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Abstract: In this paper, we study the boundedness of some sublinear operators with rough kernels, satisfied by most of the 

operators in classical harmonic analysis, on the generalized weighted grand Morrey spaces. More specifically, we show that the 

sublinear operators with rough kernels are bounded on these spaces under the conditions that the operators and the kernel 

functions satisfy some size conditions, and the operators are bounded on Lebesgue spaces. This is done by exploiting the 

well-known boundedness of sublinear operators with rough kernels on Lebesgue spaces, a more explicit decomposition of the 

generalized weighted grand Morrey spaces and the good properties of the weight functions and the kernel functions. Through 

combining some properties of Ap weight with the relevant lemmas of operators with rough kernel, we obtain the boundedness for 

sublinear operators with rough kernels on weighted grand morrey spaces. Furthermore, using the equivalent norm and the 

properties of BMO functions, an application of the boundedness of the sublinear operators with rough kernels to the 

corresponding commutators formed by certain operators and BMO functions are also considered. And the boundedness of 

commutator is obtained by the lemma of function BMO. 

Keywords: Weighted Grand Morrey Space, Sublinear Operator, Rough Kernel, Commutator 

 

1. Introduction 

Morrey [1] first introduced the classical Morrey spaces to 

investigate the local behavior of solutions to second order 

elliptic partial differential equations (PDE). Morrey found that 

many properties of the solutions to PDE can be attributed to 

the boundedness of some operators on Morrey spaces. Since 

then, many researchers became interested in studying the 

norm inequalities of operators on Morrey type spaces, the 

following form of which was the one they usually adopted (see 

for example [2]): 

,
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, ( )
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1
( ) : sup | ( ) |

| |

n
p q n
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n p
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M f f f x dx
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where ( )
p n
locf L∈ ℝ  and 1 .p q≤ ≤ < ∞  Here and in what 

follows, we denote by B any balls in n
ℝ , 0( , )B B x r=  

centered at 0
nx ∈ℝ  with radius 0r >  and 0( , )B B x rλ λ=  

with 0λ > . , ( )n
p qM ℝ  is an expansion of ( )p nL ℝ  in the 

sense that , ( ) ( )n p n
p pM L=ℝ ℝ . 

Some inequalities (for example, the ( )(1 )p nL p≤ < ∞ℝ  

inequalities) for several kinds of operators remain true when 

Lebesgue measure dx  is replaced by certain measure 

( )w x dx . It is worth pointing out that many authors are 

interested in the inequalities when ( )w x  belongs to the 

Muchenhoupt classes. For some related works, we refer to two 
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classical books [3-4]. The Muckenhoupt classes pA  and ( , )p qA  [5] contain the functions w  which satisfy 
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respectively, where 1/ 1/ 1p p′+ = . The pA  theory has 

found applications in several branches of Analysis, from 

Complex function theory to PDE [3]. 

Komori and Shirai [6] introduced weighted Morrey spaces, 

which are natural generalization of weighted Lebesgue 

spaces, and investigated the boundedness of classical 

operators in harmonic analysis including the 

Hardy-Littlewood maximal operator 

1
( ) sup | ( ) | ,

| | BB x

Mf x f y dy
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= ∫
∋

 

the Calder ó n-Zygmund singular integral operator 

( ) p.v. ( ) ( ) ,
n

Tf x K x y f y dy= −∫
ℝ

 

where K  is the Calder ó n-Zygmund kernel and the 

fractional integral which is defined by 

( )
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Let 1 ,p≤ < ∞  0 1λ< <  and w  be a function. Then the 

weighted Morrey space , ( )pM wλ  is defined by 
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where ( ) ( )
B

w B w x dx= ∫ . It is obvious that if 1,w =  

1 /p qλ = − , then , ,( ) ( )n
p p qM w Mλ = ℝ . For 

(1 )pw A p∈ ≤ < ∞ , if 0,λ =  then ,0 ( ) ( )p
pM w L w=  and if 

1,λ =  then ,1( ) ( )pM w L w∞= . 

The corresponding Morrey spaces related to the 

boundedness for Iα  are the weighted Morrey spaces 

, 1 2( , )pM w wλ  with two weights which are also introduced by 

Komori and Shirai [6]. Let 1 p≤ < ∞ , 0 1λ< < . For two 

weights 1w  and 2w , 
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If 1 2w w w= = , we denote by 

, 1 1 , 2 2 ,( , ) ( , ) ( )p p pM w w M w w M wλ λ λ= = . 

