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Abstract: In this note an attempt was made in constructing finite fields with the aid of Galois groups of polynomials of 

small degree. The properties of these polynomials, their base fields and their splitting fields werediscussed. From these 

properties corollaries were developed upon which the constructions were done. The aim was to provide concrete and physical 

explanations on some aspects of finite fields and Galois theory. 
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1. Introduction 

The nature of polynomials of small degree was explored 

in [1], their general solutions were found which allow for the 

application of Galois ideas to analyse their splitting fields. 

The Galois groups of these polynomials (of degree less than 

or equal to four) were found up to isomorphism. In this note, 

these results were followed step by step and upon them, 

corollaries were developed which were used to construct 

finite fields with the aid of ideas and methods presented in [2, 

3-5, 6]. 

Reference [7], defined a monoid as a set � with a law of 

composition 

(��� ��� �, 
 � �, �
�� �
 � �� 

which is associative 

���� ��� �, 
, � � � �
�� ��
�� � ��
�� � �� 

and having a unit element  

(�
��� ������ � � � ���
 �� � � � �� ��� ��� � � �� . 

The set � is called a group if for every element � � � 

there is a unique element 
 � � such that 

�
 � 
� � �. 

Also, by [8] � is called a commutative group if for all 

�, 
 � � �
 � 
� � �. 

A commutative additive group �, where multiplication is 

associative and having a unit element such that for all 

�, 
, � � �, �� � 
�� � �� � 
� 

and 

��� � 
� � �� � �
 

is called a ring as given in [7]. 

In [9], a field was defined as a set � with two 

composition laws + and • such that: 

a)  ��, �� is a commutative group, 

b)  ��� ,•), where ��  = � /{0} is a commutative 

group and 

c)  the distributive law holds. 

in [7], ring homomorphism from the ring � to the ring �, 

was defined as a mapping 

:f R H→  

such that 

��� � 
� � ���� � ��
�, ���
� � ������
�, ��1� � 1, 

��0� � 0. 

According to [11], a ring homomorphism is a field 

homomorphism, if it is one to one it is called a 

monomorphism, when it is onto it is called an 

endomorphism. A homomorphism that is both a 

monomorphism and an endomorphism is called a 

isomorphism and if 
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� � � 

then it is called an automorphism. The set   of all 

automorphisms of a field forms a group under composition 

and distinct isomorphisms  !,  ", … ,  $ of � onto � are 

linearly independent over � such that if 

 ��%� � &% ' � 

Then 

�!&! � �"&" � ( � �$&$ � 0 

only if all 

�%)* � 0. 

The following results and definitions are as given in [1, 

3-6, 10]. + is said to be a field extension of �, if � ⊆  +, 

where + and � are both fields. This is often denoted as 

+/�. Galois extension was defined as a finite extension + 

of a field �, if � is the fixed field of the group of 

�-automorphims of + (i.e. the automorphism, which leaves 

the elements of � fixed), this group is then called the Galois 

group of + over � and it is denoted Gal �+/��. 

A polynomial � ' �-�. is irreducible in � if it can not 

be expressed as a product of two non scalar polynomials in 

�. �-�. is the set of all polynomials defined over the ring 

�. 
The smallest field in which the polynomial � is reducible, 

is called the splitting field of �. 
The following results are stated for their relevance and 

importance. 

1.1. Theorem 

If � is irreducible in �-�. its splitting over � exist and 

are isomorphic. 

1.2. Theorem 

The degree of the polynomial � in �-�. is the same as 

the degree of its splitting field over �. 

The formal derivative of a polynomial 

���� � �/�/ � �/0!�/0! � ( � �!� � �1 

where 

�% '  �  

Is 

�2��� � 3�/�/0! � �3 4 1��/0!�/0" � ( � �! 

of degree 3 4 1, which can be zero even if � is not a 

constant polynomial. If � and 5 are polynomials in � 

such that 6�5 � > 6�5 5, then by the Euclidean algorithm, 

there exists two polynomials 7 and � such that � � 75 �
�, where � may be zero and 6�5 � < 6�5 5 and the 

greatest common divisor (gcd) of � and 5 denoted by 

��,g)= �� � &5 

for some 

�, & ' �-�.. 

