Influence of Eccentrically Located Drilling String in the Well Bore Over Cleaning Capabilities of a Wellbore

Igor Chudyk*, Oleg Vytyaz, Volodymyr Hrymaniuk, Andrii Pastukh

Department of Drilling of Oil and Gas Wells, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

Email address: chudoman@ukr.net (I. Chudyk), o.vetyaz@gmail.com (O. Vytyaz), tdcentre@nug.edu.ua (V. Hrymaniuk), drill@nug.edu.ua (A. Pastukh)

*Corresponding author

To cite this article:

Received: December 20, 2016; Accepted: January 10, 2017; Published: February 6, 2017

Abstract: It has been analyzed solution to the problem of definition eccentric location of the drill string in the hole using analytical studies and modern systems of mathematical computer modeling. Practical implementation of technological problem solution was represented as calculated parameters of the formation and changes in the area of stagnant zones in the cross section of the annular space hole in certain baseline characteristics of the process of washing. As a result, studies have found that at lower eccentric placement of both direct and deformed drill string in the well drilling mud flow looks like sickle core flow. The maximum speed of mud while inside the nucleus, and the minimum - in the contact zones flexible pipe and the borehole wall. This change dependencies hydraulic pressure loss pumping mud pump flow rate and distribution of nuclei along the axis of the drill string at its eccentric location in the borehole. It has been determined the conditions of dead mud zones formation in the annular space and offered solutions to solve this problem.

Keywords: Annular Space, Rinsing Well, Dead Mud Zone, Mud

1. Introduction

Energy consumption during drilling and formation of cylindrical excavation in rock is divided into interrelated processes of rotation and axial movement of the drill string in the hole, destruction of the rock face and washing out a well. In addition, the process of overcoming of the frictional forces between the drill string and the wall of the hole consumes about 10-15% of the energy rig. Another procedure of bottomhole destruction by drill bit consumes from 10 to 15% of energy, and to perform descent-lifting operations 5-10%. The greatest amount of the energy that is consumed during the process of drilling (60-75%) goes to clean the well (clean face of drill out species, removal of cuttings to the surface, overcoming hydraulic resistance rubbing mud on the way to his movement, and others.) [1], [2], [3], [4], [5], [6]. Because of huge energy loses while drilling process for its washing out, there is a need to study the factors of their increase, how to manage them and reduce their amount.

The trend towards an increase in ultradeep drilling, deviated and horizontal wells in large proportion determines the increase in the share of unproductive loss of energy to overcome the resistance of the environment and its reduction in terms of fracture rock. This leads to the need of design approaches improvement, selection and implementation of efficient drilling technologies, tacking into account an important mining and geological, technical and technological factors and problems. These factors applies in particular problems of formation of dead mud zones in the annular space of horizontal wells through special sites (eccentric) location in its drill string, [7], [8], [9], [10]. This leads to the accumulation of sludge in the annular space of the well, the deterioration of axial displacement and rotation of the drill string during drilling, it differential sticking, reduces drilling speed and reduce energy transition to a bit [2], [4]. Dead mud zone is the area out of the drilling string where the movement of drilling mud is limited or absent.

2. Relevance of the Research Problem

Due to the multi-factor process of washing wells, difficulties related with establishing the degree of influence of the eccentric position of the column in the well and its impact on changing hydraulic resistance, the question that remains poorly understood. This article summarizes some of
the results of earlier research in this area.

Thus, for the first time in [2] considered the problem of investigations process flow of Newtonian fluid in a channel with full eccentric circular cross-section. The research found that in laminar fluid flow mode, the same pressure drop and peer-section of the channel flow of fluid in eccentric channel will always be greater than the concentric tube placement. The greater the value of the ratio of internal and external diameters of pipe, the flow is greater.

In studies [4] states that the actual wells contacting internal and external surfaces of the annular channel circulation drilling mud is not on the line, and some surface that leads to the formation of dead zones. This causes a decrease in cross-sectional area of flow of drilling mud.

One of the practical ways of dealing with the formation of dead mud zones in the hole now is a way to increase productivity mud pump, which has a number of significant drawbacks [2], [4], [10]:

- differential pressure increases at the bottomhole and hydraulic losses are hire in the annular space;
- enhanced erosion of the walls of the well to the formation of cavities and gutters;
- enhanced absorption of drilling mud, mud pump items, swivel threaded connections, drill string and the bit nozzles wear increase;
- increasing energy expenses for hydraulic applications flushing and drilling in general.