Meskhi [7] first introduced the grand Morrey spaces in a 

bounded domain and derived the boundedness of a class of 

integral operators in the frame of quasi-metric measure spaces 

with doubling measures. Inspired by the definition of 

, ( )pM wλ , we adopt the definition of the grand Morrey space 

[7] and consider the following generalized weighted grand 

Morrey spaces ), , ( )pM wθ λ  defined on the whole spaces n
ℝ  

instead of bounded domains as 
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In the fractional case, we need to consider the 

corresponding generalized weighted grand Morrey spaces 

with two weights 
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If 0,θ =  then ),0, ,( ) ( )p pM w M wλ λ=  and 

),0, 1 2 , 1 2( , ) ( , )p pM w w M w wλ λ=  are the classical weighted 

Morrey spaces of Komori and Shirai. Using H ö lder's 

inequality, it is easy to have the following embedding 

1 2, ), , ), , ,( ) ( ) ( ) ( ),p p p pM w M w M w M wλ θ λ θ λ ε λ−⊂ ⊂ ⊂  



20 Junmei Wang:  Boundedness for Sublinear Operators with Rough Kernels on Weighted Grand Morrey Spaces  

 

where 1 2θ θ<  and 0 1pε< < − . 

If 0λ = , then ), ,0 ),( ) ( )p pM w L wθ θ=  is the generalized 

weighted grand Lebesgue space defined on n
ℝ  while if 

furthermore ( ) 1w x =  and 1θ = , ),1( )n
pL ℝ  is the grand 

Lebesgue space (also called small Lebesgue space) appeared 

in the paper by Greco, Iwaniec and Sbordone [8], where the 

existence and uniqueness of the nonhomogeneous n

-harmonic equations were established. However, this topic 

exceeds the scope of this paper. For the structural properties of 

these spaces, we refer the reader to [9-14]. 

Given a function Ω  over the unit sphere 1nS −  of 

( 2)n n ≥ℝ  equipped with the normalized Lebesgue measure 

dσ  and / | |x x x′ = , a Calder ó n-Zygmund singular integral 

operator with rough kernel was given by 

( )
( ) ( )
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x y
T f x f y dy

x y
Ω
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and a related maximal operator 

( ) sup ( ) ( ) ,
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M f x x y f y dyΩ = Ω −∫
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where Ω  is homogeneous of degree zero and satisfies 

1( ), 1r nL S r−Ω ∈ < ≤ ∞              (1) 

and 

1
( ) 0.

n
S

x dx
−

′ ′Ω =∫                  (2) 

When r = ∞ , Ω  can be seen as a smooth kernel and TΩ  

a standard Calder ó n-Zygmund singular integral operator, 

which has been fully studied by many papers, a classical 

survey work, see for example [4]. 

For simplicity of notation, Ω  is always homogeneous of 

degree zero and satisfies (1) and (2) throughout this paper if 

there are no special instructions. When Ω  satisfies some size 

conditions, the kernel of the operator TΩ  has no regularity, 

and so the operator TΩ  is called rough singular integral 

operator. In recent years, a variety of operators related to the 

singular integrals for Calder ó n-Zygmund, but lacking the 

smoothness required in the classical theory, have been studied. 

Duoandikoetxea [15] studied the norm inequalities for TΩ  in 

homogeneous case on weighted (1 )pL p< < ∞  spaces. For 

more corresponding works, we refer the reader to [16-21] and 

the references therein. 

Hu, Lu and Yang [22] considered some more general 

sublinear operators with rough kernels which satisfy 

| ( ) ( ) |
| ( ) | ,

| |
n n

x y f y
f x C dy

x y
Ω

Ω −≤
−∫ℝT  x ∉ supp f     (3) 

for any integral function 1( )nf L∈ ℝ  with compact support. 

Condition (3) was first introduced by Soria and Weiss [23] and 

was satisfied by many operators with rough kernels in 

classical harmonic analysis, such as TΩ [24] and the 

oscillatory singular integral operator 

( , ) ( )
( ) . . ( ) ,

| |
n

iP x y

n

x y
T f x p v e f y dy

x y
Ω

Ω −=
−∫ℝ  x ∉ supp f  

where the phase is a polynomial. The boundedness of TΩ on 

weighted ( )(1 )p nL p≤ < ∞ℝ  spaces were fully studied by 

Ojanen in his doctoral dissertation [25]. 

Let { :| | 2 }n k
kD x x= ∈ ≤ℝ  and 1\k k kA D D −=  for 

k Z∈ . Throughout this paper, we will denote by Eχ  the 

characteristic function of the set E . Inspired by the works of 

[26] and [19], we consider some size conditions (the following 

(4) and (5)) which are more general than (3) on the generalized 

weighted grand Morrey spaces. 

| ( ) | | | | ( ) ( ) |
n

nf x C x x y f y dy−
Ω ≤ Ω −∫

ℝ

T        (4) 

when supp kf A⊆  and 1| | 2kx +≥  with k Z∈  and 

| ( ) | 2 | ( ) ( ) |
n

knf x C x y f y dy−
Ω ≤ Ω −∫

ℝ

T        (5) 

when supp kf A⊆  and 1| | 2kx −≤  with k Z∈ . It is worth 

pointing out that MΩ  satisfies conditions (4) and (5) (see 

[27]). Also, condition (3) implies the size conditions (4) and (5) 

since | | | | /2x y x− >  when 1| | 2kx +≥  and supp kf A⊆  

while supp kf A⊆  and 1| | 2kx −≤  imply | | | | /2x y y− > . 