1.3. Theorem 

If � and 5 are in � and �� an extension of �, then 

(a) ��,g)= 6 in �-�. iff ��,g)= 6 in ��-�. 
(b) �/g in �-�] iff �/g in ��-�. 
(c) � has multiple zero iff ��,g)≠1 

1.4. Theorem 

Every � ' �-�. of degree 3 has at most 3 zeros in ��. 

1.5. Theorem 

The characteristic of �8 is 9. 

1.6. Theorem 

�� is a vector space over �. 

1.7. Theorem 

For any prime 9 and a monic irreducible � in �8-�. of 

degree �, the ring �8-�./ � is a field of order 9:. 

1.8. Theorem 

;�8<; � 9: where � is any positive integer. 

1.9. Theorem 

�8< is the splitting field for ��8< – ��. 

1.10. Corollary 

For any prime 9 and any positive integer �, �8< exists. 

1.11. Theorem 

Any finite field has a prime power order. 

1.12. Theorem 

Any two finite fields of the same order are isomorphic. 

1.13. Theorem 

��8<,•� is cyclic. 

Recall that an element that generates a cyclic group is 

called a primitive element. 

1.14. Theorem 

Over any field �8, (��/ 4 �) / ���$ 4 �� iff 3/?. 

1.15. Corollary 

For any prime integer 9, (��8@
4 �)/ ���8A

4 �� iff 
3/?. 

1.16. Theorem 

�8@ is a subfield of �8< iff 3/�. 
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1.17. Corollary 

For any prime integer 9 and positive integer �, there is a 

monic irreducible of degree � in �8-�. 

1.18. Theorem 

Let 

2( ) ( )f x x bx c Q x= − + ∈  

be a quadratic polynomial then the Galois group G  of 

( )f x  is one of the following: 

i) If ( )f x splits in ( )Q x and 

2 4D b ac Q= − ∈  

then G=<e> i.e. G is generated by the identity element. 

ii)  If ( )f x  does not split in ( )Q x  then ( )f x is 

irreducible, then D Q∉  and 

2 2G S Z≅ ≅  

1.19. Theorem 

Let 

( )f x Q∈  

be a cubic polynomial with Galois group G and let  

3( )g x x px q= + +  

be its reduced form, then exactly one of the following 

cases holds: 

i)  ( )f x is reducible and 

( )f x = 1( )x x− ( )h x  

where 1x Q∈ then G  is the Galois group of ( )h x . 

ii)  ( )f x is irreducible and 

2 327 4 0,D q p= − − <  

then f has exactly one real root and 3G S≅ . 

iii)  ( )f x is irreducible and 2 0D > . Therefore, 

( )f x  has three real roots and if D Q∈ , we have 

� B CD B ED , 

otherwise G  is isomorphic to 3S . 

1.20. Theorem 

Let ( )f x Q∈ be a reducible quartic polynomial with 

Galois group G , then there are two cases; 

i)  ( )f x  contains a rational root u and it factors into 

( )f x = ( )x u− ( )h x  

where ( )h x  is a cubic polynomial. Then G  is just the 

Galois group of ( )h x . 

(ii)  ( )f x  does not have a rational root but factors 

into 

( )f x = ( )g x ( )h x  

where ( )g x  and ( )h x  are two irreducible quadratic 

polynomials. Then G  is isomorphic to 2Z  or to 

2 2Z Z× . 

b) Let 

( )f x Q∈  

be an arbitrary, irreducible, quartic polynomial with 

Galois group G  and E  the splitting field of it’s reduced 

cubic ( )g x . Let n  be the order of Gal ( / )E Q . 

