Solution of multi-objective transportation problem via fuzzy programming algorithm

Osuji, George A.¹, Okoli Cecilia N.², Opara, Jude³

¹Department of Statistics, Nnamdi Azikiwe University, PMB 5025, Awka Anambra State, Nigeria
²Department of Statistics, Anambra State University, PMB 02, Uli Anambra State
³Department of Statistics, Imo State University, PMB 2000, Owerri, Nigeria

Email address:
george.osuji99@yahoo.com (Osuji G. A.), cecilia.okoli@yahoo.com (Okoli C. N.), judend88@yahoo.com (Opara J.)

To cite this article:

Abstract: This paper is on the solution of multi-objective transportation problem via fuzzy programming algorithm. The data for this paper was collected by an egg dealer in whose main office is located at Orji Owerri Imo State Nigeria, who supplies the product to different wholesalers (destinations) after taking it from different poultry farm (sources), and the time and cost of transportation from source i to destination j were recorded. TORA statistical software was employed in the data analysis, and the results of the analysis revealed that if we use the hyperbolic membership function, then the crisp model becomes linear. The result also revealed that the optimal compromise solution does not alter if we compare it with the solution obtained by the linear membership function. Thus, if we compare it with the solution obtained by the linear membership function, it is shown that the fuzzy optimal values do not depend on the chosen membership function be it linear or non-linear membership function.

Keywords: MOTP, Transportation Problem, Fuzzy Programming Algorithm, Hyperbolic Membership Function, Linear Membership Function, Optimization Problem

1. Introduction

Decision making is the process of identifying and choosing alternatives based on the values and preferences of the decision maker. It is the process of sufficiently reducing uncertainly and doubt about alternatives to allow a reasonable choice to be made from among them. Decision making based solely on a single criterion appears insufficient as soon as the decision-making process deals with the complex organizational environment. So, one must acknowledge the presence of several criteria that lead to the development of multi-criteria decision making.

Optimization is a kind of the decision making, in which decision have to be taken to optimize one or more objectives under some prescribed set of circumstances. These problems may be a single or multi-objective and are to be optimized (maximized or minimized) under a specified set of constraints. The constraints usually are in the form of inequalities or equalities. Such problems which often arise as a result of mathematical modeling of many real life situations are called optimization problems.

1.1. Single-Objective Optimization Problem

In many real life situations problems are modeled and solved as single-objective optimization problems in a deterministic and crisp environment. The general form of single-objective optimization problems is:

Minimize (or Maximize) \(f(X) \), \(X=\{x_1,x_2,...,x_n\} \)

Subject to

\(g_j(X) \leq 0, \quad j=1,2,...,k \)

\(l_j(X) \geq 0, \quad j=1,2,...,r \)

\(h_j(X) = 0, \quad j=1,2,...,m \)

Where \(f, g_1,g_2,...,g_k,l_1,l_2,...,l_r,h_1,...,h_m \) are real valued functions defined on \(R^n \), \(X=\{x_1,x_2,...,x_n\} \in R^n \) is called decision vector and \(x_1,x_2,...,x_n \) are called
decision or unknown variables. In case all the functions (objective function constraints) are linear then the above problems is called linear programming problem, otherwise it is called non-linear programming problem.

1.2. Transportation Problems

It is a special type of linear programming problem which arises in many practical applications. In the beginning it was founded for determining the optimal shipping pattern, so it is called transportation problems. The conventional and very well known transportation problem consists in transporting a certain product from each of m origins $i = 1, 2, \ldots, m$ to any of n destination $j = 1, 2, \ldots, n$. The origins are production facilities with respective capacities a_i, a_2, \ldots, a_n and the destination are warehouse with required levels of demand b_1, b_2, \ldots, b_n. The cost of a unit of the given product from the i^{th} source to the j^{th} destination a cost c_{ij} is given for which, without loss of generally, we can assume $c_{ij} \geq 0, \forall i, j$. Hence, one must determine the amounts x_{ij} too be transported from all the origins $i = 1, 2, \ldots, m$ to all the destination $j = 1, 2, \ldots, n$ in such a way that the total cost is minimized. This problem can be suitably modeled as a linear programming problem. Thus the conventional transportation problem can be mathematically expressed as:

