊓) is a λ-lattice in the sense of [9], i.e., both 

(A, ⊓) and (A, ⊔) are commutative directoids and the 

absorption laws 

x ⊓ (x ⊔ y) = x = x ⊔ (x ⊓ y) are satisfied. 

Definition 2.2 A D-basic algebra is an algebra (A, ⍍, ¬, 

0) of type (2, 1, 0) satisfying the identities (again, 1 = ¬ 0) 

(DB1) x ⍍ 1 = x, 

(DB2) ¬ ¬ x = x, 

(DB3) ¬ (¬ x ⍍ y) ⍍ y = ¬ (¬ y ⍍ x) ⍍x, 

(DB4) ¬ (¬ (¬ (x ⍍ y) ⍍ y) ⍍ z) ⍍ (x ⍍ z) = 0. 

Originally, we required x ⍍ 0 = 0 = 0 ⍍ x. 

Every D-basic algebra is a Weak D-basic algebra, and the 

above assignment between weak D-basic algebras and 

commutative directoids with sectional antitone involutions, 

restricted to D-basic algebras, furnishes a one-to-one 

correspondence between D-basic algebras and lattices with 

sectional antitone involutions. In other words, a weak D-

basic algebra (A, ⍍, ¬, 0) is a D-basic algebra if and only if 

(A,⊓, (βa)a∈A, 0, 1) is a lattice with sectional antitone 

involutions. 

The axioms (DW3) - (DW6) may be rewritten in terms of 

≥ and ⊓ as follows: 

(DW3') x ⊓ y = y ⊓ x,  

(DW4') x ≥ (x ⊓ y)⊓ z,  

(DW5') x ≥ y ⍍ x, 

(DW6') x ≥ y & y ≥ z ⇒ ¬ z ⍍ x ≥ ¬ y ⍍ x.  

Moreover, in every weak D-basic algebra we have 

x ⍍ 0 = 0 = 0 ⍍ x,                                   (6) 

1 ⍍ x = x,                                         (7) 

¬ (x ⊓ y) ⍍ y = ¬ x ⍍ y.                             (8) 

Indeed, 0 ⍍ x = ¬ 1 ⍍ (x ⍍ 1) = 0 by (DW1) and (DW5), 

so x ⍍ 0 = x ⍍ (0 ⍍ ¬ x) = 0 by (DW2) and (DW5). 

Further, 1 ⍍ x = ¬ 0 ⍍ x = (¬ 1 ⍍ x) ⍍ x = (¬ x ⍍ 1) ⍍ 1 

= ¬ ¬ x = x and ¬ (x ⊓ y) ⍍ y = ¬ (¬ (¬ x ⍍ y) ⍍ y) ⍍ y = 

(¬ x ⍍ y) ⊓ y = ¬ x ⍍ y. 

Proposition 2.3 A D-algebra A = (A, ⍍, ¬, 0) satisfying 

(DW1)–(DW4) is a Weak D-basic algebra if and only if it 

satisfies the identity 

¬ (¬ ((x ⊓ y) ⊓ z) ⍍ x) ⍍ (¬ y ⍍ x) = 0.            (9) 

