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Abstract: Reliability assessment is one of the necessary and critical parts in structural design under uncertainties. The 
methods for structural reliability assessment aim at evaluating the probability of limit state by considering the fluctuation of 
acting loads, variation of structural component or system, and complexity of operating environment. Latin Hypercube 
sampling (LHS) method as advanced Monte Carlo simulation (MCS) has higher efficiency in sampling. It will be chosen and 
applied in this paper in order to obtain an effective database for building Kriging surrogate models. In this paper, we propose 
an effective method to have reliability assessment by Latin Hypercube sampling based Kriging surrogate models. This method 
keeps the certain level of accuracy in prediction of the response of a structural finite element model or other explicit 
mathematical functions. 
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1. Introduction 

Uncertainty is an inevitable issue in the process of 
manufacture, infrastructure, and engineering design. 
Quantifying and propagating the uncertainty in the 
simulation or design process as a key component of risk 
analysis, robustness evaluation or reliability based 
optimization attracts attention of researchers and designer 
[1]. The traditional deterministic model is not effective for 
structural analysis because of avoiding the effects of 
uncertainties in the parameters. To consider parameter 
fluctuation in the real operation environment, the Monte 
Carlo simulation (MCS) is chosen to perform the stochastic 
simulation. It is one of most popular discrete algorithmic for 
uncertainty analyses and used with increasing frequency. 
MCS (sampling based approach) is useful for several 
reasons. First, the sampling based approach covers the full 
range of each uncertain variable in a complicated system. 
Second, modification of the model is not required, and direct 
estimates of distribution functions are provided. In addition, 
in the process of sampling, a variety of sensitivity analysis 
procedures are available. Last but not the least, analysis 
procedures can be developed and allow the propagation of 

results through systems of linked models [2]. 
However, MCS can reach a certain level of accuracy only 

if a very large number of iterations are performed. It is 
obvious that MCS methods become computational 
prohibitive when simulation model is complicated. To be 
more efficient than the random sampling method, several 
improved MCS methods with different sampling techniques 
have been developed. Importance sampling (weighted 
sampling), is expected to reduce error to zero if the 
probability density function is properly selected [3]. L. M. 
Berliner [4] applied importance sampling Monte Carlo 
method in sequential problems of Bayesian updating. P. 
Beaurepaire [5] attempted performing importance sampling 
technique in reliability based optimization of structure. In the 
literatures, the first-order sensitivity method, as a variance 
reduction technique, is also utilized to accelerate MCS 
estimation convergence [6]. The variance reduction 
techniques are especially important when MCS is applied to 
estimate small failure probability [7].  

Latin Hypercube Sampling (LHS) method operates by 
subdividing the sample space into smaller regions and 
sampling within these regions. The produced samples more 
effectively fill the sample space and therefore reduce the 
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variance of computed statistical estimators [8]. Stein M [9] 
had research in the large sample properties of simulations 
using Latin hypercube sampling. Owen [10] and Huntington 
[11] tested the limitation of Latin Hypercube sampling. 
Improved LHS have been developed, Stocki R [12] projected 
samples onto a known subspace to minimize integrated mean 
square error and maximize entropy. Iman [13] had efforts to 
reduce spurious correlations, Florian [14] rearranged the 
matrix of samples based on a transformation of the rank 
number matrix. Further, methods for constructing orthogonal 
LHS are proposed to possess enhanced space filling 
properties [15], utilized iterative optimization methods are 
applied in LHS in order to reduce spurious correlations [16]. 

A surrogate model can be thought of as a regression to a 
set of data, where the data is a set of input-output pairing 
obtained by evaluating a black-box model of the complex 
system [17]. Surrogate models may be classified into two 
general categories based on their proposed: local and global 
models. An example of optimization using local is Response 
Surface Method expressed (RSM) as polynomial surrogate 
models. The kriging models are interpolation models based 
on the assumption that there is a spatial correction between 
the values of the function to be approximated [18]. With 
these models a known or sampled value of the limit state 
function to be approximated is exactly predicted. The 
Kriging models do not assume an underlying global 
functional form as assumed in the polynomial regression 
models and can approximate arbitrary functions with high 
accuracy in global as well as local approximations [19].  

