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Abstract: This paper is aimed at discussing and comparing the performance of standard method with its hybrid method of 

the same step number for the solution of first order initial value problems of ordinary differential equations. The continuous 

formulation for both methods was obtained via interpolation and collocation with the application of the shifted Legendre 

polynomials as approximate solution which was evaluated at some selected grid points to generate the discrete block methods. 

The order, consistency, zero stability, convergent and stability regions for both methods were investigated. The methods were 

then applied in block form as simultaneous numerical integrators over non-overlapping intervals. The results revealed that the 

hybrid method converges faster than the standard method and has minimum absolute error values. 

Keywords: Hybrid Method, Collocation, Interpolation, Shifted Legendre Polynomials Approximation,  

Continuous Block Method, Order, Consistency, Zero Stability, Convergent 

 

1. Introduction 

Most physical phenomena in science and engineering used 

mathematical models to help in the understanding of the 

physical world problems. These models often yield equations 

that contain some derivatives of an unknown function of one 

or several variables. Such equations are called differential 

equations. Differential equations play an important role in the 

modeling of physical problems arising from almost every 

discipline of study such as economics, medicine, psychology, 

operation research, space technology and even in areas such 

as biology and astronomy. 

Interestingly, differential equations arising from the 

modeling of such physical phenomena often are very difficult 

or impossible to solve analytically. Hence, the need for the 

development of numerical methods to obtain approximate 

solutions becomes inevitable. 

Many scholars have worked extensively on the solution of 

differential equations. These authors proposed different 

methods ranging from predictor corrector method to block 

method using different polynomials as basis functions 

evaluated at some desired points.  

In this work, two types of block methods are proposed, the 

first is the five-step standard block method and the second is 

the five-step hybrid method with four off- grid points, using 

the shifted Legendre polynomials evaluated at some grid and 

off-grid points to give the needed discrete schemes. 

Consider a numerical method for solving general first 

order initial value problems of ordinary differential equations 

of the form: 

0( , ), (0)y f x y y y′ = =                        (1) 

where 	�  is a continuous function and satisfies Lipschitz 

condition of the existence and uniqueness of solution. Many 

authors have proposed solution for first order initial value 

problems of ordinary differential equations using different 

approaches. This work will adopt the block method technique 

for solving (1) as suggested by researchers. [4], considered 
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the Continuous implicit hybrid one step methods for the 

solution of initial value problems of general second order 

ordinary differential equations. [5], introduced the 

application of two step continuous hybrid Butcher’s method 

in block form for the solution of first order initial value 

problems; this approach eliminates requirements for a 

starting value. [2], introduced a new hybrid method for 

systems of stiff equations. [11], developed a new Butcher 

type two-step block hybrid multistep method for accurate and 

efficient parallel solution of ordinary differential equations. 

[1], used hybrid formula of order four to generate starting 

values for Numerov method. [3], developed linear multistep 

hybrid methods with continuous coefficients for solving stiff 

ordinary differential equations. [10], introduced a hybrid 

linear collocation multistep scheme for solving first order 

initial value problems of ordinary differential equations. [9], 

developed a three step implicit hybrid linear multistep 

method for the solution of third order ordinary differential 

equations. 

2. Derivation of the Method 

In this section, two methods are developed namely five-

step block method and five-step with three off-grid points, by 

interpolating and collocating at some selected points. 

Consider the shifted Legendre approximation of the form 

0

( ) ( )i i

i

y x C P t

φ

=

=∑                             (2) 

where � = � + � − 1 , �  and �  are interpolation and 

collocation points. The first derivative of (2) gives 

0

( ) ( )i i

i

y x C P t

φ

=

′ ′=∑                           (3) 

substituting (3) in (1), to get

 

0

( , ) ( )i i

i

f x y C P t

φ

=

′=∑                        (4) 

2.1. Five Step Method 

Interpolating (2) at 
��  and collocating (3) at 
� , 
��� , 


��� , 
��� , 
��  and 
���  gives the system of nonlinear 

equations of the form  

AX = B                                   (5) 

where 
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Solving for the ��′� using inverse of a matrix method and substituting in (2) gives the continuous formulation 