Proof. Let A be a Weak D-basic algebra. We have x ≥ x ⊓ 

y and x ⊓ y ≥ (x ⊓ y) ⊓ z, i.e., ¬ x ⍍ (x ⊓ y) = 0 and ¬ (x ⊓ 

y) ⍍ ((x ⊓ y) ⊓ z) = 0, which yields 

¬ (¬ ((x ⊓ y) ⊓ z) ⍍ x) ⍍ (¬ (x ⊓ y) ⍍ x) = 0 

by (DW6). But ¬ (x ⊓ y) ⍍ x = ¬ (y ⊓ x) ⍍ x = ¬ y ⍍x by 

(8), hence A fulfils (9). Conversely, assume that A satisfies 

(DW1)–(DW4) and (9). We first observe that x ⊓ 1 = ¬ (¬ x 

⍍ 1) ⍍ 1= ¬ ¬ x = x, whence 0 ⍍ x = ¬1 ⍍ ((1 ⊓ 1) ⊓ x) = 

0 by (DW4') and (8). This yields 1 ⍍ x = ¬0 ⍍ x = ¬ ¬1 ⍍ 

x) ⍍ x = 1 ⊓ x = x and so x ⊓ 0 = ¬ (¬0 ⍍ x) ⍍ x = ¬ x ⍍ 

x = ¬ x ⍍ ((x ⊓ 1) ⊓ 1) = 0. Further, ¬x ⍍ y = 0 entails x ⊓ 

y = ¬ (¬x ⍍ y) ⍍ y = ¬ 0 ⍍ y = 1 ⍍ y = y. 

Now, if we substitute 0 and ¬y for z and y, respectively, by 

(9) we obtain 0 = ¬ (¬ ((x ⊓ ¬ y) ⊓ 0) ⍍ x) ⍍ (¬ ¬ y ⍍ x) = 

¬ (¬ 0 ⍍ x) ⍍ (y ⍍ x) = ¬ x ⍍ (y ⍍ x), 

which is (DW5). Finally, if ¬ x ⍍ y = 0 and ¬ y ⍍z = 0, then 

(x ⊓ y) ⊓ z = z and by (9) we have  

0 = ¬ (¬ ((x ⊓ y) ⊓ z) ⍍ x) ⍍ (¬ y ⍍ x)  

= ¬ (¬ z ⍍ x) ⍍ (¬ y ⍍ x), 

which settles (DW6). Thus A is a Weak D-basic algebra. 

Another central concept is that of a D-effect algebra. We 

have a D-effect algebra is a system (E, ∆, 0, 1) where 0, 1 are 

distinguished elements of E and ∆ is a partial binary 

operation on E such that 

(DEA1) x ∆ y = y ∆ x if one side is defined, 

(DEA2) (x ∆ y) ∆ z = x ∆ (y ∆ z) if one side is defined, 

(DEA3) for every x ∊ E there exists a unique x' ∊ E with x' 

∆ x = 0, 

(DEA4) if x ∆ 0 is defined then x = 1. 

Every D-effect algebra bears a natural partial order given by  

x ≥ y if and only if y = x ∆ z for some z ∊ E. 
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The poset (E, ≤) is bounded, 0 is the bottom element and 1 

is the top element. If, moreover, (E, ≤) is a lattice, then (E, ∆, 

0, 1) is called a lattice D-effect algebra. In every D-effect 

algebra, a partial binary operation ∇ can be defined as 

follows: 

x ∇ y exists and equals z if and only if z = (x' ∆ y)'. 

(Thus x ∇ y is defined if and only if y ≥ x.) The system (E, 

≤, ∇, 0, 1) so obtained is called a D-poset. 

When doing calculations, the following properties of D-

effect algebras and D-posets will be useful: 

Remark 2.4 

(1) x ∆ 1 = x, x ∇ 1 = x, x ∇ x = 1, 0 ∇ x = x'; 

(2) x ≥ y if and only if y' ≥ x'; 

(3) x ∆ y is defined if and only if x ≥ y' if and only if y ≥ 

x'; in this case, x ∆ y = (x' ∇ y)' = (y' ∇ x)'; 

(4) If x ∆ y is defined, then so is x1 ∆ y1 for all x1 ≥ x and 

y1 ≥ y; 

(5) x ∆ y = z if and only if x' = y ∆ z' if and only if y' = x 

∆ z'; 

(6) If x ≥ y, then x ∇ y = (x' ∆ y)' ≥ x and x ∇ (x ∇ y) = y; 

(7) x ≥ y ≥ z implies z ∇ y ≥ z ∇ x and (z ∇ x) ∇ (z ∇ y) 

= y ∇ x; in particular x' ∇ y' = y ∇ x; 

(8) x ≥ y ≥ z implies y ∇ x ≥ z ∇ x and (z ∇ x) ∇(y ∇ x) = 

z ∇ y. 

