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Abstract: In this article, Adomian’s Decomposition Method (ADM) is employed to approximate the solution of Burgers’ 

equationwhich is one-dimensional non-linear differential equations in fluid dynamics. The exact solution for Burger’s 

equation with low kinematic viscosity 0.01α <  does not exist in the literatures.Thus, we obtained an explicit solution for 

this special case. We compared our solution using ADM with the exact solution and the existing numerical solution while 

0.01α ≥ .We found out that ADM converges very rapidly to the exact solution and performed better than the existing 

numerical method. 
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1. Introduction 

Burger’s equation is the scalar non-linear partial 

differential equation  
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The parameter 0α ≥  is referred to as the kinematic 

viscosity, due to the connection between the equation and 

the study of fluid dynamics. The equation was proposed as 

a model of turbulent fluid in motion. It is important in 

variety of applications, most notably as a simplification of 

the Novier-Stokes equation which model fluid dynamics. 

Theoretical and numerical solutions of Burger’s like 

equations have attracted the interest of many Scientistsin 

the last few decades as a result of its wide applicability in 

Science and Engineering.Various methods for obtaining 

closed form solution to non-linear differential equations are 

described in the open literatures, such as the Painleve 

method, the Darboux transformation, the generalized 

separation of variables, the Tanh method, the Sine-Cosine 

method and the inverse scattering transform method [1]. 

Cole [2] studied the mathematical properties of Burgers’ 

equation, the relationship between it and the turbulence and 

shock wave theories. He proposed an exact solution based 

on transformation, Benton et al[3] proposed different exact 

solutions of Burger’s like equation and their 

classifications.It is noted that analytical methods for 

solving Burgers’ like equations are very restricted and can 

only be suitable in very special cases; so they cannot be 

used to solve equations of numerous realistic scenarios.  

However, many numerical algorithms for the solution of 

Burger’s equation have been proposed by many authors. 

Varoglu et al [6] proposed an iso-parametric space B time 

finite-element method and utilized the hyperbolic 

differential equation associated with Burger’s equation. 

Aksan et al [7] reduced Burger’s equation to system of non-

linear ordinary differential equations by discretization in 

time and solved each non-linear ordinary differential 

equation by Galerkin method. Caldwell et al [8] used finite-

element approach by altering the size of the element at each 

stage using information from the previous steps. More 

recently,MiralBhaget et al (2013) proposed Homotopy 

perturbationmethod, this approacheliminated the drawbacks 

of the traditional perturbation method. M.HadiRafiee et al 

(2013) [9] proposed reconstruction of variational iteration 

method while B.B,Sanugi et al [4] used a Fourier series 

technique to transform the original Burgers’ equation to 

system of ordinary differential equations with initial 

conditions which can be easily solved. We noted that all 

these numerical methods to approximate non-linear 

equations involve discretization, perturbation or 

transformation that obviously could change the physical 

structure of the equations and in most cases lead to poor 
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convergence. The Adomian’sdecomposition method(ADM), 

first proposed by G.Adomian [10] for solving both linear 

and non-linear differential equations of all kinds has been 

widely used in the recent time. Unlike the traditional 

numerical methods, ADM solves non-linear problems 

without recourse to perturbation or discretization as 

practiced by the prior acts and the solution through ADM 

does not affected by error associated with aforementioned 

numerical tasks [10-14]. Computational experience has 

shown that ADM yields a very rapid convergence of the 

solution series and in most cases, only few iteration leads to 

very accurate solutions. 

In this work, the reduced Burger’s equation is solved by 

ADM approach. For kinematic viscosity smaller than 0.01, 

the exact solution does not exist in the literatures because 

of low convergence of the infinite series. Our attention is 

focused on this special case and we provide an explicit 

solution that may serve as test for other numerical results. 

We also compared our results when α>0.01 to the 

theoretical solutionsobtained by Cole [2] and the numerical 

solutions recently obtained by MiralBhagat et al [5] using 

Homotopyperturbation method. The equations are solved 

using only the initial conditions and the boundary 

conditions are used to justify the reliability of the method.  