Minimize $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}$

Subject to

$\sum_{j=1}^{n} x_{ij} \leq a_i, \quad i = 1, 2, \ldots, m$ \quad (Row restrictions)

$\sum_{i=1}^{m} x_{ij} \geq b_j, \quad j = 1, 2, \ldots, n$ \quad (Column restrictions)

$x_{ij} \geq 0 \quad \forall i, j$

$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$ \quad (Balanced condition)

1.3. Multi-Objective Optimization Problem

Many real life optimization problems re multi-objective in nature and are to be optimized simultaneously subject to a common set of constrains. The most general mathematical model of a multi-objective in nature and are to be optimized simultaneously subject to a common set of constrains. The most general mathematical model of a multi-objective optimization problem is:

Maximize $F(X) = [f_1(X), f_2(X), \ldots, f_m(X)]$

Subject to:

$g_j(X) \leq 0, \quad j = 1, 2, \ldots, k$

$h_j(X) = 0, \quad j = 1, 2, \ldots, m$

$l_j(X) \geq 0, \quad j = 1, 2, \ldots, r$

Where f_1, f_2, \ldots, f_m are the objective functions, Variables x_1, x_2, \ldots, x_n are called decision variables and X is called decision vector. This problem is also called multi-objective programming problem.

1.4. Multi-Objective Transportation Problems (MOTP)

In real life situation, all the transportation problems are not single objective. The transportation problems which are characterized by multiple objective functions are considered here. A special type of linear programming problem in which constraint are of equality type and all the objectives are conflicting with each other, are called MOTP. Similar to a typical transportation problem, in a MOTP problem a product is to transported from m sources to n destination and their capacities are a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_n respectively. In addition, there is a penalty c_{ij} associated with transporting a unit of product from i^{th} source to j^{th} destination. This penalty may be cost or delivery time or safety of delivery or etc. a variable x_{ij} represents the unknown quantity to be shipped from i^{th} source to j^{th} destination. A mathematical model of MOTP with r objectives, m source and n destinations can be written as:

Minimize $Z_r = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}^r x_{ij}, \quad r = 1, 2, \ldots, K$

Subject to

$\sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, 2, \ldots, m$

$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, 2, \ldots, n$

$x_{ij} \geq 0 \quad \forall i, j$

The subscript on Z_r and superscript on c_{ij}^r are related to the r^{th} penalty criterion. Without loss of generality, it may be assumed that $a_i \geq 0$ and $b_j \geq 0, \forall i, j$ and the equilibrium condition $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$ is satisfied.

1.5. MOTP with Equality and Inequality Constraints

MOTP with equality constraint is of the form:

Minimize $Z_k = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}^k x_{ij}, k = 1, 2, \ldots, K$

Subject to
minimizing the negative deviation variables from 1 to obtain a compromise solution of the multi-objective transportation.

Surapati and Roy (2008) presented a priority based fuzzy goal programming approach for solving a multi-objective transportation problem with fuzzy coefficients. Firstly, they defined the membership functions for the fuzzy goals. Subsequently, they transformed the membership functions into membership goals, by assigning the highest degree (unity) of a membership function as the aspiration level and introducing deviational variables to each of them. In the solution process, negative deviational variables are minimized to obtain the most satisfying solution.

Osuji et al (2013) carried out a research on the paradox algorithm application of linear transportation problem. Two numerical examples were used for the study. In their paper, an efficient algorithm for solving a linear programming problem was explicitly discussed, and it was concluded that paradox does not exist in the first set of data, while paradox existed in the second set of data. The Vogel’s Approximation Method (VAM) was used to obtain the initial basic feasible solution via the Statistical Software Package known as TORA. The first set of data revealed that paradox does not exist, while the second set of data showed that paradox exists. The method however gave a step by step development of the solution procedure for finding all the paradoxical pair in the second set of data.