3. The Relation Between D-Effect 

Algebras and Weak D-Basic Algebras 

Theorem 3.1 Let A = (A, ⍍, ¬, 0) be a Weak D-basic 

algebra. Define the partial binary relation ∆ on A as follows: 

x ∆ y is defined if and only if x ≥ ¬ y, and in this case x ∆ y = 

x ⍍ y. Then Ԑ(A) = (A, ∆, 0, 1) is a D-effect algebra if and 

only if A satisfies the quasi-identity 

x ≥ ¬ y & x ⍍ y ≥ ¬ z ⇒ (x ⍍ y) ⍍ z = x ⍍ (z ⍍ y). (10) 

Moreover, over Weak D-basic algebras, (10) is equivalent 

to the identity 

(x ⍍ y) ⍍ (¬ (x ⍍ y) ⊔ z) = (x ⊔ ¬ y) ⍍ ((¬ (x ⍍ y) ⊔ z) 

⍍ y).                                         (11) 

Proof. Suppose that Ԑ(A) is a D-effect algebra. If x ≥ ¬y 

and x ⍍ y ≥ ¬z, then x ∆ y and (x ∆ y) ∆ z exist, hence y ∆ z 

and x ∆ (y ∆ z) also exist and (x ⍍ y) ⍍ z = (x ∆ y) ∆ z = x 

∆(y ∆ z) = x ∆ (z ∆ y) = x ⍍ (z ⍍ y). 

Conversely, let A satisfy (10). We shall verify that Ԑ(A) is 

a D-algebra: 

(EA1) Assume that a ∆ b is defined. Since a ≥ ¬b if and 

only if b ≥ ¬a, it follows that b ∆ a is defined, too. By (10) 

we have (1 ≥ ¬ a & 1 ⍍ a ≥ ¬ b) ⇒ a ⍍ b = b ⍍ a, so that a 

≥ ¬ b entails a ∆ b = b ∆ a. 

(EA2) Let (a ∆ b) ∆ c be defined, i.e., a ≥ ¬ b and a ∆ b = a 

⍍ b ≥ ¬ c. Since b ≥ a ⍍ b ≥ ¬ c, also b ∆ c = c ∆ b exists. 

Further, by (W6), b ≥ a ⍍ b ≥ ¬c implies c ⍍ b = ¬¬ c ⍍ b 

≥ ¬ (a ⍍ b) ⍍ b = ¬ a ⊓ b = ¬ a, so a ∆ (c ∆ b) = a ∆ (b ∆ c) 

is defined. Analogously, if a ∆ (b ∆ c) exists, then so does (a 

∆ b) ∆ c. By (10) we have (a ∆ b) ∆ c = (a ⍍ b) ⍍ c = a ⍍ 

(c ⍍ b) = a ∆ (c ∆ b) = a ∆ (b ∆ c). 

(EA3) Clearly, we have ¬ a ∆ a = 0. If b ∆ a = 0, then b ≥ ¬ 

a since b ∆ a is defined, and ¬ b ≥ a (i.e., b ≤ ¬ a) since b ⍍ a 

= 0. Thus b = ¬ a. 

(EA4) Finally, if a ∆ 0 is defined, then a ≥ ¬ 0 = 1, so a= 1. 

It remains to show that (10) and (11) are equivalent over 

weak D-basic algebras. 

In any weak D-basic algebra, x ⊔ ¬ y ≥ ¬ y and, using (8), 

(x ⊔ ¬ y) ⍍ y = ¬ (¬ x ⊓ y) ⍍ y = x ⍍ y ≥ (x ⍍ y) ⊓ ¬ z = 

¬ (¬ (x ⍍ y) ⊔ z). 