The boundedness of parabolic sublinear operators with 

rough kernel generated by parabolic Calder ó n-Zygmund 

operators and their commutators on the parabolic generalized 

local Morrey spaces have been investigated [28]. Recently, 

Zheng, Zhang and Shi [29] introduced the boundedness for 

sublinear operators on generalized weighted grand Morrey 

spaces. They studied the boundedness of some sublinear 

operators, satisfied by most of the operators in classical 

harmonic analysis, on the generalized weighted grand Morrey 

spaces. And they also considered the applications to the 

corresponding commutators formed by certain operators and 

bounded mean oscillations ( BMO ) functions. Inspired by the 

above, we study some sublinear operators with rough kernels 

on generalized weighted grand Morrey spaces. 

We end this section with the outline of this paper. Section 2 

contains Theorem 2.1-Theorem 2.4 and the proofs of them. In 

Section 3, we extend the corresponding results to the 

commutators of certain sublinear operators. In Section 4, we 

give a conclusion. 

2. Method and Result 

2.1. Boundedness of Sublinear Operators 

The topic of this paper is intended as an attempt to study the 
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boundedness of some sublinear operators with rough kernels 

which satisfy (4) and (5) on generalized weighted grand 

Morrey spaces and give some criterions to deduce the 

boundedness of the sublinear operators on certain spaces. 

Now, we formulate our major results of this paper as 

Theorem 2.1. Let 0 1λ< < , 0 θ< < ∞ , 1 r< < ∞ , 

r t s p′ ≤ < < ∞  with t  be in (15) of Lemma  2.4 and a 

sublinear operator ΩT  satisfies (4) and (5). If ΩT  is 

bounded on ( )sL w  with /p rw A ′∈ , then ΩT  is bounded on 

), , ( )pM wθ λ . 

Theorem 2.2. Let , , ,r wλ θ  be in Theorem 2.1, r p′ ≤ < ∞  

and a sublinear operator ΩT  satisfies (4) and (5). If ΩT  is 

bounded on ), ( )pL wθ , then ΩT  is bounded on ), , ( )pM wθ λ . 

We can get similar results for fractional integrals following 

the line of Theorem 2.1 and Theorem 2.2. 

Theorem 2.3. Let 0 nα< < , r , ,t p be in Theorem 2.1, 

0 1iλ< <  and 0 1iθ< <  1,2i = . Suppose that a sublinear 

operator ,α ΩT  satisfies size conditions 
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nf x C x x y f y dyα
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− −
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when supp kf A⊆  and 1| | 2kx +≥  with k Z∈  and 
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n

k nf x C x y f y dyα
α

− −
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ℝ

T      (7) 

when supp kf A⊆  and 1| | 2kx −≤  with k Z∈ . Then we 

have 

(a)  If αT  maps 2 ( )
s pL w  into 1 ( )

s qL w  with 

( / , )p r qw A ′∈ , then αT  is bounded from 
2 2), , ( , )p q

pM w wθ λ  

to 
1 1), , ( )q

qM wθ λ , where 21 /s n α< < , 1r t s q′ ≤ < < ∞ , 

1 2s s p q− = − , 1 2 / ( )t p q tλ λ= − + , 1 2 / ( )t p q tθ θ= − + , 

p q p r< < +  and 1 21/ 1/ /s s nα= − . 

Theorem 2.4. Let , , , , , , , ( 1,2)i ip q w t r s iα λ =  be in 

Theorem 2.3, 0 θ< < ∞  and the sublinear operator αT  

satisfies size conditions (6) and (7). If αT  maps ), ( )p
pL wθ  

into ), ( )q
qL wθ , then αT  is bounded from 

2), , ( , )p q
pM w wθ λ  

to 
1), , ( )q

qM wθ λ . 

Theorem 2.1-Theorem 2.4 can be seen as an extension of 

the related results in [6-7]. We emphasize that (6) and (7) are 

weaker conditions than the following condition 

,

| ( ) ( ) |
| ( ) | ,

| |
n n

x y f y
f x C dy

x y
α αΩ −

Ω −≤
−∫ℝT  0 nα< <     (8) 

for any integral function f  with compact support. Condition 

(8) is satisfied by most fractional integral operators with rough 

kernels, such as the fractional integral operators of 

Muchenhoupt and Wheeden [30] 

,

( ) ( )
( ) ,0 .
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n n

x y f y
f x dy n

x y
α α αΩ −

Ω −= < <
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Some mapping properties of ,α ΩT  on various kinds of 

function spaces, see [31-33] and the references therein. 

Proofs of Theorem Theorem 2.1-Theorem 2.4 depend 

heavily on some properties of pA  weights, which can be 

found in any papers or any books dealing with weighted 

boundedness for operators in harmonic analysis, such as [4]. 

For the convenience of the reader we collect some relevant 

properties of pA  weights without proofs, thus making our 

exposition self-contained. 

Lemma 2.5. Let 1 p≤ < ∞  and pw A∈ . Then the 

following statements are true 

( )a  There exists a constant C  such that 

(2 ) ( )w B Cw B≤                (9) 

When w  satisfies this condition, we say w  satisfies the 

doubling condition. 

