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Abstract: This paper is aimed at discussing and comparing the performance of standard method with its hybrid method of
the same step number for the solution of first order initial value problems of ordinary differential equations. The continuous
formulation for both methods was obtained via interpolation and collocation with the application of the shifted Legendre
polynomials as approximate solution which was evaluated at some selected grid points to generate the discrete block methods.
The order, consistency, zero stability, convergent and stability regions for both methods were investigated. The methods were
then applied in block form as simultaneous numerical integrators over non-overlapping intervals. The results revealed that the

hybrid method converges faster than the standard method and has minimum absolute error values.
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1. Introduction

Most physical phenomena in science and engineering used
mathematical models to help in the understanding of the
physical world problems. These models often yield equations
that contain some derivatives of an unknown function of one
or several variables. Such equations are called differential
equations. Differential equations play an important role in the
modeling of physical problems arising from almost every
discipline of study such as economics, medicine, psychology,
operation research, space technology and even in areas such
as biology and astronomy.

Interestingly, differential equations arising from the
modeling of such physical phenomena often are very difficult
or impossible to solve analytically. Hence, the need for the
development of numerical methods to obtain approximate
solutions becomes inevitable.

Many scholars have worked extensively on the solution of
differential equations. These authors proposed different

methods ranging from predictor corrector method to block
method using different polynomials as basis functions
evaluated at some desired points.

In this work, two types of block methods are proposed, the
first is the five-step standard block method and the second is
the five-step hybrid method with four off- grid points, using
the shifted Legendre polynomials evaluated at some grid and
off-grid points to give the needed discrete schemes.

Consider a numerical method for solving general first
order initial value problems of ordinary differential equations
of the form:

V= 1), 0(0) = v, (D

where f is a continuous function and satisfies Lipschitz
condition of the existence and uniqueness of solution. Many
authors have proposed solution for first order initial value
problems of ordinary differential equations using different
approaches. This work will adopt the block method technique
for solving (1) as suggested by researchers. [4], considered
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the Continuous implicit hybrid one step methods for the
solution of initial value problems of general second order
ordinary differential equations. [5], introduced the
application of two step continuous hybrid Butcher’s method
in block form for the solution of first order initial value
problems; this approach eliminates requirements for a
starting value. [2], introduced a new hybrid method for
systems of stiff equations. [11], developed a new Butcher
type two-step block hybrid multistep method for accurate and
efficient parallel solution of ordinary differential equations.
[1], used hybrid formula of order four to generate starting
values for Numerov method. [3], developed linear multistep
hybrid methods with continuous coefficients for solving stiff
ordinary differential equations. [10], introduced a hybrid
linear collocation multistep scheme for solving first order
initial value problems of ordinary differential equations. [9],
developed a three step implicit hybrid linear multistep
method for the solution of third order ordinary differential
equations.

2. Derivation of the Method

In this section, two methods are developed namely five-
step block method and five-step with three off-grid points, by
interpolating and collocating at some selected points.

Consider the shifted Legendre approximation of the form

[po(4h)  pi(4h)  py(4h)

2000  pl(0)  ph(0)

po(h)  pi(h)  py(h)
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[
y(x)= Y CP(1) @)
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where ¢ =m+s—1, m and s are interpolation and
collocation points. The first derivative of (2) gives

[
Y'(x) =D G (3)
i=0
substituting (3) in (1), to get
4
Sy =) CR) (4)
i=0

2.1. Five Step Method

Interpolating (2) at x,,,, and collocating (3) at x;,, X 41,
Xn+2»> Xn+3s> Xnta and x,,s gives the system of nonlinear
equations of the form

Solving for the C;'s using inverse of a matrix method and substituting in (2) gives the continuous formulation
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Evaluating (6) with coefficients (7) at x,, Xp11, Xn42, Xne3 and x, .5 with t = (x — x;,) the following discrete schemes is
respectively obtained as;

14—h 64h 8 b 64h 14—h
45 le 45 le+1 15 fn+2 45 fn+3 45 le+4-

3 69 87 87 69
Yn+1 = Yn+a T 75 160 hf, — mhfn+1 - %hfnn - %hfnu - ﬁhfnu, + mhfms

Yn = Yn+a

1 7 19 17 1
Yn+2 = Vn+4 +%hfn+1 - Ehfn+2 - Ehfn+3 - Ehfn+4- + %hfn+5

11 51 637
Yn+3 = Vn+a +— 1440 hf 1440 fn+1 + 240 hfn+2 720 fn+3 1440 fn+4- +—= 160 hfn+5
173 241 133 1427
Yn+s = Yn+a T 7 160 hfn - mhfn+1 + ahfnn - mhfn+3 1440 hfn+4- + 288 hfn+5 (8)