Kriging model was originally developed in spatial 
statistics by Krige. Matheron [20] had contribution in 
mathematical formulation of Kriging model. In the 
pioneering work of Sacks et al [21], Kriging model was 
chosen to predict deterministic functions in physical 
processes. A univariate kriging model combining a 
regression term with a zero-mean stationary Gaussian 
disturbance process was developed by Handcock [22]. Van 
Beer [23] started with the application of Kriging model in 
random simulation. The track record of application of 
Kriging models in random simulation holds great promise. 

This paper presents an effective method to have reliability 
assessment by Latin Hypercube sampling based Kriging 
surrogate models. For that purpose, Latin Hypercube 
Sampling is utilized to build a reliable database for 
approximating the response of a structural finite element 
model or other explicit mathematical functions. Once the 
database is defined, we compare the relative performance of 
approximation methods to fit the probabilistic response of 
original models: namely, response surface method (first order 
and second order polynomial regressions) and Kriging 
models. Then, reliability assessment is predicted by the 
surrogate models, which heavily reduced computational cost 
and also kept the certain level of accuracy. 

2. Latin Hypercube Sampling Method 

A compromise method of advanced MCS is Latin 

hypercube sampling (LHS) approach. This approach divides 
the range of each variable into disjoint intervals of equal 
probability, and one value is randomly selected from each 
interval [24]. It improves MCS stability and also maintains 
the tractability of random sampling. Consider a statistic 
system described by the relation: 

( )Y F X=                                     (1) 

{ }1 2, , , nX X X X= ⋯                          (2) 

Where the random vector X possesses independent 
components defined over the sample space S  describing n  
input random variables with marginal cumulative distribution 
functions P . F is the operator commonly represents 
computer simulation such as finite element model with 
propagation of uncertainties in the system.  

Traditional Monte Carlo methods rely on the so-called 
Simple Random Sampling (SRS) in which realization of X , 

denoted kx , 1, ,k N= ⋯ (samples), are generated as 

independent distribution realization on sample space by 

1( )
iki X ix P U−= ; 1, ,i n= ⋯                    (3) 

Where iU  are uniformly distributed samples on [0, 1]. The 

realizations of x  are then applied to the system ( )y F x=  

and y  is statistically evaluated.  
Correlated random variables are not considered because of 

Principal Component Analysis and Nataf or Rosenblatt 
transformations can be applied to produce a set of uncorrelated 
random variables from correlated relationships between variables. 

LHS divides the range of each vector components 

1 2, , , nX X X⋯  into disjoint subsets of equal probability. 

Samples of each vector components are drawn from the 
respective subset according to, 

1( )
i

j

ki X ijx P U−=                                 (4) 

Where 1, , ; 1 , , ;i n j m= =⋯ ⋯ n  refers to the total 

number of vector components or dimensions of vector. m  is 
the number of subset in a design. Subscript k denotes a 
specific sample,  

Where ijU are uniformly distributed samples on ,j jξ ξ ′   , 

1
,j j

j j

m m
ξ ξ− ′= =                          (5) 

The samples [ ]1 2, ,k k k knx x x x= ⋯ , 1 , ,k N= ⋯  are 

assembled by uniformly randomly grouping the terms of the 
generated vector components. 

In Latin Hypercube Sampling approach, the range of all 
random input variables is divided into n intervals with equal 
probability, which are restricted within the respective interval 
avoid the disadvantage of clustering together, as 
demonstrated in Fig. 1. 
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Fig. 1. Comparison between MCS and LHS in samplingExample 1: Consider the cubic polynomial function given by as in reference [25]. 

 

Fig. 2. Results of Example 1 (Fig 2.a and Fig 2.b are the mean value and standard deviation records of MCS and LHS; Fig 2.c and Fig 2.d are the probability 

and probability density of MCS with different number of sampling; Fig 2.e and Fig 2.f are the probability and probability density of LHS with different number 

of sampling.) 
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Fig. 3. Results of Example 2 (Fig 3.a and Fig 3.b are the probability and probability density of MCS with different number of sampling; Fig 3.c and Fig 3.d 

are the probability and probability density of LHS with different number of sampling.) 

2 2
1 2 1 2 1 2(X)Y F X X X X X Xα= = − +                  (6) 

The function possesses three random variables: 1X , 2X and 

α , the probability density distribution of 1X , 2X and α  are 

Gaussian distribution (5, 1), Log-normal distribution (1, 0.5), 
and uniform distribution (0, 1), respectively. 