Due to the factors mentioned above, the negative impact on the process of drilling there is the need to find new and effective approaches to reduce the impact of stagnant drilling mud zone in the annular space to the drilling process, which is the actual problem that has to be solved.

3. The Purpose of the Study and Formulation of the Problem

In the wellbore of horizontal wells axial movement of the drill string is provided with longitudinal component of the weight located above its construction to overcome the friction forces between the pipe and wall of a well. Under the influence of the axial and transverse forces an elastic axis of the drill string becomes complex shape bend (figure 1) with an eccentric location in the borehole (value “e” on the figure 1).

As a result of deformation of the drill string in the annular space borehole wells during washing changes the cross-sectional shape of the nucleus and its flow velocity distribution of motion, which is described by the following schemes, figure 2.

<table>
<thead>
<tr>
<th>Number p/n</th>
<th>Parameter</th>
<th>Value</th>
<th>dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>The diameter of the hole</td>
<td>0,136</td>
<td>m</td>
</tr>
<tr>
<td>(2)</td>
<td>The outer diameter of flexible pipes</td>
<td>0,06</td>
<td>m</td>
</tr>
</tbody>
</table>
As a result of the study using computer modeling of the drilling fluid flow in the annular space due to the model "borehole, the drill string" it was established a number of features. First, the eccentric location of the drill string in the hole does not change the pressure pumping mud pump in cross-section, figure 3, a). Second, the eccentric location in the drill string hole reduces the gradient of the hydraulic resistance. So for a concentric arrangement of pipes in the well it is about 1.36 kPa/m, and for eccentric - 30% less, or 0.96 kPa/m, figure 3, b). This difference has a significant impact on reducing the hydraulic resistance, and with it the energy consumption for irrigation wells, but adversely affects the formation of dead mud zones, slime formation packs and other [2], [4].

<table>
<thead>
<tr>
<th>Number p/n</th>
<th>Parameter</th>
<th>Value</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>Mud pump rate</td>
<td>0.0015</td>
<td>m³/c</td>
</tr>
<tr>
<td>(4)</td>
<td>Pressure pumping mud pump</td>
<td>20</td>
<td>MPa</td>
</tr>
<tr>
<td>(5)</td>
<td>The roughness of the walls, which contact solution</td>
<td>300</td>
<td>microns</td>
</tr>
<tr>
<td>(6)</td>
<td>The density of the drilling fluid (model Herschel-Balkli)</td>
<td>1100</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(7)</td>
<td>The length of the investigated area of the annular space</td>
<td>5</td>
<td>m</td>
</tr>
</tbody>
</table>

Figure 3. Distribution of mud pump pressure into eccentrically located hole out of the drill string a) - in the longitudinal section of the wellbore; b) - in the cross-section of hole.
According to the result of charting changes in flow rate of drilling fluid in the annular space of the model "borehole, the drill string" it was established that dead mud zone forms when increasing eccentricity between the axes of the hole and the drill string, figure 4. In the concentric arrangement of the drill string in the hole (to set initial data) (figure 4, b), without a dead mud zone drilling fluid in the annular space. In extreme eccentric position of the drill string in the hole in the center of the core flow observed flow rate of drilling mud (figure 4, a) is clearly visible in the stagnant zone. Most attention is given for intermediate eccentric position of the drill string, in which there is no signs of congestive zone at the core flow of drilling mud. This justifies centering the drill string in the wellbore of horizontal wells for maximum flow rate of core drilling fluid flow in the annular space in the absence of its stagnant zone.

![Figure 4. Average flow rate of drilling fluid in the annular space of the borehole at different options for the location of the drill string in it.](image)

To study the effect of the eccentricity of the drill string in the wellbore of a horizontal well on the flow of drilling fluid parameters in the annular space it has been proposed scheme, shown in (figure 5), where R_2 - well radius, R_1 - the radius of the drill string, φ - value of half angle that covers area of congestive borehole wall drilling solution; ψ - value of half angle that covers drill string element congestive zone.