( )b  There exists a constant 1C >  such that 

(2 ) ( )w B Cw B≥                (10) 

When w  satisfies this condition, we say w  satisfies the 

reverse doubling condition. 

( )c  There exist two constants C  and 1r >  such that the 

following reverse H ö lder inequality holds for every ball 
n

B ⊂ ℝ  

1/
1 1

( ) ( )
| | | |

r

r

B B
w x dx C w x dx

B B

   
≤   

   
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( )d  For all 1,λ >  we have 

( ) ( )npw B C w Bλ λ≤             (12) 

( )e  There exist two constants C  and 0δ > such that for 

any measurable set Q B⊂  

( ) | |

( ) | |

w Q Q
C

w B B

δ
 

≤  
 

            (13) 

If w  satisfies (13), we say w A∞∈ . 

( )f  For all p q< < ∞ , we have 

,p p p qA A A A∞ = ∪ ⊂             (14) 

Lemma 2.6. ( )a  If p r′≥ , /p rw A ′∈  There exists a 

constant 1 /t p r′≤ ≤  such that 

tw A∈                   (15) 

( )b  If 1p > , ( , )p qw A∈ , then we have 
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,p q
p qw A w A∈ ∈              (16) 

Lemma 2.7. Let 1 p< < ∞ , 0 1λ< < , 0 θ< < ∞  and 

( )w x  be a function. Then there exists a constant C  such that 

for any 0 1pδ< < − , 
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The following lemma about the operators with rough kernel is essential to our proofs. 

Lemma 2.8. [34] Let 1( )r nL S −Ω ∈  with 1 r≤ < ∞ . Then the following statements are true 

( )a  If kx A∈  and 1j k≥ + , then | ( ) | 2
j

r jn

A
x y dy CΩ − ≤∫ ; 

( )b  If ky A∈  and 1k j≥ + , then 
( 1)

| ( ) | 2
j

r k n j

A
x y dx C

− +Ω − ≤∫ . 

Proof  of  Theorem  2.1. Let r t s p′ ≤ < < ∞ , /p rw A ′∈  and 0 1λ< < . By Lemma 2.7, it suffices to show that 
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For a fixed ball 0( , )B B x r=  and 0 min{ , / }p r t p rε ′< < − , there is no loss of generality in assuming 1r = . We decompose 
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By the assumption on ΩT  and (14), we can obtain 



 Pure and Applied Mathematics Journal 2019; 8(1): 18-29 23 

 

), ,
1 ( )

2
| ( ) | ( ) | ( ) | ( )

( ) ( )
n p

pp p
M w

B

C
I f x w x dx f x w x dx C f

w B w B θ λ

θ θ
εε ε

λ λ
ε ε −− −

Ω≤ ≤ ≤∫ ∫
ℝ

‖‖T               (17) 

For the term II , by (5) we have 

,

1

2 ( ) ( ) ,
( )

p

kn
k

B
k

C
II f x w x dx

w B

εθ

λ
ε

−∞
−

Ω
=

≤ ∑∫ T                              (18) 

where 

1, ( ) | ( ) ( ) | .
kk

A
f x x y f y dy

+Ω = Ω −∫T
 

We distinguish two cases according to the size of p ε−  and r  to get the estimates for ,kΩT . 

Case 1. p rε ′− > . In this case, (15), /p rw A ′∈  and p trε ′< −  imply that ( )/p rw A ε ′−∈ , hence 
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By (19), H ö lder's inequality and Lemma 2.8, we have 

( ) ( )1 1

1/ 1/

,
2

( ) | ( ) | | ( ) |
k k

r r
r r

k
A B

f x C x y dy f y dy
+ +

′
′

Ω ≤ Ω −∫ ∫T  

( )1

1/
( 1) / /( ) /( )

2
2 | ( ) | ( ) ( )

k

r
k n r r r p r p

B
C f y w y w y dyε ε

+

′
′ ′ ′+ − − −≤ ∫  

( )1

1/( )
( 1) /

2
2 | ( ) | ( )

k

p
k n r p

B
C f y w y dy

ε
ε

+

−
+ −≤ ∫  

( )1

( )/( )
/( )

2
( )

k

p r p r
r p r

B
w y dy

ε ε
ε

+

′ ′− − −
′ ′− − −× ∫  

1

1/( )
( 1) / 1 1/

1 1 (1 )/( )2

1 2 | 2 |
| ( ) | ( )

(2 ) (2 )
k

p
k n r k r

p

k k pB

B
C f y w y dy

w B w B

ε
ε

λ λ ε+

− ′+ +
−

+ + − −

 
≤   

 
∫  

1

1/( )
( 1)

1 1 (1 )/( )2

1 2
| ( ) | ( ) .