Example 2: Suppose the limit state function expressed as, 

2Y ML E=                                      (7) 

Where M , L , E are three random variables. Here we 
defined the probability density distribution of M , L , E  are 
Gaussian distribution (2, 1), Log-normal distribution (1, 0.5), 
and uniform distribution (0.01, 1), respectively. 

The results of Example 1 and Example 2 of MCS and 
LHS in different number of sampling are presented in Fig. 2 
and Fig. 3. To begin generating the LHS, an interval of each 
feature is chosen at random. The intersection of these 
intervals in the multi-dimensional feature space is a small 
hypercube, from which a sample is taken at random. Next, 
type of interval is selected at random for each feature. A 
sample is produced at random from that small hypercube. 
This continues until N samples have been generated. Each 
interval of each parameter is sampled exactly once in the 
process. In contrast to random sampling, the entire range of 
each feature is always represented in a LHS. Unbiased 
estimates of the sample means of the outcomes are 

obtainable. By comparing Fig 2.c with Fig 2.e, it is obvious 
that LHS method is easier to have convergent and accurate 
result in statistic with smaller number of sampling in 
Example 1 than MCS method. Fig 2.d and Fig 2.e support 
the same conclusion. However, in Example 2, when the 
probability density of output result is very concentrated in a 
small range, the advantage of LHS is not evident then MCS 
as in Fig. 3. 

To compare MCS with LHS more precisely, here we 
defined relative error can be calculated as in Eq. (8) 

2

1

( )
n

i i

i

p p

e
n

=

−
=
∑ , 

2

1

( )
n

i i

i
d

f f

e
n

=

−
=
∑                (8) 

Therefore, the relative errors in probability and probability 

density can be calculated as e  and de . We divided the range 

of Y into 1n − intervals, accordingly n points in the 
probability and probability density can be obtained and 

expressed as ip  and if , where ip  and 
if are the probability 

and probability density of 10000 sampling in MCS or LHS.  
Fig. 4 presents relative errors of MCS and LHS in 

Example 1 and Example 2. In Fig 4.a and Fig 4.b, the relative 
errors in probability density and probability of LHS are 
smaller than that of MCS when they have same number of 
sampling. However, in Fig 4.c and Fig 4.d, the advantage of 
LHS is not absolutely evident. 
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Fig. 4. Relative errors of MCS and LHS in Example 1 and Example 2 (Fig 4.a and Fig 4.b are the relative errors in probability density and probability of MCS 

and LHS in Example 1; Fig 4.c and Fig 4.d are the relative errors in probability density and probability of MCS and LHS in Example 2.) 

3. Surrogate Models 

A surrogate model can be thought of as a regression to a 
set of data, where the data is a set of input-output pairing 
obtained by evaluating a black-box model of the complex 
system [26]. Surrogate models may be classified into two 
general categories based on their proposed: local and global 
models. An example of optimization using local is Response 
Surface Method expressed (RSM) as polynomial surrogate 
models. RSM sequentially fits local first and second order 
regression models to a small region of the overall search 
space, as in Eq. (9) and Eq. (10).  

0
1

( : )
n

i i

i

F x xβ β β
=

= +∑                            (9) 

0
1 1 1

( : )
n n n

i i ij i j

i i j

F x x x xβ β β β
= = =

= + +∑ ∑∑              (10) 

In the other hand, a global surrogate model is a function 
that approximates the system across the design space. 
Kriging models fit a spatial correlation function to a data set 
consisting of input-output pairs obtained by evaluating the 
underlying function. 

( ) ( : ) ( )G x F x z xβ= +                        (11) 

Where ( : )F xβ  is a deterministic component defined by a 

regression model that gives an approximation to ( )G x  in 

mean value and ( )z x  is a stationary Gaussian process with 
zero mean and covariance,  

2[ ( ), ( )] ( : , )Cov z x z x R x xσ θ′ ′=               (12) 

That interpolates the errors between the regression model 
predictions ( : )F xβ  and the true limit state function values 

( )G x  at the m realizations of the vector of basic random 

variables x , with 2σ  the constant process variance and R  is 
a prescribed correlation function. 