Therefore, if (10) holds, then we have 

(x ⍍ y) ⍍ (¬(x ⍍ y) ⊔ z) = ((x ⊔ ¬y) ⍍y) ⍍ (¬ (x ⍍ y) ⊔ 

z) = (x ⊔ ¬y) ⍍ ((¬(x ⍍ y) ⊔ z) ⍍ y), 

which is (11). On the other hand, (11) evidently implies (10).  

Corollary 3.2 Let A = (A, ⍍, ¬, 0) be a D-basic algebra 

and let Ԑ(A) = (A, ∆, 0, 1) be as in Theorem 3.1. Then Ԑ(A) is 

a lattice D-effect algebra if and only if A satisfies the quasi-

identity (10). 

However, as the following example shows, this is not true 

for Weak D-basic algebras since many different Weak D-

basic algebras can determine the same D-effect algebra. 

Example 3.3 Let (A, ≤) be the poset 

 

Figure 1. Weak D-basic algebra. 

and let the sections (1] = A, (c] and (d] be equipped with the 

following antitone involutions: 

β1: 1 → 0, 0 → 1, d → a, a → d, b → c, c → b;  

βc: c → 0, 0 → c, b → a, a → b, 

βd: d → 0, 0 → d, b → b, a → a, 

the other sections admit unique antitone involutions. There are 

three possible ways in which we can associate a commutative 

directoid to (A, ≥), and consequently, there are three weak D-

basic algebras with the underlying poset (A, ≤): 

In (table 1.) for c ⊓1 d = a we get A1 = (A, ⍍ 1,¬, 1) where  

Table 1. Show the first way to weak D-basic algebra when c ⊓1 d = a. 

⍍1 0 a b c d 1 ¬ 

0 0 0 0 0 0 0 1 

a 0 0 0 a 0 a d 

b 0 0 0 0 b b c 

c 0 a 0 a b c b 

d 0 0 b b a d a 

1 0 b b c d 1 0 

In (table 2.) for c ⊓2 d = b we get A2 = (A, ⍍2,¬, 1) where 
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Table 2. Show the second  way to weak D-basic algebra when c ⊓2 d = b. 

⍍2 0 A B c d 1 ¬ 

0 0 0 0 0 0 0 1 

a 0 0 0 b 0 a d 

b 0 0 0 0 a b c 

c 0 a 0 a b c b 

d 0 0 B b a d a 

1 0 a B c d 1 0 

In (table 3.) for c ⊓3 d = 0 we get A3 = (A, ⍍3, ¬, 1) where  

Table 3. Show the third way to weak D-basic algebra when c ⊓3 d = 0. 

⍍3 0 a B c d 1 ¬ 

0 0 0 0 0 0 0 1 

a 0 0 0 C 0 a d 

b 0 0 0 0 d b c 

c 0 a 0 a b c b 

d 0 0 b b a d a 

1 0 a b c d 1 0 

All these Weak D-basic algebras induce the same D-effect 

algebra Ԑ (A1) = Ԑ (A2) = Ԑ (A3) = (A, ∆, 0, 1) that clear in 

(table 4.) where 

Table 4. Show that the three ways in Weak D-basic algebras induce the same 

D-effect algebra. 

∆ 0 A b c d 1 ¬ 

0 . . . . . 0 1 

a . . . . 0 a d 

b . . . 0 . b c 

c . . 0 a b c b 

d . 0 . b a d a 

1 0 a b c d 1 0 

Where for any x, y ∊ A we have x ∆ y =. means x ∆ y does 

not exist. Let E = (E, ∆, 0, 1) be a D-effect algebra. Since the 

underlying poset (E, ≤) is bounded, it can be organized into a 

commutative directoid (E, ⊓). We shall simply say that the 

pair (E, ⊓) is a D-effect algebra with an associated 

commutative directoid. 

Theorem 3.4 Let (E, ⊓) be a D-effect algebra E = (E, ∆, 0, 

1) with an associated commutative directoid. Define 

x ⍍ y = (x' ⊓ y)' ∆ y and ¬ x = x'. 