(2 ) (2 )
k

p
k n

p

k k pB
C f y w y dy

w B w B

ε
ε

λ λ ε+

− +
−

+ + − −

 
≤   

 
∫                     (20) 

Case 2. p rε ′− = . In this case, 1w A∈  implies that 

1

1
1

1
2

| 2 |
( inf ( ))

(2 )k

k

k
x B

B
ess w x

w B+

+
−

+∈
≤                                     (21) 

which combining with the H ö lder inequality and Lemma 2.8 yield that 

( )1

1/( )
( 1) / 1

,
2

( ) 2 | ( ) | ( ) ( )
k

p
k n r p

k
B

f x C f y w y w y dy
ε

ε
+

−
+ − −

Ω ≤ ∫T  

1

1/( )
( 1)

1 1 (1 )/( )2

1 2
| ( ) | ( )

(2 ) (2 )
k

p
k n

p

k k pB
C f y w y dy

w B w B

ε
ε

λ λ ε+

− +
−

+ + − −

 
≤   

 
∫                      (22) 

Substituting (20) and (22) into (18), we can assert that 
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), , ), ,

( )
(1 )/( )

( ) ( )1 (1 )/( )
1

( )
,

(2 )p p

p
p

p p

M w M wk p
k

w B
II C f C f

w Bθ λ θ λ

ελ ε
ε ε

λ ε

−∞ − −
− −

+ − −
=

 
≤ ≤ 

 
 
∑‖‖ ‖‖  

where we have used (10) in the last inequality. Combining (17) and (18), we obtain the proof of Theorem 2.1. □  

Proof  of Theorem  2.2. The proof of Theorem 2.2 is straightforward by the method in the proof of Theorem 2.1. The only 

difference is that we use the ), ( )pL wθ  boundedness of T  instead of the ( )sL w  boundedness. We omit it's proof here. 

Proof  of Theorem  2.3. We can use the similar arguments as in the proof of Theorem 2.1. For fixed 

0 min{ , / }p r t p rε ′< < − , it suffices to show that 

2

2 ), ,2 2

( ) /( )

,( ) /( ) ( , )
| ( ) | ( ) .

( )
p q

p

q p
qq q

q pq M w wB
f x w x dx C f

w B θ λ

ε θ ε
εε

αε λ ε
ε − −

−−
Ω− − ≤∫ ‖‖T  

For a fixed ball 0( ,1)B B x= , we decompose 2 1 2(2 )
:cB B

f f f f fχ χ= + = + . Since ,α ΩT  is a sublinear operator, we get 

2

2

( ) /( )

,( ) /( )
| ( ) | ( )

( )

q p
q q

q pq B
f x w x dx

w B

ε θ ε
ε

αε λ ε
ε − −

−
Ω− − ∫ T  

2

2

( ) /( )

, 1 , 2( ) /( )
(| ( ) | | ( ) | ) ( )

( )

q p
q q q

q pq B
f x f x w x dx

w B

ε θ ε
ε ε

α αε λ ε
ε − −

− −
Ω Ω− −≤ +∫ T T  

: .J JJ= +  

Using the assumption on ,α ΩT , we can get 

), ,2 2
( , )

.p q
p

p

M w w
J C f

θ λ

ε−≤ ‖‖  

For the term JJ , by similar argument as that of Theorem 2.1, we obtain 

2( ) /( )
( ) 1 ( ) /( )

( ) /( )
2 | ( ) ( ) | ( )

( ) 1 k

qq p
k n q q p

q q p A
k

C
JJ x y f y dy w B

w B

εε θ ε
α ε λ ε

ε λ ε
ε −− −

− − − − −
− −

 ≤ Ω − −  
∑ ∫  

), ,2 2

(1/( ) /( ))

1 (1/( ) /( ))( , )
1

( )

(2 )
p q

p

q
q q p

q

q k q pM w w
k

w B
C f

w Bθ λ

εε λ ε
ε

ε λ ε

−∞ − − −
−

+ − − −
=

 
≤  

 
 
∑‖‖  

), ,2 2
( , )p q

p

q

M w w
C f

θ λ

ε−≤ ‖‖  

The estimates for J  and JJ  imply the proof of Theorem 

2.3. □  

Proof  of Theorem  2.4. We omit the proof of Theorem 

2.4 for the similarity as that of Theorem 1.3. 

2.2. Boundedness of Commutators 

We say that b  is a ( )nBMO ℝ  function if the following 

sharp maximal function is finite 

1
( ) sup ( ) ,

| |
B

BB

b x b y b dy
B

= −∫♯  

where the supreme is taken over all balls n
B ⊂ ℝ  and 

1
( ) .

| |
B

B
f f y dy

B
= ∫  This means 

( )nBMO L
b b ∞= < +∞

ℝ

♯
‖‖ ‖ ‖ . An early work about ( )nBMO ℝ  

space can attribute to John and Nirenberg [35]. For 1 p< < ∞ , 

there is a close relation between ( )nBMO ℝ  and pA  

weights 

{ }( ) log : , 0 .n
pBMO w w Aα α= ∈ ≥ℝ  

Given an operator T  acting on a generic function f  and 

a function b , the commutator bT  is formally defined as 

[ , ] ( ) ( ).bT f b T f bT f T bf= = −  
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Since ( ) ( )n nL BMO∞
ℝ ℝ� , the boundedness of bT  is 

worse than T  (for example, the singularity, see also [36]). 

