The Study of the Concept of Q*Compact Spaces

Ibrahim Bassi¹, Yakubu Gabriel², Onuk Oji Galadima³

¹Department of Mathematics, Federal University, Lafia, Nigeria
²Department of Mathematics, Shepherd’s International College, Akwanga, Nigeria
³Department of Physics, Federal University, Gashua, Nigeria

Email address: bassibrahim2005@gmail.com (I. Bassi), yakubu610@gmail.com (Y. Gabriel) onukbest@gmail.com (O. O. Galadima)

To cite this article: Ibrahim Bassi, Yakubu Gabriel, Onuk Oji Galadima. The Study of the Concept of Q*Compact Spaces. Pure and Applied Mathematics Journal. Vol. 7, No. 1, 2018, pp. 1-5. doi: 10.11648/j.pamj.20180701.11

Received: October 24, 2017; Accepted: November 25, 2018; Published: February 2, 2018

Abstract: The aim of this research is to extend the new type of compact spaces called Q* compact spaces, study its properties and generate new results of the space. It investigates the Q*-compactness of topological spaces with separable, Q*-metrizable, Q*-Hausdorff, homeomorphic, connected and finite intersection properties. The closed interval [0, 1] is Q*-compact. So, it is deduced that the closed interval [0, 1] is Q*-compact. For example, if

Q* closed in (X, τ) if S is closed and Int (S) = φ. Its compliment S' is therefore Q* open [9, 10]. If every open cover of X has a finite sub cover then X is called a compact space. (X, τ) is said to be separable if it has a countable dense subset. Let X be a set and ℑ a family of subsets of X. Then ℑ is said to have Finite Intersection Property if for any finite number F₁, F₂, ..., Fₙ of members of ℑ, F₁ ∩ F₂ ∩ ... ∩ Fₙ ≠ φ [9].

2. Preliminaries

This section gives an overview of the basic definitions of a compact space, Q*-compact which is the new type of a compact space.

Definition: A subset A of a topological space (X, τ) is said to be compact if every open covering of A has a finite subcovering. If the compact subset A equals X, then (X, τ) is said to be a compact space.

Definition: Let (X, τ) be a topological space. Then it is said to be connected if the only clopen subsets of X are X and φ.
Definition: A subset \(A \) of a topological space \((X, \tau) \) is said to be \(Q^*O \) compact if every \(\tau - Q^* \) open cover of \(X \) has a finite sub cover.

Definition: Let \((X, \tau) \) be a topological space. Then it is said to be \(Q^* \)-connected if the only \(Q^* \) open subsets of \(X \) are \(X \) and \(\varnothing \).

3. Results on Generalization of \(Q^*O \) Compact Space

Theorem: The closed interval \([0, 1]\) is \(Q^*\)-compact.

Proof: Let \(G_\alpha, \alpha \in \Lambda \) be any open covering of \([0, 1]\). Then for each \(x \in [0,1] \), there is a \(G_\alpha \) such that \(x \in G_\alpha \). As \(G_\alpha \) is open in \(X \), there exist \(U_x \), open in \([0,1]\), such that \(x \in U_x \subseteq G_\alpha \).

Now define a subset \(S \subseteq [0,1] \) as follows:

\[
S = \{ x \in [0,1] : \exists \{ U_x \} \text{ such that } x \in U_x \subseteq G_\alpha \}
\]

Then for each \(x \in [0,1] \), \(U_x \) is an interval containing \(x \), and \(U_x \) is open. So \(x \in S \) if and only if there exists an \(\alpha \in \Lambda \) such that \(x \in U_x \). Hence \(S \) is \(Q^* \)-compact.

Example: Suppose \(\tau = \{ \mathcal{X}, \mathcal{E}, \mathcal{F}, \mathcal{G} \} \). Let \(S = \{ e, f, g \} \). Then \(S \) is \(Q^* \)-compact if and only if \(\tau = \{ \mathcal{X}, \mathcal{E}, \mathcal{F}, \mathcal{G} \} \) is not \(Q^* \)-open.