If ( )g x has no zero roots there are four possibilities for 

n  and exactly one of the following cases holds: 

i. If n  = 1, then G H≅ , with H  as defined above 

ii. If n  = 2, ( )g x  has a rational root P
2

1
and two 

irrational roots P
2

2
 and P

2

3
. If 1P E∈ but 1

P Q∉ , then 

4
G Z≅ ; otherwise, G  is isomorphic to the dihedral group 

4D . 

2. Results 

Upon the above properties, the following corollaries are 

developed and discussed in this work: 

2.1. Corollary 

Let 

2( ) ( )f x x bx c Q x= − + ∈  

be a quadratic polynomial, if ( )f x  does not split in 

( )Q x  then D Q∉  and 2 2G S Z≅ ≅  hence there is a 

finite field of order 2". 
Discussion 

Since 

2 2G S Z≅ ≅  

and 2Z ={ 0 ,1} is a field, also the operations of addition 

and multiplication are done modulo 2, 2Z  is a prime filed. 

The entire monic irreducible quadratic polynomials with 
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coefficients in the field are: 

�" 

�" � 1 

�" � � 

�" � � � 1 

To find the irreducible ones, we can see clearly that, those 

without a constant term are reducible. Now to find the 

irreducible ones among the rest, we take each in turn and 

substitute all the elements of the field for �, if none of the 

substitutions evaluates to zero then the polynomial is 

irreducible (remember that even integers are isomorphic to 0 

and odd integers are isomorphic to 1 in this field) for this 

reasons, the only irreducible polynomial here is 

�" � � � 1. 

Now, to make the most useful representation of the field 

making µ to be the zero of 

�" � � � 1 

and for the fact that the multiplication group of this field is 

cyclic, µ must be a primitive element (i.e. generator of a 

cyclic group) therefore: 

µ2+µ+1 =0 

means 

µ2 = µ + 1 

so that 

µ1 = µ 

µ2=µ+1 

µ3 = µ (µ+1)= µ2+µ=1 

We can now see that the field elements are represented as 

3 powers of µ together with 0. 

2.2. Corollary 

Let 

( )f x Q∈  

be a cubic polynomial with Galois group G and let 

3( )g x x px q= + +  

be its reduced form, ( )f x is irreducible and 2 0D > , 

( )f x  has three real roots and if D Q∈ , we have 

� B CD B ED 

then there exists a finite field of order 3D. 
Discussion 

3Z ={ 0 ,1, 2 } 

is a field, it is simple and therefore a prime subfield of 

itself, where addition and multiplication are done modulo 3. 

The entire monic cubic polynomials with coefficients in 

this field can be listed as follows: 

x3 

x3 + 1 

x3 + 2 

x3 + x 

x3 + x + 1 

x3 + x + 2 

x3 + x2 + x + 1 

x3 + x2 + x + 2 

x3 + 2x 

x3 + 2x + 1 

x3 + 2x + 2 

x3 + 2x2 + 1 

x3 + 2x2 + 2 

x3 + x2 + 2x + 1 

x3 + x2 + 2x + 2 

x3 + 2x2 + x + 1 

x3 + 2x2 + x + 2 

x3 + x2 + 1 

x3 + x2 + 2 

x3 + x2 

x3 + 2x2 

x3 + x2 + x 

x3 + x2 + 2x 

x3 + 2x2 + x 

x3 + 2x2 + 2x 

x3 + 2x2 + 2x + 1 

x3 + 2x2 + 2x + 2 

To find the irreducible cubic polynomials, we simply 

cross out the ones without a constant term. Also, taking each 

of the elements of the prime filed and substituting it for x as 

in the quadratic case above, we see that the irreducible 

polynomials are: 
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x3 + x2 + x + 2 

x3 + 2x + 1 

x3 + 2x + 2 

x3 + 2x2 + 1 

x3 + x2 + 2x + 1 

x3 + 2x2 + x + 1 

x3 + x2 + 2 

Now, since the multiplicative group of the field is cyclic, 

we can search for a primitive element among the roots of 

these polynomials. We should note that it is not all the roots 

that are primitive for instance, letting β to be the root of 

x3 + x2 + x + 2 

which means 

β3=2β2+2β+1 

i.e. 