4 5

0 0

( ) ( ) ( )j n j j n j

j j

y x x y h x fα β+ +
= =

= +∑ ∑                                                                 (6) 

where 

�� = �� = �� = �� = 0,� = 1 

�� = � −
14

45
ℎ −

17

96ℎ�
�⁴ +

1

40ℎ
�⁵ −

1

720ℎ�
�⁶ 

�� = −
64

45
ℎ +

5

2ℎ
�² −

77

36ℎ�
�³ +

71

96ℎ�
�⁴ −

7

60ℎ
�⁵ +

1

144ℎ�
�⁶ 

�� = −
8

15
ℎ −

5

2ℎ
�² −

59

48ℎ�
�⁴ −

1

72ℎ�
�⁶ +

13

60ℎ
�⁵ +

107

36ℎ�
�³ 
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�� = −
64

45
ℎ +

5

3ℎ
�² −

13
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1

72ℎ�
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120ℎ
�⁵ −

14

45
ℎ +
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1

144ℎ�
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5

8ℎ
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�

��(
�� −

�

�)(* �
� +

+

,)(- �
 −

�

)�(. �
� +

�

+��(/ �
)			                                                              (7) 

Evaluating (6) with coefficients (7) at 
� , 
���, 
���, 
��� and 
��� with �	 = (
 − 
�) the following discrete schemes is 

respectively obtained as; 
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2.2. Five Step Method with Three Off-Grid Points 

Interpolating (2) at 
�� and collocating (3) at 
� , 
���, 
���, 
���, 
��, 

��

5-
-

, 

��

6
*
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��
5.
-

 and 
��� gives a system of 

nonlinear equations of the form 

AX = B                                                                                   (9) 
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Solving for the ��′� using inverse of a matrix method and substituting in (2) gives the continuous formulation 
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1

0 0
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where 

7 = 5, 8� =
��
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Evaluating (10) with coefficients (11) at 
�, 
���, 
���, 
���, 

��

5-
-

, 

��

6
*
, 


��
5.
-

 and 
��� with �	 = (
 − 
�) the following 

discrete schemes are respectively obtained as; 
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3. Analysis of the Method 

In this section the error constant, order, consistency, zero 

stability, convergent and region of absolute stability of the 

schemes generated are discussed. 

3.1. Order and Error Constant 

Expanding (8) and (12) in Taylor’s series and collecting 

like terms in powers of ℎ, the order and error constant are 

respectively obtained as follows; 

Table 1. Order and Error Constants of the Discrete Schemes of the Block 

Method (8). 

Scheme Order Error constant 

3��� 6 �+ = −5. 8035714 × 10⁻³ 
3��� 6 �+ = −1. 3227513 × 10⁻³ 
3��� 6 �+ = −4. 4808201 × 10⁻³ 
3�� 6 �+ = 8. 46560850 × 10⁻³ 
3��� 6 �+ = −1. 4269180 × 10⁻² 

Table 2. Order and Error Constants of the Discrete Schemes of the Hybrid 

Block Method (12). 

Scheme Order Error constant 

3��� 9 ��� = 	4. 9057933 × 10⁻⁴ 
3��� 9 ��� = −4. 255200 × 10⁻⁵ 
3��� 9 ��� = 9. 04215420 × 10⁻⁶ 
3�� 9 ��� = −84. 29153100000 

3
��

5-
-

 9 ��� =	−0.643365680000 

3
��

6
*
 9 ��� = 7. 29157760 × 10⁻⁸ 

3��
5.
-

 9 ��� = 8. 15819800 × 10⁻⁸ 

3��� 9 ��� = −1. 7278002 × 10⁻⁷ 

Hence the block methods are of order BC = 6, 9 and error constant of �D+, �D�� 
respectively  

3.2. Consistency 

Following [8] and [6], the block methods are said to be 

consistent if they satisfy the following conditions: 

(i) the order Ě ≥ 1 

(ii) ∑ �CI
J
IK� = 0 

(iii) B(1) = BL(1) 

(iv) BLL(1) = 2! N(1) 

Where B(O) and N(O) are the first and second characteristics 

polynomials of the block method. According to [8] and [6], 

condition (i) above is a sufficient condition for the block 

methods to be consistent. Hence the block methods are 

consistent since Ě = 6, 9 > 1. 