Remark: Every \(Q^*O \) compact space is compact, but the converse is not necessarily true.

Theorem: A subset \(S \) of \(\mathbb{R} \) is \(Q^* \)-compact if and only if \(S \) is closed and bounded.

Proof: First suppose that \(S \) is \(Q^* \)-compact. To see that \(S \) is bounded, suppose not. Then there is some point \(p \in cl(S) \) such that \(p \notin S \). For each \(n \), define the neighborhood around \(p \) of radius \(1/n \), \(N_n = (p, 1/n) \). Take the complement of the closure of \(N_n U_n = R \setminus cl(N_n) \) is open (since its complement is closed), and we have \(\bigcap_{n=1}^{\infty} U_n = \varnothing \).

Hence, \(S \) is closed and bounded. Therefore \(S \) is \(Q^* \)-compact.

Conversely, there is need to show that if \(S \) is closed and bounded, then \(S \) is \(Q^* \)-compact. Let \(\mathcal{X} \) be an open cover for \(S \). For each \(x \in \mathcal{X} \), define the set

\[
S_x = S \cap (-\infty, x],
\]

and let

\[
B = \{ x : S_x \text{ is covered by a finite subcover of } \mathcal{X} \}.
\]

Since \(S \) is closed and bounded, hypothesis tells us that \(S \) has both a maximum and a minimum. Let \(d = \min S \). Then \(S_x = \{ d \} \) and this is certainly covered by a finite subcover of \(\mathcal{X} \). Therefore, \(d \in B \) and \(B \) is nonempty. If it is shown that \(B \) is not bounded above, then it will contain a number \(p \) greater than \(\min S \). But then, \(S_p = S \) so we can conclude that \(S \) is covered by a finite subcover, and is therefore \(Q^*\)-compact.
compact.

Toward this end, suppose that B is bounded above and let $m = \sup B$. We shall show that $m \in S$ and $m \notin S$ both lead to contradictions.

If $m \in S$, then since S is an open cover of S, there exists $F_0 \in S$ such that $m \in F_0$. Since F_0 is open, there exists an interval $[x_1, x_2]$ in F_0 such that $x_1 < m < x_2$. Since $x_1 < m$ and $m = \sup B$, there exists F_1, \ldots, F_n in S that cover S_n. But then F_0, F_1, \ldots, F_n cover S_n, so that $x_2 \in B$. But this contradicts $m = \sup B$.

If $m \notin S$, then since S is closed there exists $\epsilon > 0$ such that $N(m, \epsilon) \cap S = \emptyset$. But then $S_{m-\epsilon} = S_{m+\epsilon}$.

Since $m - \epsilon \notin B$ then $m + \epsilon \in B$, which again contradicts $m = \sup B$.

Therefore, either way, if B is bounded above, we get a contradiction. We conclude that B is not bounded above, and S must be Q*-compact.

Theorem: Let (X, τ) be a Q*-compact metrizable space. Then (X, τ) is separable.

Proof: Let d be a metric space on X which induces the topology τ. For each positive integer n, let S_n be the family of all open balls having centres in X and radius $\frac{1}{n}$. Then S_n is an open covering of X and so there is a finite subcovering $\mu_n = \{U_{n,1}, U_{n,2}, \ldots, U_{n,k}\}$, for some $k \in \mathbb{R}$. Let $y_{n,j}$ be the centre of $U_{n,j}$, $j = 1, \ldots, K$, and $Y_n = \{y_{n,1}, y_{n,2}, \ldots, y_{n,k}\}$.

Put $Y = \bigcup_{n=1}^{\infty} Y_n$. Then Y is a countable subset of X. Now showing that Y is dense in (X, τ).