Lau et al. (2009) presented an algorithm called the fuzzy logic guided non-dominated sorting genetic algorithm to solve the multi-objective transportation problem that deals with the optimization of the vehicle routing in which multiple depots, multiple customers, and multiple products are considered. Since the total traveling time is not always restrictive as a time constraint, the objective considered compromises not only the total traveling distance, but also the traveling time.

2. Fuzzy Programming Technique to Solve Multi-Objective Transportation Problems

In this section, fuzzy programming technique to solve the MOTP with different type of membership functions is presented.

2.1. Linear Programming Formulation of MOTP

A MOTP can be stated as:

\[
Z_k = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}^k x_{ij}, \quad k = 1,2,\ldots,K
\]

Subject to

\[
\sum_{j=1}^{n} x_{ij} \leq a_i, \quad i = 1,2,\ldots,m
\]

\[
\sum_{i=1}^{m} x_{ij} \geq b_j, \quad j = 1,2,\ldots,n
\]

\[
x_{ij} \geq 0, \quad \forall i, j
\]
\[\sum_{i=1}^{m} x_{ij} = b_j, \ j = 1,2,...,n \]

\[x_{ij} \geq 0, \ \forall i \text{ and } j \]

The subscription \(Z_k \) and superscript on \(C_{ij}^k \) denote the \(k \)th penalty criterion. We assume that \(a_i \geq 0 \) for all \(i, b_j \geq 0 \) for all \(j, C_{ij} \geq 0 \) for all \(i \) and \(j \), and

\[\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j \] (Equilibrium condition)

\(a_i \) is the quantity of material available at source \(O_i (i = 1,2,...,m) \)

\(b_j \) is the quantity of material required at destination \(D_j (j = 1,2,...,n) \)

\(C_{ij} \) is fuzzy unit cost of transportation from source \(O_i \) to destination \(D_j \).

2.2. Fuzzy Programming Technique to Solve MOTP

In fuzzy programming technique, we first find the lower bound as \(L_k \) and the upper bound as \(U_k \) for the \(k \)th objective function \(Z_k, k = 1,2,...,k \) where \(U_k \) is the highest acceptable level of achievement for objective \(k \), \(L_k \) the aspired level of achievement for objective \(k \) and \(d_k = U_k - L_k \) the degradation allowance for objective \(k \).

When the aspiration levels for each of the objectives have been specified, a fuzzy model is formed and then the fuzzy model is converted into a crisp model. The solution of MOTP can be obtained by the following steps:

1. **Step 1.** Solve the MOTP as a single-objective transportation problem \(K \) times by taking one of the objectives at a time

2. **Step 2.** From the above results, determined the corresponding values for every objective at each solution derived. According to each solution and value for every objective, we can find a pay-off matrix as follows:

<table>
<thead>
<tr>
<th>(X(i))</th>
<th>(Z_1(X))</th>
<th>(Z_2(X))</th>
<th>(Z_3(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^{(1)})</td>
<td>(Z_1)</td>
<td>(Z_2)</td>
<td>(Z_3)</td>
</tr>
<tr>
<td>(X^{(2)})</td>
<td>(Z_1)</td>
<td>(Z_2)</td>
<td>(Z_3)</td>
</tr>
<tr>
<td>(X^{(3)})</td>
<td>(Z_1)</td>
<td>(Z_2)</td>
<td>(Z_3)</td>
</tr>
</tbody>
</table>

Where \(X^{(i)} \) are the isolated optimal solutions of the \(K \) different transportation problems for \(K \) different objective function, \(Z_{ij} = Z_i (X), i = 1,2,...,K; j = 1,2,..., \) \(k \th \) row and \(j \th \) column element of the pay-off matrix.