Therefore, many authors want to know whether bT  enjoys the 

similar boundedness with T . There are a lot of articles that 

deal with the topic of commutators of different operators with 

BMO  functions on Lesbugue spaces. The first results on this 

commutator were obtained by Coifman, Rochberg and Weiss 

[37] in their study of certain factorization theorems for 

generalized Hardy spaces. In the present section, we will 

extend the boundedness of ΩT  and ,α ΩT  to ,bΩT  and 

, ,bα ΩT  on ), ,pM θ λ , respectively. 

Theorem 2.9. Let , , , , ,r p t sλ θ  and w  be in Theorem  

2.1. Suppose that the sublinear operator ΩT  satisfies 

condition (3) for any integral function f  with compact 

support. If ,bΩT  is bounded on ( )sL w  with ( )nb BMO∈ ℝ , 

then ,bΩT  is bounded on ), , ( )pM wθ λ . 

Theorem 2.10. Let , , ,r p λ θ  and w  be in Theorem  2.1. 

Suppose that the sublinear operator ΩT  satisfies condition 

(3) for any integral function f  with compact support. If 

,bΩT  is bounded on ), ( )pL wθ  with ( )nb BMO∈ ℝ , then 

,bΩT  is bounded on ), , ( )pM wθ λ . 

Theorem 2.11. Let , , , , , , , , , 1,2,i i ip r q t w s iα λ θ =  be in 

Theorem  2.3 and the sublinear operator ,α ΩT  satisfy 

condition (8) for any integral function f  with compact 

support. If , ,bα ΩT  maps 2 ( )
s pL w  into 1 ( )

s qL w  with 

( )nb BMO∈ ℝ , then , ,bα ΩT  is bounded from 

2 2), , ( , )p q
pM w wθ λ  to 

1 1), , ( )q
qM wθ λ . 

Theorem 2.12. Let , , , , , , ( 1,2)ip r q t w iα λ =  be in 

Theorem  2.3, 0 θ< < ∞  and the sublinear operator ,α ΩT  

satisfy condition (8) for any integral function f  with 

compact support. If , ,bα ΩT  maps ), ( )p
pL wθ  into ), ( )q

qL wθ  

with ( )nb BMO∈ ℝ , then , ,bα ΩT  is bounded from 

2), , ( , )p q
pM w wθ λ  to 

1), , ( )q
qM wθ λ . 

The following lemmas about ( )nBMO ℝ  functions will 

help us to prove Theorem 2.9-Theorem 2.12. 

Lemma 2.13. [3, Theorem 3.8] Let 1 p≤ < ∞ , 

( )nb BMO∈ ℝ . Then for any ball n
B ⊂ ℝ , the following 

statements are true 

( )a  There exist constants 1C , 2C  such that for all 0α >  

2 ( )
/

1{ :| ( ) | } | |
nBMO

C b

Bx B b x b C B e
α

α
−

∈ − > ≤ ℝ
‖‖

. (23) 

Inequality (23) is called John-Nirenberg inequality. 

( )b  

2 ( )
| | 2 .n

n
BB BMO

b b bλ λ− ≤
ℝ

‖‖         (24) 

Lemma 2.14. [4, Proposition 7.1.2] (see also [5, Theorem 5]) 

Let w A∞∈  and 1 p< < ∞ . Then the following statements 

are equivalent 

(a)

1

( )

1
~ sup | ( ) | ;

| |
n

p
p

BBMO BB

b b x b dx
B

 
− 

 
∫ℝ

‖‖
 

(b)
( )

1
~ sup inf | ( ) | ;

| |
n

BMO a BB

b b x a dx
B∈

−∫ℝ
ℝ

‖‖  

(c) ( ) ,

1
sup | ( ) | ( ) ,

( )
BMO w B w

BB

b b x b w x dx
w B

= −∫‖‖ where 

( )( ) { : }BMO wBMO w b b= < ∞‖‖  and 

,

1
( ) ( ) .

( )
B w

B
b b y w y dy

w B
= ∫  

As in Section 2, we only need to give the proofs of Theorem 

2.9 and Theorem 2.11. 

Lemma 2.15. Let , , , , ,p r b w tθ  be in Theorem  3.1 and 

0( ,1)B B x=  be a generic fixed ball. Then for any 

0 p r tε ′< < − , the inequality 

), ,
0

10
, ( )

| | 2
0

| ( ) ( ) |
| ( ) | ( )

| | p

p

p
B w M wnx y

x y f y
b b y dy C f w B

x y θ λ

ε
εθ λε

−
− −

− >

 Ω −
− ≤  − 

∫ ‖‖                   (25) 

holds for every (2 )cy B∈ , where (2 ) (2 ).c nB B= ℝ ∖  

Proof . We will consider two cases. 