If V is any non-empty open set in (X, τ), then for any $v \in V$, V contains an open ball, B_v, of radius $\frac{1}{n}$, about v, for some $n \in \mathbb{R}$. As μ_n is an open cover of X, $v \in U_{n,j}$, for some j. Thus $d(v, y_{n,j}) < \frac{1}{n}$ and so $y_{n,j} \in B \subseteq V$. Hence, $V \cap Y \neq \emptyset$, and so Y is dense in X.

Theorem: Let (X, τ) be a topological space. Then (X, τ) is Q*-compact if and only if every family S of closed subsets of X with the finite intersection property satisfies $\bigcap F \neq \emptyset$.

Proof: Assume that every family S of closed subsets of X with the finite intersection property satisfies $\bigcap F \neq \emptyset$.

Let μ be any open covering of X. Put S equal to the family of complements of members of μ. So each $F \in S$ is closed in (X, τ). AS μ is an open covering in X, $\bigcap F \neq \emptyset$. By our assumption, then S does not have finite intersection property. So, for some F_1, F_2, \ldots, F_n in S, $F_1 \cap F_2 \cap \cdots \cap F_n \neq \emptyset$. Thus $U_1 \cup U_2 \cup \cdots \cup U_n = X$, where $U_i = X \setminus F_i$, $i = 1, \ldots, n$. So μ has a finite subcovering. Hence, (X, τ) is Q*-compact.

The converse statement is proved similarly.

Theorem: Let f be a continuous mapping of a Q*-compact metric space (X, d) onto a Q*-Hausdorff space (Y, τ). Then (Y, τ) is Q*-compact and metrizable.

Proof: Since every Q*-continuous image of a compact space is compact (Padma 2015), the space (Y, τ) is certainly compact and metrizable. As the map f is surjective, define the metric d_1 on Y as follows:

$$d_1(y_1, y_2) = \inf \left\{ d(a, b) : a \in f^{-1}\{y_1\} \text{ and } b \in f^{-1}\{y_2\} \right\},$$

for all y_1 and y_2 in Y.

To show that d_1 is indeed a metric. Since $\{y_1\}$ and $\{y_2\}$ are closed in the Q*-Hausdorff space (Y, τ), $f^{-1}\{y_1\}$ and $f^{-1}\{y_2\}$ are Q*-compact. So, the product $f^{-1}\{y_1\} \times f^{-1}\{y_2\}$, which is a subspace of the product space $(X, \tau) \times (X, \tau)$, is Q*-compact, where τ is the topology induced by the metric d.

Observing that $d : (X, \tau) \times (X, \tau) \to \mathbb{R}$ is a continuous mapping, then $d\left(f^{-1}\{y_1\} \times f^{-1}\{y_2\}\right)$ has a least element.

So there exist an element $x_1 \in f^{-1}\{y_1\}$ and an element $x_2 \in f^{-1}\{y_2\}$ such that

$$d(x_1, x_2) = \inf \left\{ d(a, b) : a \in f^{-1}\{y_1\}, b \in f^{-1}\{y_2\} \right\} = d_1(y_1, y_2).$$

Clearly if $y_1 \neq y_2$, then $f^{-1}\{y_1\} \cap f^{-1}\{y_2\} = \emptyset$. Thus $x_1 \neq x_2$ and hence $d(x_1, x_2) > 0$, that is $d_1(y_1, y_2) > 0$.

It is easily verified that d_1 has the other properties required of a metric, and so a metric on Y.

Let τ_2 be the topology induced on Y by d_1. To show that $\tau_1 = \tau_2$.

Firstly, by the definition of d_1, $f : (X, \tau) \to (X, \tau_2)$ is certainly continuous.