Then DB (E, ⊓) = (E, ⍍, ¬, 1) is a Weak D-basic algebra 

satisfying (10). Moreover, Ԑ (DB (E, ⊓)), the D-effect 

algebra assigned to DB (E, ⊓) by Theorem 3.1, is just E. 

Proof. First, we prove that for each a ∊ E, βa: x → x' ∆ a is 

an anititone involution on (a]. For all x ∊ (a], we have x' ∆ a 

is defined since x' ≥ a', and x' ∆ a ≤ a. Thus βa is well defined. 

We also have βa (βa (x)) = (x' ∆ a)' ∆ a = x because, by (v), (x' 

∆ a)' ∆ a = x if and only if (x' ∆ a)'' = a ∆ x'. Finally, if a ≥ x ≥ 

y, then βa(y) = y' ∆ a ≥ x' ∆ a = βa(x), proving that βa is an 

anititone involution. 

We know that if we put x⍍1y = βy (β1 (x) ⊓ y) and ¬ x = 

x', then (E, ⍍1,¬, 1) becomes a Weak D-basic algebra. But 

x⍍1y = βy (β1 (x) ⊓ y) = ((x' ∆ 1) ⊓ y)' ∆ y = (x' ⊓ y)' ∆ y = x 

⍍ y. Therefore, DB (E, ⊓) is a Weak D-basic algebra. 

Now, we prove that DB (E, ⊓) satisfies the quasi-identity 

(10). It is obvious that whenever x ∆ y is defined in E (i.e., x 

≥ y' = ¬y).  

Then x ⍍ y = (x' ⊓ y)' ∆ y = x ∆ y. Hence if x ≥ ¬y and x 

⍍ y ≥ ¬z, then (x ⍍ y) ⍍ z = (x ∆ y) ∆ z = x ∆ (y ∆ z) = x ∆ 

(z ∆ y) = x ⍍ (z ⍍ y), which settles (10). The last assertion 

is clear.  

Example 3.5 Let E be the D-effect algebra we have 

obtained in Example 3.3. If we put c ⊓1 d = a then DB (E, 

⊓1) is just the Weak D-basic algebra A1 from Example 3.3. 

Analogously, if c ⊓2 d = b then DB (E, ⊓2) = A2, and for c ⊓3 

d = 0 we have DB (E, ⊓3) = A3. 

There is a one-to-one correspondence between Weak D-basic 

algebras satisfying (10) (respectively, (11)) and pairs (E, ⊓) 

where E = (E, ∆, 0, 1) is a D-effect algebra with an associated 

commutative directoid (E, ⊓). Namely, the assignment 

A → (Ԑ (A), ⊓), 

where Ԑ (A) is as in Theorem 3.1 and x ⊓ y = ¬ (¬ x ⍍ y) ⍍ 

y, is a bijection the inverse of which is  

(E, ⊓) → DB (E, ⊓), 

where DB (E, ⊓) is defined in Theorem 3.4. 

Let E = (E, ∆, 0, 1) be a D-effect algebra. When 

constructing (E, ⊓), we so far have not taken care of existing 

infima we only required that x ⊓ y = y ⊓ x is min{x, y} 

provided x, y are comparable. Of course, this means that DB 

(E, ⊓) need not be a D-basic algebra even though E is a 

lattice D-effect algebra. The situation can be improved if we 

define ⊓ in such a way that the following condition holds: 

If inf{x, y} exists, then x ⊓ y = y ⊓ x = inf{x, y}. (12) 

Corollary 3.6 Let (E, ⊓) be a D-effect algebra with an 

associated commutative directoid that satisfies the condition 

(12). Then DB (E, ⊓) is a weak D-basic algebra, and if E is a 

lattice D-effect algebra, then DB (E, ⊓) is a D-basic algebra. 