3.3. Zero Stability 

The block methods are said to be zero stable if the roots 

QR; 	O	 = 1, … , U  of the first characteristic polynomial E(Q) , 

defined by 

E(Q) = VW�|QY − Z| 

satisfies |QR| ≤ 1  and every root with |QR| = 1  has 

multiplicity not exceeding two in the limit as ℎ → 0 . 

Calculations from all available information revealed that the 

block methods (8) and (12) have the following roots 

respectively. 

Q(Q − 1) = 0 and Q4(Q − 1) = 0 

Hence the block methods are zero stable, since all roots 

with modulus one do not have multiplicity exceeding the 

order of the differential equation in the limit as	ℎ → 0. 

3.4. Convergence 

According to [7], we can safely assert the convergence of 

the block methods (8) and (12) 

3.5. Region of Absolute Stability 

Reformulating the block methods (8) and (12) as a General 

Linear Methods (GLM) containing a partition of matrices A, 

Band C and then substituting into the stability polynomial 

O(] − �Q) − ^. Using a MATLAB code based on the idea of 

Newton’s iteration, the regions of absolute stability of the 

block methods are respectively shown below. 
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Figure 1. The regions of absolute stability for methods (8) and (12). 

4. Numerical Illustrations 

The following numerical experiments are performed with 

the aid of MAPLE 18 software package in order to further 

affirm the earlier established convergence of the methods. 

Example 1 

The ordinary differential equation  

( )5 ,0 1, 0 1, 0.01y y x y h′ = ≤ ≤ = =              (13) 

The exact solution is 3(
) = W�_. ([12]) 

Example 2 

The ordinary differential equation 

( ),0 1, 0 0, 0.1y x y x y h′ = − ≤ ≤ = =             (14) 

The exact solution is 3(
) = 
 + W`_ − 1.	([10]). 

Example 3 

The ordinary differential equation  

( )2 1,0 2, 0 0.5, 0.2y y x x y h′ = − + ≤ ≤ = =       (15) 

The exact solution is 	3(
) = (
 + 1)� + 0.5W_,	([13]) 

Table 3. Absolute Error Values for Example 1 of Methods (8) and (12). 

a Exact Solution Result of Method (8) Absolute error of (8) Result of Method (12) Absolute error of (12) 

0.01 1.05127109637602 1.05127109638904 1.302 × 10`�� 1.05127109637607 5.0 × 10`� 

0.02 1.10517091807565 1.10517091808526 9.610 × 10`�� 1.10517091807569 4.0 × 10`� 

0.03 1.16183424272828 1.16183424274126 1.298 × 10`�� 1.16183424272835 7.0 × 10`� 

0.04 1.22140275816017 1.22140275816975 9.580 × 10`�� 1.22140275816017 0.00000000 

0.05 1.28402541668774 1.28402541671072 2.298 × 10`�� 1.28402541668780 6.0 × 10`� 

0.06 1.34985880757600 1.34985880761687 4.087 × 10`�� 1.34985880757611 1.1 × 10`�� 

0.07 1.41906754859326 1.41906754863098 3.772 × 10`�� 1.41906754859338 1.2 × 10`�� 

0.08 1.49182469764127 1.49182469768462 4.335 × 10`��
 1.49182469764142 1.5 × 10`�� 

0.09 1.56831218549017 1.56831218553052 4.035 × 10`��
 1.56831218549031 1.4 × 10`�� 

0.10 1.64872127070013 1.64872127075914 5.901 × 10`��
 1.64872127070028 1.5 × 10`��

 

Table 4. Absolute Error Values for Example 2 of Methods (8) and (12). 

a Exact Solution Result of Method (8) Absolute error of (8) Result of Method (12) Absolute error of (12) 