Observe that for a subset C of Y, C is a closed subset of (Y, τ_2)

$\Rightarrow f^{-1}(C)$ is a closed subset of (X, τ)

$\Rightarrow f^{-1}(C)$ is a Q*-compact subset of (X, τ)

$\Rightarrow f\left(f^{-1}(C)\right)$ is a Q*-compact subset of (X, τ_2).
SO $\tau_1 \subseteq \tau_2$

Similarly, we have $\tau_2 \subseteq \tau_1$, and thus $\tau_1 = \tau_2$

Theorem: Let (X, τ) be a Q*-compact space and $f: (X, \tau) \rightarrow \mathbb{R}$ a continuous mapping. Then $f(X)$ has a greatest element and a least element.

Theorem: If $(X_1, \tau_1), (X_2, \tau_2), ..., (X_n, \tau_n)$ are Q*- compact spaces, then $\prod_{i=1}^{n} (X_i, \tau_i)$ is a Q*- compact space.

Proof: The first part of this proof is to show that the product of any two Q* compact topological spaces is Q*- compact.

By our inductive hypothesis $(X_1, \tau_1) \times \cdots \times (X_N, \tau_N)$ is Q*- compact, so the right-hand side is the product of two Q*- compact spaces and thus is Q*- compact. Therefore, the left-hand side is also Q*- compact.

Theorem: Let $\{(X_i, \tau_i) : i \in I\}$ be any family of topological spaces. Then $\prod_{i \in I} (X_i, \tau_i)$ is Q*-compact if and only if each (X_i, τ_i) is Q*-compact.

Theorem: If X is not Q*- compact, then X is homeomorphic to an open dense set in \mathcal{X}. (Where \mathcal{X} is not too larger than X.)

Proof: Suppose we ensure that \mathcal{X} is not “too large”, that is, not “too much larger” than X.

First show that X is homeomorphic to the set $\{X\} \subset \mathcal{X}$.

Construct a function that sends each point of X to the corresponding point in $\{X\}$. This function is obviously one-to-one and onto, and it is continuous (and so is its inverse) because the open sets in $\{X\}$ are exactly the open sets in X.

The set $\{X\}$ is open in \mathcal{X}, because it does not contain ∞ and it is open in X. To show that $\{X\}$ is dense, we can simply show that it is not closed, or that ∞ is not open. (If that’s the case, then $\{X\}$ is not its own closure, and the only other option is that its closure is \mathcal{X}). If ∞ is open, then its complement, $\{X\}$, must be closed. But this would imply that X is Q*- compact, contradicting our earlier assumption. So ∞ cannot be open, meaning $\{X\}$ must be dense.

Theorem: If none of the components of X is Q*- compact, then \mathcal{X} is connected.

Proof: Assume that \mathcal{X} is not connected, i.e. there is some set U in \mathcal{X} that is open and closed, but is not \varnothing or \mathcal{X}. Its complement, \mathcal{V}, is also open and closed without being \varnothing or \mathcal{X}. Either U or \mathcal{V} contains ∞; take the one that does not, and call it W. W is Q*-compact because its complement is open and contains ∞.

First let us consider the case that X is connected. We have already established that W is not \varnothing. It cannot be all of X either, because W is Q*- compact and X is not. W is open in X because it is open in \mathcal{X} and does not contain ∞. It is closed in X because its complement (either $U \cap X$ or $\mathcal{V} \cap X$) is open in X. So, W is open, closed, not \varnothing, and not X, which implies that X is not connected. This contradicts our assumption, so \mathcal{X} must be connected.

4. Conclusion

But what if X is not connected? In this case, we look at the connected components of X. Any open set including ∞ must also contain points in each of the components of X (because the complement of the open set is Q*- compact, and if the complement included an entire connected component, then that component would need to be Q*-compact, but it is not). So W contains some points in each of the components. But this would imply that the connected components are not connected, which is our contradiction. So again, \mathcal{X} must be connected.

It is also true that every Q*O compact space is a Q*- Lindelof space. Every Q*O - compact topological space is Q*- compactly countable. Since the space is Q*O - compact, every τ - Q* open covering of X has a finite subcover. Hence, every countable τ- Q* open covering of X has a finite subcover and therefore it is countably compact.

References