Proof. By Theorem 3.4, DB (E, ⊓) is a Weak D-basic 

algebra. Further, we know that DB (E, ⊓) is a D-basic 

algebra if and only if the corresponding commutative 

directoid with sectional antitone involutions (E, ⊓, (βa)a∈A, 0, 

1), where βa (x) = x' ∆ a for x ≤ a, is actually a lattice with 

sectional antitone involutions, which is the case when (E, ⊓) 

is a semilattice. Hence, if E is a lattice D-effect algebra, then, 

owing to (12), (E, ⊓) is a semilattice, and it follows that DB 

(E, ⊓) is a D-basic algebra.  

4. Compatibility in D-Effect Algebra 

Difination 4.1 We shall say that two elements x, y in a D-

effect algebra E are said to be compatible (in symbols x ↔ y) 

if there exist u, v ∊ E such that u ≥ x, y ≥ v and x ∇ u = v ∇ y. 

This is equivalent to the existence of z ∊ E with x, y ≥ z, z ∇ 

x ≥ y and z ∇ y ≥ x. But z ∇ x ≥ y ≥ z implies z ∇ y ≥ z ∇ (z 

∇ x) = x, and conversely, z ∇ y ≥ x ≥ z entails z ∇ x ≥ z ∇ (z 

∇ y) = y. Therefore,  

x ↔ y if and only if there is z such that x, y ≥ z and z ∇ x ≥ y.                                                         (13) 



75 Ahmed Allam et al.:  D-Effect Algebra Can Be Made into a D-Total Algebra  

 

 

In general we have: 

Proposition 4.2 Let (E, ⊓) and DB (E, ⊓) be as in Theorem 

3.4. For every x, y ∊ E, if x ⍍ y = y ⍍ x, then x ↔ y. 

Proof. Let z = x ⍍ y = y ⍍ x, i.e., (x' ⊓ y)' ∆ y = (y' ⊓ x)' 

∆ x. Then x, y ≥ z and z ∇ x = ((y' ⊓ x)' ∆ x) ∇ x = (y' ⊓ x)' ≥ 

y, so that x ↔ y.  

The reverse implication fails to be true. Let E be the D-

effect algebra from Examples 3.3 and 3.5. It can easily be 

seen that every two elements are compatible, while ⍍i in A2 

and A3 is not commutative (for instance, a ↔ c, but a ⍍i c ≠ 

c ⍍i a for i = 2, 3). 

In order to overcome this disadvantage, we define the 

‘meet-like’ operation ⊓ in a D-effect algebra E = (E, ∆, 0, 1) 

in the following way: 

If x ↔ y, then x ⊓ y = y ⊓ x = z where z ≤ x, y and z ∇ x ≥ y. At the same time, x' ⊓ y' = y' ⊓ x' = (x ∇ (z ∇ y))'.          (14) 

We must show that the condition is correct. 

If z ≤ x, y and z ∇ x ≥ y, then x ∇ (z ∇ y) = y ∇ (z ∇ x). 

Indeed, if we put w = x ∇ (z ∇ y) then w ∆ (z ∇ y) = x and w 

∆ (z ∇ y) ∆ (z ∇ x) = x ∆ (z ∇ x) = z, whence w ∆ (z ∇ x) = z 

∇ (z ∇ y) = y. So w = y ∇ (z ∇ x) and (x ∇ (z ∇ y))' = (y ∇ (z 

∇ x))'. 

Obviously, w' ≤ x', y'. 

We have w' ∇ x' = x∇w = x∇(x∇ (z∇y)) = z∇y = y' ∇ z' ≥ 

y'. by using remark 2.4(ii) 

Finally, (x' ∇ (w' ∇ y'))' = z. Indeed, (x' ∇ (w' ∇ y'))' = x ∆ 

(w' ∇ y') = x ∆ (y ∇ w), thus (x' ∇ (w' ∇ y'))' = z if and only 

if y ∇ w = z ∇ x, which is true since y ∇ w = y ∇ (y ∇ (z ∇ 

x)) = z ∇ x. 