2. Basic Ideas of Adomian’s 

Decomposition Method 

We begin with anon-linearinhomogeneous differential 

equation in an operator form: 

( )Lu Ru Nu g t+ + =   (2) 

where L
t

∂=
∂

is the linear highest-ordered derivatives 

with respect to t , R  is the remainder term(s) of the linear 

operator and Nu  represent the non-linear term(s). Thus we 

get 

( )Lu g t Ru Nu= − −   (3) 

It was assumed that the inverse operator 
1L−

exists and 

denoted by definite integral with respect to t . Operating the 

inverse operator on (1.2), we have; 

1 1 1

0( ) ( ( )) ( ) ( )u x L g t L Ru Nu u L Ru Nuφ − − −= + − + = − +     (4) 

where 0u  is the term that arise from the initial condition 

( )xφ and the integration of the source term(s) ( )g t . 

G.Adomian [10] assumed that the unknown solution 

( , )u x t can be expressed as the sum of infinite series 
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where nA is the Adomian polynomial that represents the 

non-linear term Nu  and 0 1 2( , , , . . . )n nA u u u u  is 

defined by  
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3. Analytical Solution of Burger’s 

Equation 

Consider equation (1) with initial condition 

( ,0) sin , 0 1u x x xπ= < <  

and homogeneous conditions (0, ) (1, ) 0u t u t= = . By 

theHopf-Cole transformation [2] 

2( )
v

u
v x

∂= −
∂

   (7) 

Equation (1) with initial and boundary conditions 

transforms to the linear heat equation; 
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where ( , )v x t  is any solution of heat equation(8) and 

equation (7) is a solution of equation (1). Solving equation 

(6) using the method of separation of variables, we have; 
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where 0a  and ( 1, 2,3 . . .)na n =  are Fourier 

coefficients and they can be evaluated as; 
1
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By using equation (7), we obtain the exact solution to 

equation (1) as; 
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4. ADM Algorithm for Burger’s 

Equation 

Equation (1) can be written in an operator form; 

, ( ,0) sin( ), [0,1]t xx xLu L u uLu u x x xα π= − = ∈     (11) 

where

2

2
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 we choose 

( ) sinx xφ π=  for the purpose of comparison with 

existing analytical and numerical results in [10,11]. Using 

equation(2-4), we have  
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We have from equation (12) 
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The first few terms of Adomian polynomials nA  can be 

determined using equation (5) with 
n
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The solution of equation (11) by using equations (13)-

(14), can be written as follows; 

0 sinu xπ=  

1 sin( )[ cos( )]u t x xπ π απ π= − +  
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To obtain the other components, MATHEMATICA can 

be efficiently used.In practice, infinite terms of the series 

cannot be computed, we approximate the solution by 

computing the terms;

1

0
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k
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n
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Ψ =∑ .The accuracy of 

the method can be further improved if more-terms 

approximations of the solution are computed. As far as 

accurate results are concerned, computational experience 

has shown that they can be easily obtained by computing 

the first ten-terms of the series. 

The unknown solution ( , )u x t  can therefore be obtained 

as 0 1 2 3 4( , ) . . .u x t u u u u u= + + + + +  
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5. Comparison of ADM Solutions with 

Exact and Numerical Solutions 

In order to show the applicability and reliability of the 

ADM techniques, we have applied the approach to the 

problem given by equation (11) whose exact solution exists 

and is given by Cole [2] in terms of infinite series. To show 

the accuracy of the method for moderate size of kinematic 

viscosity values, we give the comparison withanalytical 

solutions from infinite series of Cole [2] and numerical 

solutions from Homotopy perturbation method of 

MiralBhagat et al [5]for α=1 at different values of t in 

tables1,2& 3. The tables show that ADM solutions are in 

good agreement with the exact solutions and it converges 

rapidly with half a dozen of terms. It is obvious from the 

tables that solutions using ADM performs better than the 

results of MiralBhagat et al using Homotopy perturbation 

method. Thus, ADM can help to overcome the problems 

caused by the shortage of analytical methods for the 

computation of solutions to nonlinear differential equation 

Table 1. Analytical solutions of Burger’s equation at different value of t 

and α=1 Cole [2] 