Case 1. P rε ′− > . In this case, ( )/p rw A ε ′−∈ . Using H ö lder's inequality and Lemma 2.8 to the left-hand-side of (25), we have 

0

0
,

| | 2
0

| ( ) ( ) |
| ( ) |

| |
B wnx y

x y f y
b b y dy

x y

θε
− >

Ω −
−

−∫   

1
0

0
,

2 | | 2
01

| ( ) ( ) |
| ( ) |

| |
j j B wnx y

j

x y f y
C b b y dy

x y

θε
+

∞

< − <
=

Ω −
≤ −

−∑∫  
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0 ,

1

| ( ) ( ) || ( ) |
| 2 | j

B wj A
j

C x y f y b b y dy
B

θε∞

=

≤ Ω − −∑ ∫  

), ,

/ 1 /( )

( )

1

2 (2 )
,

| 2 |p

nj r j p

M w j
j

w B
C f A

Bθ λ

λ ε∞ + −

=

≤ ∑‖‖  

where 

( )1

1/
1

,
2

| ( ) | ( ) ,
j

p r
p r p

B w
B

A b b y w y dy
+

′ ′
′ ′ ′−= −∫  ( ) / 1.p p rε ′= − >  

Thus 

( )1 1 1 1
1

1/
1

,2 , 2 ,2
(| ( ) | | |) ( )j p j p

j

p r
p r p

B wB w B wB
A b b y b b w y dy′ ′+ − + −+

′ ′
′ ′ ′−≤ − + −∫   

( )1 1
1

1

1

2 ,2
| ( ) | ( )j p

j

p rp r p

B wB
b b y w y dy′+ −+

′ ′′ ′ ′−≤ −∫ 1 1

1

1 1
,2 ,

| | (2 )j p
p j p r

B wB w
b b w B′+ −

′ ′ ′− ++ −  

1 2: A A= +  

Lemma 2.14 implies that 

1 1 1/
1 (2 ) .p j p rA Cw B

′ ′ ′− +≤  

We are now in a position to deal with 2A , by (24), we have 

1 1 1 1 1 1, ,2 , 2 , 2 2
| | | | | | | |j p j p j jB w B B B wB w B w B B
b b b b b b b b′ ′+ − + − + +− ≤ − + − + −  

1
1

1

2 ( )1 1 2

1
| ( ) | ( ) 2 ( 1)

(2 )
j n

j

p n

B BMOp j B
b y b w y dy j b

w B
++

′−
′− +≤ − + +∫ ℝ

‖‖  
1

| ( ) | ( )
( )

B
B

b y b w y dy
w B

+ −∫  

21 22 23: A A A= + +  

Combining (12) with (23), we have 

23
0

1
({ :| ( ) | })

( )
BA w x B b y b d

w B
α α

∞
= ∈ − >∫  

2
( )

/

0

n
BMO

C b
C e d

αδ
α

∞ −
≤ ∫ ℝ

‖‖

 

C≤ . 

In the same manner we can see that 

21 .A C≤  

It follows immediately that 

1 1 1/
2 (2 ( 1) 2) (2 ) .n p j p rA C j w B

′ ′ ′− +≤ + +  

Therefore 

1 1 1/( 1) (2 ) .p j p rA C j w B
′ ′ ′− +≤ +  

A further use of (10) and ( ) /w p rε ′∈ −  allow us to obtain 
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( )1

/ 1 /( ) 1/
1

,
2

1

2 (2 )
| ( ) | ( )

| 2 |
j

nj r j p p r
p r p

B wj B
j

w B
b y b w y dy

B

λ ε

+

∞ + − ′ ′
′ ′ ′−

=

−∑ ∫  

/ 1 /( )
1 1 1/( )

1

2 (2 )
( 1) ( ) (2 )

| 2 |

nj r j p
p j p r

j
j

w B
j w y B

B

λ ε∞ + −
′ ′ ′− +

=

≤ +∑  

/ 1 1/ (1 )/( )
( 1)/( )

1 (1 )/( )
1

2 | 2 | ( 1) ( )
( )

| 2 | (2 )

nj r j r p
p

j j p
j

B j w B
C w B

B w B

λ ε
λ ε

λ ε

∞ ′+ − −
− −

+ − −
=

+≤ ∑  

( 1)/( )

( 1)(1 )/( )
1

1
( )

p

j p
j

j
C w B

D

λ ε
λ ε

∞
− −

+ − −
=

+≤ ∑ ( 1)/( )( ) ,pCw B λ ε− −≤  

where 1D >  is a constant appeared in (10). 

Case 2. P rε ′− = . In this case, 1w A∈ . We can prove (25) by a similar analysis as in the proof of Theorem 2.1 (in the case 

P rε ′− = ) and Case 1. □  

Having disposed of the above preliminary step, we can now return to the proofs of Theorem 2.9 and Theorem 2.10. 