β3+ β2+ β+2=0 

β1 = β 

β2 = β2 

β3 = 2β2 + 2β2 + 1 

β4 = β(2 β2 + 2 β + 1) = 2 β3 + 2 β2 + β = 2(2β2 + β + 1) + 2β2 

+ β= β2 + β + 2 + 2β2 + β = 2 β + 2 

β5 = β(2 β2 + 2) = 2 β3 + 2 + β 

β6= β(2β2 + 2β) = 2β3 + 2β2 + β 

= 2(2β2 + 2β + 1) + 2β2 = β + 2 

β7= β(β + 2) = β3 + 2β 

β8= β(β2 + 2β) = β3 + 2β2 = 2β2 + 2β + 1) + 2β2 = β2 + 2β + 1 

β9= β(β2 + 2β+1) = β3 + 2β2 + β 

= 2β2 + 2β + 1 + 2β2 + β = β2 + 1 

β10= β(β2 +1) = β3 + β = 2β2 + 2β + 1 + β = 2β2 + 1 

β11 = β(2β2 +1) = 2β3 + 2β2 + β 

= 2 (2β2 + 2β +1) = β2 + 2β + 2 

β12= β(β2 + 2β+2) = β3 + 2β2+2β 

=2β2+2β+1+ 2β2 + 2β = β2 + β + 1 

β13= β(β2 + β+1) = β3 + β2 + β = 2β2 + 2β + 1 + β2 + β = 1 

Therefore, β here has order 13, but we are looking for a 

cyclic group of order 26, hence, β does not generate the 

cyclic group we are looking for because it is not a primitive 

element. Now, supposing π is the root of the cubic 

irreducible polynomial 

x3+x2+2x+1 i.e. π 3 + π 2 + 2 π + 1 = 0 

Meaning 

π 3 = 2 π2 + π + 2 

so that 

π1 = π 

π2 = π2 

π 3
 = 2 π 2 + π + 2 

π 4 = π (2 π 2+ π +2) = 2 π 3 + π 2 + 2 π 

= 2(2 π 2 + π + 2) + π 2+2 π =2 π 2 + π + 1 

π 5 = π (2 π 2+ π +1) = 2 π 3 + π 2 + 2 π 

= 2(2 π 2 + π + 2) + π 2+ π =2 π 2 + 1 

π 6 = π (2 π 2+ 1) = 2 π 3 + π = 2(2 π 2 + π + 2) + π = π 2 + 1 

π 7 = π (π 2+ 1) = π 3 + π = 2 π 2 + π + 2 + π =2 π 2 + 2 π + 2 

π 8 = π (2 π 2+2 π +2) = 2 π 3+2 π 2+2 π 

= 2(2 π 2 + π + 2) + 2 π 2+2 π = π + 1 

π 9 = π (π +1) = π 2+ π 

π 10 = π (π 2+ π) = π 3+ π 2 = 2 π 2 + π + 2 + π 2 

= π + 2 

π 11 = π (π + 2) = π 2+2 π 

π 12 = π (π 2+2 π) = π 3+2 π 2  

= 2 π 2 + π + 2 + 2 π 2 = π 2 + π + 2 

π 13 = π (π 2+ π + 2) = π 3+ π 2+2 π 

= 2 π 2 + π + 2 + π 2+2 π = 2 

π 14 = 2 π 

π 15 = π (2 π) = 2 π 2 

π 16 = π (2 π 2) = 2 π 3 = 2(2 π 2 + π + 2) = π 2+2 π + 1 

π 17 = π ( π 2+2 π +1) = π 3+2 π 2+ π  

= 2 π 2 + π + 2 + 2 π 2+ π = π 2 + 2 π + 2 

π 18 = π (π 2+2 π +2) = π 3+2 π 2+2 π  

=2 π 2 + π + 2 + 2 π 2+2 π = π 2 + 2 

π 19 = π (π 2+2) = π 3+2 π = 2 π 2 + π + 2 + 2 π =2 π 2 + 2 

π 20 = π (2 π 2+2) = 2 π 3+2 π 

= 2(2 π 2 + π + 2) + 2 π = π 2 + π + 1 

π 21 = π (π 2+ π +1) = π 3+ π 2+ π 
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= 2 π 2 + π + 2 + π 2+ π = 2 π + 2 