x t=0.01 t=0.001 t=0.0001 

0 0.0000 0.0000 0.0000 

0.1 0.2724 0.3037 0.3072 

0.2 0.5210 0.5797 0.5861 
0.3 0.7228 0.8012 0.8098 

0.4 0.8575 0.9455 0.9549 

0.5 0.9096 0.9962 1.0054 
0.6 0.8714 0.9473 0.9551 

0.7 0.7451 0.8039 0.8098 

0.8 0.5430 0.5822 0.5860 
0.9 0.2859 0.3052 0.3070 

1.0 0.0000 0.0000 0.0000 

Table 2. Numerical solutions using Adomian’s method at different value of 

t and α =1 

x t=0.01 t=0.001 t=0.0001 

0 0 0 0 

0.1 0.2728 0.3039 0.3073 

0.2 0.5212 0.5798 0.5864 

0.3 0.7230 0.8016 0.8099 

0.4 0.8578 0.9456 0.9552 

0.5 0.9098 0.9964 0.9999 

0.6 0.8718 0.9480 0.9548 

0.7 0.7453 0.8040 0.8089 

0.8 0.5434 0.5834 0.5867 

0.9 0.2856 0.3055 0.3079 

1.0 0.0000 0.0000 0.0000 

Table 3. Numerical solutions using Homotopy method at different value of 

t and α =1 MiralBhagat [5] 

x t=0.01 t=0.001 t=0.0001 

0 0 0 0 

0.1 0.2732 0.3051 0.3086 

0.2 0.5214 0.5806 0.5871 

0.3 0.7218 0.7996 0.8081 

0.4 0.8546 0.9408 0.9500 

0.5 0.9058 0.9902 0.9990 

0.6 0.8684 0.9426 0.9502 

0.7 0.7441 0.8035 0.8084 

0.8 0.5438 0.5835 0.5878 

0.9 0.2870 0.3069 0.3088 

1.0 0.0000 0.0000 0.0000 

In the case α<0.01, it is not practical to compute the 

analytical solution at these values due to slow rate of 

convergence of the infinite series and thus the analytical 

solution is unknown. However, this special case was 

mentioned by MiralBhagat et al [5] but an attempt was not 

made to compute address this special case. Thus, it is 

extremely valuable that a numerical solution for this special 

case be added to the literature. However, we don’t claim 

finality on this result since none existed before for 

comparison. But, we strongly believe that our result could 

be a standard test for comparison and can be used to 

validate other numerical solutions for more complicated 

cases where no exact solutions exist. 

Table 4. Adomian’s method solutions obtained at α=0.001 with different 

value of t 

X t=0.01 t=0.001 t=0.0001 

0 0 0 0 

0.1 0.2996 0.3081 0.3089 

0.2 0.5696 0.5859 0.5876 

0.3 0.7836 0.8065 0.8089 

0.4 0.9209 0.9481 0.9508 

0.5 0.9681 0.9969 0.9997 

0.6 0.9208 0.9481 0.9507 

0.7 0.7836 0.8065 0.8088 

0.8 0.5696 0.5859 0.5876 

0.9 0.2996 0.3081 0.309 

1 0 0 0 

 
Figure 1. Analytical solution of Burger’s equation at different value of t 

with α=1 

 

Figure 2. ADM solution of Burger’s equation at different value of t with 

α=1 
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Figure 3. Homotopy perturbationsolution[5] of Burger’s equation at different value of t with α =1 

 

Figure 4. ADM solution of Burger’s equation at different value of t with α=0.001 

6. Conclusions 

The Adomian Decomposition Method has been 

successfully applied to approximate solution of Burgers’ 

equation. For moderately small kinematic viscosity α≥0.01, 

the Adomian’s approach provides high accuracy while 

using a small number of terms and the results are better 

when compared with Homotopy perturbation method.We 

have also added to the literatures a numerical result for 

α=0.001 where neither analytical nor numerical result 

existed before. We remark that ADM is a powerful 

mathematical method which solves all kinds of 

mathematical problem without recourse to perturbation, 

discretization, transformation or linearization as practiced 

by other conventional numerical methods. 
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