Proof  of  Theorem  3.1. The task is now to find a constant C  such that for fixed ball 0( ,1)B B x=  and 

0 min{ , / }p r t p rε ′< < − , we can obtain 

), ,
, ( )

( ) ( ) .
( ) p

p p
b M w

B
f x w x dx C f

w B θ λ

θ ε ε
λ

ε − −
Ω ≤∫ ‖‖T  

We decompose 2 1 2(2 )
: ,cB B

f f f f fχ χ= + = +  and consider the corresponding splitting 

, ( ) ( )
( )

p

b
B

f x w x dx
w B

θ ε
λ

ε −
Ω∫ T  

( ), 1 , 2| ( ) | ( ) | ( ) | ( )
( )

p p
b b

B B

C
f x w x dx f x w x dx

w B

θ
ε ε

λ
ε − −

Ω Ω≤ +∫ ∫T T  

: K KK= + . 

It follows from the ( )pL wε−  boundedness of ,bΩT  and ( )/p rw A ε ′−∈  that 

), , ( )p

p

M w
K C f

θ λ

ε−≤ ‖‖                                         (26) 

Then a further use of (3) derives that 

2
, 2

| ( ) ( ) || ( ) ( ) |
( )

| |
n

p
p

b n

x y f y b x b y
f x C dy

x y

ε
ε

−
−

Ω
 Ω − −

≤   − 
∫
ℝ

T  

0

0
, ,

| | 2
0

| ( ) ( ) |
{| ( ) | | ( ) |}

| |

p

B w B wnx y

x y f y
C b x b b b y dy

x y

ε−

− >

 Ω −
≤ − + −  − 

∫ , 

Then, we have 

0

0
,

| | 2
0

| ( ) ( ) |
| ( ) | ( )

( ) | |

p

p
B wnx y B

x y f yC
KK dy b x b w x dx

w B x y

εθ
ε

λ
ε

−
−

− >

 Ω −
≤ −  − 

∫ ∫  
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0

0
,

| | 2
0

| ( ) ( ) |
| ( ) | ( )

( ) | |

p

B wnx y

x y f yC
b y b dy w B

w B x y

εθ

λ
ε

−

− >

 Ω −
+ −  − 

∫  

:=KK1+KK2 

Lemma 2.15 allows us to have 

), ,
2 ( )

.
p

p

M w
KK C f

θ λ

ε−≤ ‖‖  

We proceed to estimate the term 1KK . Without loss of generality, we only need to consider the case p rε ′− > . Take into 

account (9), (11) and Lemma (28), we have 

1
0

0
1 ,

2 | | 2
01

| ( ) ( ) |
| ( ) | ( )

( ) | |
j j

p

p
B wnx y B

j

x y f yC
LL dy b x b w x dx

w B x y

ε
θ

ε
λ

ε
+

−
∞

−

< − <
=

 Ω −
 = −
 − 
∑∫ ∫  

( )/

0

1

1
| ( ) |

( ) | 2 | j

p r

r

j A
j

C
x y dy

w B B

ε
θ

λ
ε

−
∞

=

 
 ≤ Ω −
 
 
∑ ∫  

( )1

( )/

,
2

| ( ) | | ( ) | ( )
j

p r
r p

B w
B B

f y dy b x b w x dx
ε

ε
+

′−
′ −× −∫ ∫  

( )1

/ 1/( )

2
1

2
| ( ) | ( )

( ) | 2 |
[

j

nj r p
p

j B
j

C
C f y w y dy

w B B

θ ε
ε

λ
ε

+

∞ −
−

=

≤ ∑ ∫  

( )1

( )/( )
/( )

,
2

( ) | ( ) | ( )]
j

p r p r
r p r p p

B w
B B

w y dy b x b w x dx
ε ε

ε ε ε
+

′ ′− − −
′ ′− − − − −× −∫ ∫  

), ,

(1 )/( )

( ) 1 (1 )/( )
1

( )
( )

(2 )p

p
p

p

M w j p
j

w B
C f w B

w Bθ λ

ε
λ ε

λ
λ ε

−
∞ − −

+ − −
=

 
 ≤
 
 
∑‖‖

), , ( )
( ) .

p

p

M w
C f w B

θ λ

λ≤ ‖‖  

Hence 

), , ( )
.

p

p

M w
KK C f

θ λ

ε−≤ ‖‖          (27) 

Combining (26) with (27), we obtain the desired conclusion. 

□  

Proof  of  Theorem  3.3. The proof of Theorem 2.11 is 

similar as that of Theorem 2.9, except using ( , )p qw A∈ . □  

3. Conclusion 

This paper gives the boundedness of some sublinear 

operators with rough kernels on the generalized weighted 

grand Morrey spaces. An application of the boundedness of 

the sublinear operators with rough kernels to the 

corresponding commutators are also considered. We have 

some criterions to deduce the boundedness of the sublinear 

operators on certain spaces. Our theorems provide natural 

and intrinsic boundedness of operators on generalized 

weighted grand Morrey spaces and our viewpoints will 

shed some new lights on boundedness of other operators 

and their commuattores on generalized weighted grand 

Morrey space. Besides Euclidean space, boundedness of 

some sublinear operators with rough kernels on other 

spaces can similarly be considered, such as on 

homogeneous groups. 
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