Step 3. From step 2, find for each objective the \(U_k \) and the \(L_k \) corresponding to the set of solution, where, \(U_k = \max(Z_{1k},Z_{2k},...,Z_{nk}) \) and \(L_k = \min(Z_{1k},Z_{2k},...,Z_{nk}) \) \(k = 1,2,...,K \)

An initial fuzzy model of the problem can be:

Step 4. Define a membership function \(\mu(Z_k) \), for the \(k \)th objective function

Step 5. Convert the fuzzy mode of the problem, obtained in step, into the following crisp model;

Maximize \(\lambda \)

Subject to \(\mu(Z_k) \)

Step 6. Solve the crisp model by an appropriate mathematical programming algorithm

Step 7. The solution obtained in step 6 will be the optimal compromise solution of the MOTP

2.3. Fuzzy Programming Technique with Linear Membership Function

A linear membership function is defined as:

\[\mu_i(Z_k) = \begin{cases} 1, & \text{if } Z_k \leq L_k \\ \frac{Z_k - L_k}{U_k - L_k}, & \text{if } L_k < Z_k < U_k \\ 0, & \text{if } Z_k \geq U_k \end{cases} \]

If we use a linear membership function, the crisp model can be simplified as:

Maximize \(\lambda \)

Subject to

\[Z_k + \lambda(U_k - L_k) \leq U_k, k = 1,2,...,K \]

\[\sum_{j=1}^{n} x_{ij} = a_i, i = 1,2,...,m \]
2.4. Fuzzy Programming Technique with Hyperbolic Membership Function

A hyperbolic membership function is defined by

\[
\mu^H(Z_k) = \begin{cases}
1, & \text{if } Z_i \leq L_i \\
\frac{1}{2}e^{-(U_i + L_k)/2-Z_k(X)}a_k + e^{-(U_i + L_k)/2-Z_k(X)}a_k + \frac{1}{2}, & \text{if } L_i < Z_i < U_i \\
0, & \text{if } Z_i \geq U_i
\end{cases}
\]

Where \(a_k = \frac{6}{(U_k - L_k)} \)

If we will use the hyperbolic membership function then an equivalent crisp model for the fuzzy model can be formulated as:

Maximize \(\lambda \)

Subject to

\[
\lambda \leq \frac{1}{2} e^{(U_k + L_k)/2-Z_k(X)}a_k e^{-(U_k + L_k)/2-Z_k(X)}a_k + \frac{1}{2}, \quad k = 1, 2, \ldots, K
\]

\[
\sum_{j=1}^{m} X_{ij} = a_i, \quad i = 1, 2, \ldots, m \tag{2}
\]

\[
\sum_{i=1}^{m} X_{ij} = b_j, \quad j = 1, 2, \ldots, n
\]

\(X_{ij} \geq 0 \quad \forall i, j \)

\(\lambda \geq 0 \)

Constraint (1) can further be simplified as:

\[
\lambda \leq \frac{1}{2} \tanh \left(\frac{U_k + L_k}{2} - Z_k(X) \right) a_k + \frac{1}{2},
\]

\[
2 \lambda \leq \tanh \left(\frac{U_k + L_k}{2} - Z_k(X) \right) a_k + 1
\]

\[
\tanh^{-1}(2\lambda - 1) \leq \left(\frac{U_k + L_k}{2} - Z_k(X) \right) a_k
\]

\[
a_k Z_k(X) + \tanh^{-1}(2\lambda - 1) \leq \left(\frac{U_k + L_k}{2} \right) a_k
\]

Now, putting \(\tanh^{-1}(2\lambda - 1) = X_{mn+1} \), constraint (1) is converted to

\[
a_k Z_k(X) + X_{mn+1} \leq \frac{a_k}{2}(U_k + L_k)
\]

Hence, the given problem is simplified as:

Maximize \(X_{mn+1} \)

Subject to

\[
X_{mn+1} \geq 0 \quad \forall i, j
\]

3. Data Analysis

This section shall discuss how multi-objective transportation problem is solved using the algorithm discussed in the previous section. The data for this paper were collected by an egg dealer in whose main office is located at Orji Owerri Imo State Nigeria who supplies the product to different wholesalers after taking it from different poultry farm sources. There are four different suppliers named as \(S_1, S_2, S_3, S_4 \) and four destinations namely \(D_1, D_2, D_3, D_4 \). The researchers liaised with the egg dealer to study the average total cost and time of transportation for two weeks. Data for time and cost of supplying products from sources \(i \) to destination \(j \) are presented in Tables 1 and 2 respectively.