2.2. Five Step Method with Three Off-Grid Points

Interpolating (2) at x4, and collocating (3) at X, Xp4+1, Xn+2, Xn+3, Xntas X, 13, xn+9 X it and x, 5 gives a system of
3

nonlinear equations of the form
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Solving for the C;'s using inverse of a matrix method and substituting in (2) gives the continuous formulation
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y(x) = Za () Vs +h2/3 () fre +h2ﬂw () frray (10)
j=0
where
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Evaluating (10) with coefficients (11) at X;,, Xp41, Xnt2, Xn43» xn+1?3 X +9, X +14 and x,,5 with t = (x — x,,) the following
discrete schemes are respectively obtained as;
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3. Analysis of the Method

In this section the error constant, order, consistency, zero
stability, convergent and region of absolute stability of the
schemes generated are discussed.

3.1. Order and Error Constant

Expanding (8) and (12) in Taylor’s series and collecting
like terms in powers of h, the order and error constant are
respectively obtained as follows;

Table 1. Order and Errvor Constants of the Discrete Schemes of the Block
Method (8).

Scheme Order Error constant

Yn+1 6 C, = —5.8035714 x 1073
Yn+2 6 C, =—-1.3227513 x 1073
Yn+3 6 C, = —4.4808201 x 1073
Yn+a 6 C, = 8.46560850 x 1073
Ynis 6 C, =—1.4269180 x 1072

Table 2. Order and Error Constants of the Discrete Schemes of the Hybrid
Block Method (12).

Scheme Order Error constant

Yn+1 9 Cio = 4.9057933 x 10™*
Yn+2 9 Cio = —4.255200 X 107°
Vn+3 9 Cio = 9.04215420 x 107
Yn+a 9 Cio = —84.29153100000
J’n+13_3 9 Cio = —0.643365680000
J’,H; 9 Cio = 7.29157760 x 1078
J’n+13_4 9 C;o = 8.15819800 x 1078
Ynis 9 Cio = —1.7278002 x 1077

Hence the block methods are of order § = 6, 9 and error constant of C;, Cy
respectively

3.2. Consistency

Following [8] and [6], the block methods are said to be
consistent if they satisfy the following conditions:
(i) theorderp =1

(i1) Z?:o @ =0

(iii) p(1) =p'(1)

(iv) p"(1) =2la(1)
Where p(r) and o(r) are the first and second characteristics
polynomials of the block method. According to [8] and [6],
condition (i) above is a sufficient condition for the block
methods to be consistent. Hence the block methods are
consistent since p = 6,9 > 1.

3.3. Zero Stability

The block methods are said to be zero stable if the roots

Z; v =1,..,n of the first characteristic polynomial p(z),
defined by

p(z) = det|zQ = T|
satisfies |z,| <1 and every root with |z.|=1 has

multiplicity not exceeding two in the limit as h > 0.
Calculations from all available information revealed that the
block methods (8) and (12) have the following roots
respectively.

z*(z—1)=0andz8(z—-1) =0

Hence the block methods are zero stable, since all roots
with modulus one do not have multiplicity exceeding the
order of the differential equation in the limit as h — 0.

3.4. Convergence

According to [7], we can safely assert the convergence of
the block methods (8) and (12)

3.5. Region of Absolute Stability

Reformulating the block methods (8) and (12) as a General
Linear Methods (GLM) containing a partition of matrices A,
Band C and then substituting into the stability polynomial
r(A — Cz) — B. Using a MATLAB code based on the idea of
Newton’s iteration, the regions of absolute stability of the
block methods are respectively shown below.
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Figure 1. The regions of absolute stability for methods (8) and (12).