The ratio between the geometric dimensions of dead mud zone of drilling mud in the annular space at a mud pump pressure, expressed:

$$P \cdot A_i + \tau_0 \cdot A_i = \tau_0 \cdot A_2,$$

where A_i - the cross-sectional area of stagnant zones mud; P - mud pump pressure; A_i - the surface area of contact between the stagnant zone and moving mud; A_2 - the surface area of contact with the pipe mud walls and wells in the area of movement;
\(\tau_0 \) - the dynamic shear stress mud.

\[
A_1 = \frac{1}{2} \left(R_2 \sin(\phi) - \sin \left[\arccos \left(\frac{R_2 \cos(\phi) - e}{R_1} \right) \right] R_1 \right); \quad (2)
\]

\[
A_2 = \frac{\pi}{180^\circ} \left[\frac{360^\circ - \phi}{R_2} \right] R_2 + \frac{360^\circ - \arccos \left(\frac{R_3 \cos(\phi) - e}{R_1} \right)}{R_1} \right] \frac{l}{l'} \quad (4)
\]

where \(l \) - the length of the drill string.

To ensure effective hydraulic transportation of cuttings in the annular space of deviated or horizontal well drilling fluid flow is to provide the necessary speed and decrease its preconditions formation of dead mud zones.

For the design flow rate required value of drilling in the annular space mathematical model of a particle slurry spherical wall between the hole and the drill string set in the range of zenith angle, which is exposed to such forces (figure 6): gravity - \(F_1 \); buoyancy - \(F_2 \); centrifugal - \(F_3 \); centripetal - \(F_4 \); viscous resistance protection - \(F_5 \); friction - \(F_6 \) and lifting - \(F_7 \), [2].

This gravity and Archimedes, acting on a particle slurry in the circumstances defined:

\[
F_i = \rho_{TJ} g V_q, \quad (5)
\]

where \(V_q \) - the maximum amount of sludge particles, which is made mud;
\(\rho_{\text{rock}} \) - density of rock.

\[F_2 = \rho_{\text{MP}} g V_q, \quad (6) \]

where \(\rho_{\text{MP}} \) - density drilling mud.

\(\alpha \) - the zenith angle of the shaft.

During the drill string rotation with angular velocity \(\omega = \text{const} \) on particle slurry that enters the zone of turbulence mud, a force:

\[F_7 = \rho_{\text{MP}} V_q \omega^2 d_{\text{GT}} / 12, \quad (14) \]

where \(d_{\text{GT}} \) - the diameter of the drill pipe.

According to (figure 6) we obtain the equation of equilibrium of forces acting on the particle slurry during its movement in drilling fluids:

- force projection on the axis OX:
 \[(F_3 - F_6) \cos(\alpha) + F_2 - F_1 + (F_4 + F_5 - N - F_3) \sin(\alpha) = 0; \quad (15) \]

- force projection on the axis OY:
 \[(F_7 + F_4 - N - F_3 \cos(\alpha) - (F_6 + F_5) \sin(\alpha) = 0. \quad (16) \]

Combining (1)-(16) in equations and having the appropriate calculations and obtain the values given \(F_i, V_{\text{KII}}, \ldots \) in technical and technological parameters of the process and condition \(A_t \rightarrow 0 \).

5. Conclusions

1. Consideration of the study of eccentrically located drill string in the hole makes significant changes in quality cleaning of the hole and requires clarification of existing methods for the design and selection of optimum drilling pump rate that has considerable practical interest.

2. To determine the quantitative and qualitative impact of eccentrically located drill string in the wellbore it has been offered the hydrodynamic system of washing out wells in the application modules of Flow Simulation program SOLID WORKS and conducted appropriate studies. It was used nonlinear visco-plastic rheological model mud Herschel-Bulkli and accounted pressure mud pump performance and roughness of the walls of the well.

3. To design mud pump rate and support the process of cuttings washing out of the well to ensure the flow of drilling fluid into the annular space it has been offered an improved mathematical model. At the same time, it takes into account a number of technical and technological parameters and factors that prevent the formation of dead zones mud in the annular space obliquely-directed hole of arbitrary curvature.

4. Taking into account the conditions of eccentrically located drilling string, well profile parameters and geometrical shape of cuttings while calculating mud pump rate will enhance the quality of wellbore cleaning and prevent formation of the dead...
mud zones into the annular space. This provides management of energy consumption for the washing out of a well.

5. Using of the current method enables to project effective washing out program for every individual well if low flow rate is required taking into account friction of cutting with wells of the well and with mudcake on them, longevity and build up rate of a wellbore, bit and drilling string diameter, type of drilling bit washing system, rheological parameters of drilling mud and rock density, data of thickness and shear adhesion strength of mud cake.

References

[7] Dobyk Y. A. (2016) K voprosy technologicheskogo oboescheniya ochistki stvola gorizontalnoy skvazhiny ot shlama v procese byreniya [Regarding technological support of bottomhole washing out of horizontal well while drilling], Oil and gas wells construction, 5: 12-16.