How much amount of material be supplied from different sources to all other destinations so that total cost of transportation and time of transportation is minimum.
Table 1. Data for time of supplying products from sources: i to destination j

<table>
<thead>
<tr>
<th>Sources</th>
<th>Destination</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>24</td>
<td>29</td>
<td>18</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>33</td>
<td>20</td>
<td>29</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>21</td>
<td>42</td>
<td>12</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td>25</td>
<td>30</td>
<td>19</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td>13</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>93</td>
</tr>
</tbody>
</table>

Table 2. Data for cost of supplying products from sources i to destinations j

<table>
<thead>
<tr>
<th>Sources</th>
<th>Destination</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>14</td>
<td>21</td>
<td>18</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>24</td>
<td>13</td>
<td>21</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>12</td>
<td>30</td>
<td>9</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td>13</td>
<td>22</td>
<td>19</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td>13</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>93</td>
</tr>
</tbody>
</table>

The developed problem shall be formulated as:

Min. \[Z_1 = 24X_{11} + 29X_{12} + 18X_{13} + 23X_{14} + 33X_{21} + 20X_{22} + 29X_{23} + 32X_{24} + 21X_{31} + 42X_{32} + 12X_{33} + 20X_{34} + 25X_{41} + 30X_{42} + 19X_{43} + 24X_{44} + 22X_{42} + 19X_{43} + 14X_{44} \] (3)

Min. \[Z_2 = 14X_{11} + 21X_{12} + 18X_{13} + 13X_{14} + 24X_{21} + 13X_{22} + 21X_{23} + 23X_{24} + 23X_{24} + 12X_{31} + 30X_{32} + 9X_{33} + 11X_{34} + 13X_{41} + 13X_{41} + 22X_{42} + 19X_{43} + 14X_{44} \] (4)

Subject to:

\[
\sum_{j=1}^{4} x_{ij} = 24, \sum_{j=1}^{4} x_{ij} = 24, \sum_{j=1}^{4} x_{ij} = 26, x_{ij} \geq 0, i = 1, 2, 3, 4; j = 1, 2, 3, 4
\]

Where \(Z_1, Z_2 \) represents total cost and total time of transportation respectively.

Solving equations (3) and (5), we obtain the optimal solution as:

\[X^{(1)} = \left\{ x_{11} = 8, x_{14} = 22, x_{24} = 2, x_{33} = 18, x_{41} = 13, x_{44} = 13, x_{12} = Z_{21} = x_{22} = Z_{22} = x_{32} = x_{42} = x_{43} = 0 \right\} \]

\[Z_1 \left(X^{(1)} \right) = 1898, \text{ and } Z_2 \left(X^{(1)} \right) = 1286 \]

Solving equation (4) and (5), we obtain the optimal solution as;

\[X^{(2)} = \left\{ x_{14} = 21, x_{22} = 22, x_{23} = 2, x_{33} = 18, x_{41} = 15, x_{44} = 6, x_{44} = 9, x_{44} = 9, x_{11} = x_{12} = x_{21} = x_{22} = x_{31} = x_{32} = x_{41} = x_{42} = x_{43} = 0 \right\} \]

\[Z_1 \left(X^{(2)} \right) = 898, \text{ and } Z_2 \left(X^{(2)} \right) = 1286 \]

From the pay-off matrix, we obtain

\[U_1 = \max \{ 1898, 1902 \} = 1902 \]

\[L_1 = \min \{ 1898, 1902 \} = 1898 \]

\[U_2 = \max \{ 1286, 1272 \} = 1286 \]

\[L_2 = \min \{ 1286, 1272 \} = 1272 \]