0.1 0.004837418035960 0.0048374169836170 1.05 × 10`, 0.0048374180358260 1.34 × 10`��	
0.2 0.018730753077982 0.0187307524576758 6.20 × 10`�� 0.0187307530778861 9.59 × 10`� 

0.3 0.040818220681718 0.0408182198857461 7.96 × 10`�� 0.0408182206816284 8.96 × 10`� 

0.4 0.070320046035639 0.0703200456495184 3.86 × 10`�� 0.0703200460355589 8.01 × 10`� 

0.5 0.106530659712633 0.106530658294696 1.42 × 10`, 0.106530659712561 7.20 × 10`� 

0.6 0.148811636094026 0.148811634172747 1.92 × 10`, 0.148811636093972 5.40 × 10`� 

0.7 0.196585303791410 0.196585302254268 1.54 × 10`, 0.196585303791371 3.90 × 10`� 

0.8 0.249328964117222 0.249328962584008 1.53 × 10`, 0.249328964117176 4.60 × 10`� 

0.9 0.306569659740599 0.306569658555933 1.85 × 10`, 0.306569659740559 4.00 × 10`� 

1.0 0.367879441171442 0.367879439451397 1.72 × 10`, 0.367879441171405 3.70 × 10`� 
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Table 5. Absolute Error Values for Example 3 of Methods (8) and (12). 

a Exact Solution Result of Method (8) Absolute error of (8) Result of Method (12) Absolute error of (12) 

0.2 0.829298620919915 0.829298449813542 1.71 × 10`+ 0.829298621130485 2.11 × 10`�� 
0.4 1.21408765117936 1.21408749545914 1.56 × 10`+ 1.21408765140944 2.30 × 10`�� 

0.6 1.64894059980474 1.64894037231163 2.27 × 10`+ 1.64894060009137 2.87 × 10`�� 

0.8 2.12722953575376 2.12722931045984 2.25 × 10`+ 2.12722953610287 3.49 × 10`�� 

1.0 2.64085908577048 2.64085864464325 4.41 × 10`+ 2.64085908619686 4.26 × 10`�� 

1.2 3.17994153863172 3.17994053472221 1.00 × 10`) 3.17994153972539 1.09 × 10`�� 

1.4 3.73240001657766 3.73239893520156 1.08 × 10`)
 3.73240001783966 1.26 × 10`, 

1.6 4.28348378780244 4.28348236562564 1.42 × 10`)
 4.28348378935910 1.56 × 10`, 

1.8 4.81517626779352 4.81517467363426 1.59 × 10`)
 4.81517626969216 1.90 × 10`,

 

2.0 5.30547195053468 5.30546955231802 2.40 × 10`)
 5.30547195285364 2.32 × 10`,

 

 

5. Discussion of Result 

Two different methods for solving first order initial value 

problems of ordinary differential equations have been 

proposed in this work, the conventional or standard method 

and the hybrid method with the hybrid having more 

advantages over the conventional method the hybrid higher 

order and accuracy. The methods does not require 

developing separate predictors to implement this makes it 

simple and attractive for solving initial value problems of 

ordinary differential equations. A careful observation of 

Tables 1, 2 and 3 showed that both standard and hybrid 

methods performed well as their absolute error values are 

convergent, hence affirming the earlier established 

convergence of the methods. The hybrid method is useful as 

it reduces the step number of a method and still remains 

zero stable; in addition, the absolute error values presented 

in Tables 3, 4 and 5 indicated that the hybrid method 

performed better than the standard method when applied to 

stiff and non-stiff differential equations respectively. The 

results also revealed that the hybrid method converges 

faster than the standard method, since it has minimum 

absolute error values.  

6. Conclusion 

Justifying from the numerical calculations, it has been 

observed that the hybrid method performed well than the 

conventional method, it has also been established from the 

calculations that the hybrid method has high order and 

relatively small error constants than the conventional method. 

Finally, it has been established that hybrid methods gives 

better results than the standard methods when applied to 

either stiff or non-stiff initial value problems. 
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