Also observe that the condition (14) is ‘compatible’ with 

(12) in the sense that we may take z = inf {x, y} whenever inf 

{x, y} exists. More precisely, if x ⊓ y = inf {x, y} and x ↔ y, 

then (x ⊓ y) ∇ x ≥ y, and if, in addition, also inf {x', y'} 

exists, then inf {x', y'} = x' ⊓ y' = (x ∇ ((x ⊓ y) ∇ y))'. 

Indeed, x ↔ y yields the existence of z with z ≤ x, y and z 

∇ x ≥ y. Since x ⊓ y = inf{x, y}, we have z ≤ x ⊓ y ≤ x, 

whence y ≤ z ∇ x ≥ (x ⊓ y) ∇ x. 

Further, assume that inf{x', y'} exists (equivalently, sup{x, 

y} exists). We have to show that x ∇((x ⊓ y) ∇ y) = sup{x, 

y}. Let w = x ∇ ((x ⊓ y) ∇ y). By what we have established 

above we know that w = y ∇ ((x ⊓ y) ∇ x) and w ≥ x, y. Thus 

w ≥ sup{x, y} ≥ x, y, whence 

sup {x, y} ∇ w ≥ x ∇ w = x ∇ (x ∇ ((x ⊓ y) ∇ y)) = (x ⊓ y) ∇ y, 

sup {x, y} ∇ w ≥ y ∇ w = y ∇ (y ∇ ((x ⊓ y) ∇ x)) = (x ⊓ y) ∇ x. 

It is known that sup {(x ⊓ y)∇y, (x ⊓ y)∇x} = 1 if x ⊓ 

y is inf{x, y}, and consequently, the above inequalities 

imply sup{x, y}∇ w = 1, so that sup{x, y} = w as desired. 

Summarizing, we have proved that in every D-effect 

algebra E = (E, ∆, 0, 1), the operation ⊓ can always be 

defined in such a way that it obeys the requirements of the 

condition (14). The next result says, that x, y are 

compatible in E if and only if x, y commute in DB (E, ⊓) 

= (E, ⍍, ¬, 0). 

Theorem 4.3 Let (E, ⊓) be a D-effect algebra with an 

associated commutative directoid satisfying condition (14). 

Then DB (E, ⊓) is a Weak D-basic algebra such that, for all 

x, y ∊ E, the following are equivalent: 

(i) x ↔ y, 

(ii) (x ⊓ y) ∇ y = x ∇ (x ⊔ y), 

(iii) x ⍍ y = y ⍍ x. 

Proof. (i) ⇔ (ii): Let x ↔ y. Then (x ⊓ y) ∇ y ≥ x and x ⊔ 

y = (x' ⊓ y')' = x ∇ ((x ⊓ y) ∇ y), whence x ∇ (x ⊔ y) = x 

∇(x∇((x ⊓ y)∇y)) = (x ⊓ y) ∇ y. Conversely, if (x ⊓ y) ∇ y = 

x ∇ (x ⊔ y), then certainly x ↔ y because x ⊓ y ≤ x, y and (x 

⊓ y) ∇ y ≥ x. 

(i) ⇔ (iii): By Proposition 4.2 we know that x ⍍ y = y ⍍ 

x implies x ↔ y. Hence, Then alsox' ↔ y, which means (x' ⊓ 

y) ∇ y = x' ∇ (x' ⊔ y) by (ii). We then have (x ⍍ y)' = ((x' ⊓ 

y)' ∆ y)' = (x' ⊓ y) ∇y = x' ∇(x' ⊔ y) = (x' ⊔ y)' ∇ x = (y' ⊓ x) 

∇ x = ((y' ⊓ x)' ∆ x)' = (y ⍍ x)', thus x ⍍ y = y⍍ x. 

Definition 4.4 By a block of a Weak D-basic algebra (A, 

⍍, ¬, 0) we mean a subset DB of A which is maximal with 

respect to the property that x ⍍ y = y ⍍ x for all x, y ∊ DB. 

It is evident that every element of A is contained in a block. 