If a linear membership function is employed, the crisp model can be presented as follows:

Maximize \(\lambda \)

Subject to:

\[
24X_{11} + 21X_{12} + 18X_{13} + 23X_{14} + 33X_{21} + 20X_{22} + 29X_{23} + 32X_{24} + 21X_{31} + 42X_{32} + 12X_{33} + 20X_{34} + 25X_{41} + 30X_{42} + 19X_{43} + 24X_{44} + 22X_{42} + 19X_{43} + 14X_{44} + 41 \leq 1902
\]

\[
14X_{11} + 21X_{12} + 18X_{13} + 13X_{14} + 24X_{21} + 15X_{23} + 23X_{24} + 12X_{31} + 30X_{32} + 9X_{33} + 11X_{34} + 15X_{41} + 22X_{42} + 19X_{43} + 14X_{44} + 14X \leq 1286
\]

\[
\sum_{j=1}^{4} x_{ij} = 24, \sum_{j=1}^{4} x_{ij} = 24, \sum_{j=1}^{4} x_{ij} = 30, \sum_{i=1}^{4} x_{ij} = 15, \sum_{i=1}^{4} x_{ij} = 22, \sum_{i=1}^{4} x_{ij} = 26, x_{ij} \geq 0, i = 1, 2, 3, 4; \text{and } \lambda \geq 0
\]

The optimal solution of the above problem is thus presented below as:
If we use the hyperbolic membership functions, an equivalent crisp model can be formulated as:
Maximize X_{10}
Subject to:
\[
36X_{11} + 43.5X_{12} + 27X_{13} + 34.5X_{14} + 49.5X_{21} + 30X_{22} + 43.5X_{23} + 48X_{24} + \\
31.5X_{31} + 63X_{32} + 18X_{33} + 30X_{34} + 37.5X_{41} + 45X_{42} + 28.5X_{43} + 36X_{44} + X_{10} \leq 2850
\]
\[
\sum_{i=1}^{4} X_{1i} = 21, \sum_{i=1}^{4} X_{2i} = 24, \sum_{i=1}^{4} X_{3i} = 18, \sum_{i=1}^{4} X_{4i} = 30
\]
\[
\sum_{i=1}^{4} X_{1i} = 15, \sum_{i=1}^{4} X_{2i} = 22, \sum_{i=1}^{4} X_{3i} = 26, \sum_{i=1}^{4} X_{4i} = 30
\]
\[
14X_{11} + 21X_{12} + 18X_{13} + 13X_{14} + 24X_{21} + 15X_{22} + 21X_{23} + 23X_{24} + 12X_{31} + \\
30X_{32} + 9X_{33} + 11X_{34} + 15X_{41} + 22X_{42} + 19X_{43} + 14X_{44} + X_{10} \leq 1918.5
\]
\[
X_{ij} \geq 0, i=1,2,3,4; j=1,2,3,4, \text{ and } X_{10} \geq 0
\]

Solving the above problem, the optimal solution is shown as follows:
\[
X^* = \begin{cases}
X_{11} = 21, X_{22} = 22, X_{24} = 2, X_{33} = 18, X_{41} = 15, X_{45} = 8, X_{44} = 7, \\
X_{11} = X_{12} = X_{13}, X_{21} = X_{23} = X_{32} = X_{34} = X_{42} = 0
\end{cases}
\]
\[
X_{10} = 3.00
\]

Therefore;
\[
Z_1^* = 1898, Z_2^* = 1286, \text{ and } \lambda = 0.50
\]

4. Conclusion

In this paper, two special types of membership functions linear and non-linear are used to solve the MOTP. From the results in this paper, it is observed that if we use the hyperbolic membership function, then the crisp model becomes linear. The optimal compromise solution does not change if we compare with the solution obtained by the linear membership function. However, if we compare with the solution obtained by the linear membership function, it is shown that the fuzzy optimal values do not depend on the chosen membership function whether linear or non-linear membership function is used.

References