π 22 = π (2 π +2) = 2 π 2+2 π 

π 23 = π (2 π 2+2 π) = 2 π 3+2 π 2 

= 2(2 π 2 + π + 2) + 2 π 2 = 2 π + 1 

π 24 = π (2 π +1) = 2 π 2+ π 

π 25 = π (2 π 2+ π) = 2 π 3+ π 2= 

2(2 π 2 + π + 2) + π 2 =2 π 2 + 2 π + 1 

π 26 = π (2 π 2+2 π +1) = 2 π 3+2 π 2+ π 

= 2(2 π 2 + π + 2) + 2 π 2+ π = 1 

We can see that π is a primitive element since it has 

generated the cyclic group we are looking for. Furthermore, 

the above is a representation of the 26 powers of π, this 

together with 0, gave the entire elements of the field. 

2.3. Corollary 

Let ( )f x Q∈  be an arbitrary, irreducible, quartic 

polynomial with Galois group G  and E  the splitting 

field of its reduced cubic ( )g x . Let n  be the order of Gal 

( / )E Q . 

If ( )g x has no zero roots If n  = 2, ( )g x  has a 

rational root P
2

1
and two irrational roots P

2

2
 and P

2

3
. 

If 1
P E∈ but 1P Q∉ , then 4

G Z≅  also since 2Z  is the 

prime subfield then there is a finite field of order 2H. 
Discussion 

4
G Z≅ , we will have the prime field to be 2Z ={ 0 ,1}. 

Now, the entire monic quartic polynomials with coefficients 

in this field are as follows 

x4 

x4 + x 

x4 + x2 

x4 + x3 

x4 + 1 

x4 + x + 1 

x4 + x2 + 1 

x4 + x3 + 1 

x4 + x3 + x 

x4 + x3 + x2 

x4 + x3 + x + 1 

x4 + x3 + x2 + 1 

x4 + x3 + x2 + x 

x4 + x3 + x2 + x + 1 

x4 + x2 + x 

x4 + x2 + x +1 

Supposing β is the root of 

x4 + x3 + 1 i.e. β4 + β3 + 1 = 0 

meaning 

β4 = β3 + 1 

then 

β1 = β 

β2 = β2 

β3 = β3 

β4 = β3 + 1 

β5 = β(β3 + 1) = β4 + β = β3 + 1 + β 

β6 = β(β3 + 1 + β) = β4 + β + β2 = β3 + 1 + β + β2 

β7 = β(β3 + 1 + β + β2) = β4 +β+β2+β3 

=β3+1+β+β2+β3 =1+β+β2 

β8 = β(1 + β + β2) = β + β2 + β3 

β9 = β(β + β2 + β3) = β2 + β3 + β4 = β2 + β3 + β3 + 1 

= β2 + 1 

β10 = β(β2 + 1) = β3 + β 

β11 = β(β3 + β) = β4 + β2 = β3 + 1 + β2 

β12 = β(β3 + 1 + β2) = β4 + β + β3 = β3 + 1 + β3 + β = β + 1 

β13 = β(1 + β) = β2 + β 

β14 = β(β + β2) = β2 + β3 

β15 = β(β2 + β3) = β3 + β4 = β3 + β3 + 1 = 1 

So β is a primitive element, hence we gave a 

representation of the 15 powers of β above. This together 

with 0 gives complete elements of the field. 

3. Conclusion 

Galois groups of polynomials of small degree (≤4) were 

used to construct fields which are finite with the aid of 

some newly developed corollaries discussed by exploring 

some existing results. This report is expected to serve as a 

lecture note and as a reference material. 
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