Theorem 4.5 Let (E, ⊓) be a D-effect algebra with an 

associated commutative directoid satisfying the condition 

(14). Assume that for all x, y, z ∊ E, if x ↔ y, x ↔ z and y 

∆ z is defined, then x ↔ y ∆ z. Then a block DB of DB (E, 

⊓) is a subalgebra of DB (E, ⊓) if and only if x ⊓ y ∊ DB 

for all x, y ∊ DB. 

Proof. Let DB be a block of DB (E, ⊓). In view of 

Theorem 4.3, DB is a maximal set of pairwise compatible 

elements (i.e., DB is a maximal subset of E such that x ↔ 

y for all x, y ∊ DB). Since x ↔ 0 and x ↔ 1 for each x ∊ E 

(this follows at once from (13)), it is plain that 0, 1 ∊ DB. 

Also, x ↔ y if and only if x' ↔ y, hence x ∊ DB if and 

only if ¬ x = x' ∊ DB. 

Suppose DB is closed under ⊓. If x, y ∊ DB, then also 

(x' ⊓ y)' ∊ DB. Thus (x' ⊓ y)' ↔ z and y ↔ z for every z ∊ 

DB, whence x ⍍ y = (x' ⊓ y)' ∆ y ∊ DB, proving that DB 

is a subalgebra of DB (E, ⊓). Conversely, if DB is a 

subalgebra of DB (E, ⊓), then it is automatically closed 

with respect to ⊓ because x ⊓ y = ¬ (¬ x ⍍ y) ⍍ y. The 

condition that x ↔ y and x ↔ z together yield x ↔ y ∆ z 

(if y ∆ z exists) holds in lattice D-effect algebras, 

however, the next example shows that the operation ∆ in 

Theorem 4.5 cannot be omitted. 

Example 4.6 Let E be the set consisting of the following 

pairs of integers: 0 = (0, 0), a = (1, 2), b = (1, 1), c =  

(2, 1), d = (2, 3), e = (3, 3), f = (3, 2), g = (2, 2) and 1 = 

(4, 4). If we equip E with ∆ defined as the restriction to E 

of ⍍, then E = (E, ∆, 0) becomes a D-effect algebra. The 

underlying poset of E is as follows (notice that (x, y) ≥  

(u, v) if and only if (x, y) = (u, v), or x > u & y > v) where 
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(x, y) ⍍ (u, v) = ((x, y)' + (u, v)')' and + is the usual point 

in addition and ((x, y)' = (4 - x, 4 - y)): 

 

Figure 2. D-effect algebra. 

Table 5.  Show that E \ {g} is a block of the assigned weak D-basic algebra 

DB (E, ⊓), 

⍍ 0 A b C d e f g 1 ¬ 

0 0 0 0 0 0 0 0 0 0 1 

a 0 a 0 0 a a 0 b a f 

b 0 0 0 0 b 0 b 0 b e 

c 0 0 0 C 0 c c b c d 

d 0 A b 0 d a b g d c 

e 0 A 0 C a g c b e b 

f 0 0 b C b c f b f a 

g 0 A 0 C a b b 0 g G 

1 0 A b C d e f g 1 0 

It is obvious that a ↔ e, but a is not compatible with g = e 

∆ e. Indeed, the only common lower bound of a, g is 0, and 0 

∇ a = f ≱ g as well as 0 ∇ g = g ≱ a, thus a ↮ g by (13). 

In accordance with the conditions (12) and (14), we put  

f ⊓ e = c (= f ∆ e) and e ⊓ d = a (= e ∆ d); in the other cases 

⊓ coincides with inf. A direct inspection shows that E \ {g} 

is a block of the assigned weak D-basic algebra DB(E, ⊓) 

(see the table below (table 5.) which is closed under ⊓, but it 

is not closed under ⍍ as e ∆ e = g. On the other hand, {0, b, 

e, g, 1} is both a block and a subalgebra of DB (E, ⊓). 
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