4. Numerical Illustrations

The ordinary differential equation

U
. . . . =x-y,0sx<1,p(0)=0,A=0.1 14
The following numerical experiments are performed with Y % 24 ( ) ’ (14)
the aid of MAPLE 18.software package in order to further The exact solution is y(x) = x + e~ — 1. ([10]).
affirm the earlier established convergence of the methods. Example 3
Examp l? 1 . . . The ordinary differential equation
The ordinary differential equation
' 2
= - + <x< = =
V' =57.0<x<1y(0) =14 =001 a3 Y =y-x’+1,0sx<2,»(0)=05hr=02 (15
.. _ 2
The exact solution is y(x) = e5*. ([12]) The exact solution is y(x) = (x + 1)* + 0.5e%, ([13])
Example 2
Table 3. Absolute Error Values for Example 1 of Methods (8) and (12).
X Exact Solution Result of Method (8) Absolute error of (8) Result of Method (12) Absolute error of (12)
0.01 1.05127109637602 1.05127109638904 1.302 x 1071t 1.05127109637607 5.0 x 107
0.02 1.10517091807565 1.10517091808526 9.610 x 10712 1.10517091807569 4,0x 10714
0.03 1.16183424272828 1.16183424274126 1.298 x 1071t 1.16183424272835 7.0 x 107
0.04 1.22140275816017 1.22140275816975 9.580 x 10712 1.22140275816017 0.00000000
0.05 1.28402541668774 1.28402541671072 2.298 x 1071 1.28402541668780 6.0 x 1071
0.06 1.34985880757600 1.34985880761687 4.087 x 10711 1.34985880757611 1.1x 10713
0.07 1.41906754859326 1.41906754863098 3.772 x 1071 1.41906754859338 1.2x 10713
0.08 1.49182469764127 1.49182469768462 4335 x 10711 1.49182469764142 1.5x 10713
0.09 1.56831218549017 1.56831218553052 4.035 x 10711 1.56831218549031 1.4x 10713
0.10 1.64872127070013 1.64872127075914 5.901 x 10711 1.64872127070028 1.5x 10713
avle 4. solute Lrror va ues jor Lxample < o, etnods an .
Table 4. Absolute Error Values for Example 2 of Methods (8) and (12)
X Exact Solution Result of Method (8) Absolute error of (8) Result of Method (12) Absolute error of (12)
0.1 0.004837418035960 0.0048374169836170 1.05 x 107° 0.0048374180358260 1.34 x 10713
0.2 0.018730753077982 0.0187307524576758 6.20 x 10710 0.0187307530778861 9.59 x 10~
0.3 0.040818220681718 0.0408182198857461 7.96 x 10710 0.0408182206816284 8.96 x 1071
0.4 0.070320046035639 0.0703200456495184 3.86 x 1071 0.0703200460355589 8.01 x 1071
0.5 0.106530659712633 0.106530658294696 1.42 x 107° 0.106530659712561 7.20 x 1074
0.6 0.148811636094026 0.148811634172747 1.92 x 107° 0.148811636093972 5.40 x 1074
0.7 0.196585303791410 0.196585302254268 1.54 x 107° 0.196585303791371 3.90 x 1074
0.8 0.249328964117222 0.249328962584008 1.53 x 107° 0.249328964117176 4,60 x 1071
0.9 0.306569659740599 0.306569658555933 1.85 x 107° 0.306569659740559 4,00 x 107
1.0 0.367879441171442 0.367879439451397 1.72 x 107° 0.367879441171405 3.70 x 1074
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Table 5. Absolute Error Values for Example 3 of Methods (8) and (12).
X Exact Solution Result of Method (8) Absolute error of (8) Result of Method (12) Absolute error of (12)
0.2 0.829298620919915 0.829298449813542 1.71x 1077 0.829298621130485 2.11x1071°
0.4 1.21408765117936 1.21408749545914 1.56 x 1077 1.21408765140944 2.30x 10710
0.6 1.64894059980474 1.64894037231163 2.27 x 1077 1.64894060009137 2.87 x 10710
0.8 2.12722953575376 2.12722931045984 2.25%x 1077 2.12722953610287 3.49 x 10710
1.0 2.64085908577048 2.64085864464325 4.41%x 1077 2.64085908619686 4.26 x 10710
1.2 3.17994153863172 3.17994053472221 1.00 x 107° 3.17994153972539 1.09 x 1070
1.4 3.73240001657766 3.73239893520156 1.08 x 107 3.73240001783966 1.26 x 107°
1.6 4.28348378780244 4.28348236562564 1.42 x 107 4.28348378935910 1.56 x 107°
1.8 4.81517626779352 4.81517467363426 1.59 x 107 4.81517626969216 1.90 x 10~°
2.0 5.30547195053468 5.30546955231802 2.40 X 107 5.30547195285364 2.32x107°

5. Discussion of Result

Two different methods for solving first order initial value
problems of ordinary differential equations have been
proposed in this work, the conventional or standard method
and the hybrid method with the hybrid having more
advantages over the conventional method the hybrid higher
order and accuracy. The methods does not require
developing separate predictors to implement this makes it
simple and attractive for solving initial value problems of
ordinary differential equations. A careful observation of
Tables 1, 2 and 3 showed that both standard and hybrid
methods performed well as their absolute error values are
convergent, hence affirming the earlier established
convergence of the methods. The hybrid method is useful as
it reduces the step number of a method and still remains
zero stable; in addition, the absolute error values presented
in Tables 3, 4 and 5 indicated that the hybrid method
performed better than the standard method when applied to
stiff and non-stiff differential equations respectively. The
results also revealed that the hybrid method converges
faster than the standard method, since it has minimum
absolute error values.

6. Conclusion

Justifying from the numerical calculations, it has been
observed that the hybrid method performed well than the
conventional method, it has also been established from the
calculations that the hybrid method has high order and
relatively small error constants than the conventional method.
Finally, it has been established that hybrid methods gives
better results than the standard methods when applied to
either stiff or non-stiff initial value problems.
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