Several correlation functions are available, such as the 
exponential, linear and Gaussian correlation functions, the 
most widely used correlation function for structural 
reliability problems is the anisotropic Gaussian correlation 
function 

2

1

( : , ) exp( )
n

i i

i

R x x dθ θ
=

′ = −∏                      (13) 

With 
i i id x x ′= −  the distance between the evaluation 

point x  and the reference point x′  in the ith direction of the 

basic random variables space and 1[ , ... , ]T

nθ θ θ=  a vector of 

parameters that define the inverse of the correlation length in 
each direction. 

A kriging interpolation model is completely defined by a 
vector of regression coefficients β , a vector of correlation 
parameter θ  and the variance 2σ  of the stationary Gaussian 
process. These parameters are estimated by fitting the 
Kriging model to a sample of support points.  

Where F is the regression matrix and y is the vector of 
true limit state function values. The matrix R  defines the 
correlation between each pair of support points according to 
the prescribed correlation function. 

θ  has to be first estimated using the method of maximum 
likelihood: 

{ }ˆ arg min ( )L
θ

θ θ=                          (14) 
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1 2( ) ( ) ( )
m

L Rθ θ σ θ=                           (15) 

Its prediction at a given point of the space of basic random 
variables can be obtained, 

ˆ ˆ ˆ( ) ( ) ( )T TG x f x r xβ γ= +                          (16) 

1 ˆˆ ( )R y Fγ β−= −                                       (17) 

(1) ( )( ) [ ( : , ) , ... , ( : , )]T m
r x R x x R x xθ θ=              (18) 

A vector with the correlations between the prediction point 

and the m realizations ( ) ( 1, ... , )kx k m=  of the vector of 

basic random variables used in the Kriging model fitting 
corresponds to the expected or mean value of the Kriging 
model prediction, an estimate for the variance or uncertainty 
associated with the model predictions can be given by: 

2 2 1 1 11 ( ) ( ) ( ) ( ) ( )T T T

G
u x F R F u x r x R r xσ σ − − − = + −     (19) 

1( ) ( ) ( )T
u x F R r x f x

−= −                         (20) 

( ) 0
1

: i

n

i

i

F x x
ββ β

=

= ∏                             (21) 

To gain some insight into the behavior of the Kriging 
surrogate models, we created Kriging models by database of 
MCS and LHS, which has different amount of sampling. 
Zero-order, first-order and second-order Kriging models are 
applied to predict the results when the input variables are 
changed in Example 1 and Example 2. In Example 1, the 

ranges of input variables ( 1X , 2X and α ) are (4, 7), (0.1, 

1), and (0.2, 0.8) respectively. They are totally included in 
the range of MCS and LHS in Section 2. In Example 2, we 
set up the ranges of input variables ( M , L , E ) as (0.5, 3.5), 
(0.7, 1.3), and (0.2, 0.8) respectively. It insures that the 
ranges of input variables in surrogate Kriging models do not 
exceed the scope of MCS and LHS. 

Here, the relative errors are calculated by comparing the 
difference between the results predicting by Kriging models 
with the exact results from the analytical function in Example 
1 and Example 2. 

2

1

i n
i i

r

i i

y y
e

y

=

=

 −=  
 

∑                              (22) 

Where iy  is the result predicted by Kriging models, iy is 

the exact result from the analytical function, they have same 

input ( 1iX , 2iX  and iα ) in Example 1, and ( iM , iL , iE ) in 

Example 2. 
Table 1 and Table 3 present time cost of Kriging models 

fitting and predicting in Example 1 and Example 2. Table 2 
and Table 4 provide the values of relative errors, which 
demonstrate the difference between the results predicted by 
Kriging models and the exact results when the input variables 

are certain. We find that the number of sampling in MCS or 
LHS which is the original database for Kriging models is the 
most important factor to time cost. The sampling in MCS or 
LHS will be transferred to Kriging models as the original 
database to define parameters in Kriging models. According 
to the increase of numbers of sampling, the computational 
cost in Kriging models will sharply grow. This conclusion is 
proved in both Table 1 and Table 3. 

In Table 2, the relative errors from zero-order, first-order 
and second-order Kriging model are very small. In Example 
1, Kriging models have satisfied accuracy as surrogate 
models to predict. In addition, when the number of sampling 
in LHS and MCS is same, original database provided by LHS 
is always better than that of MCS in Example 1. Along to the 
increase in size of original database from LHS and MCS, 
results predicted by Kriging models are more precise. 
However, the computational cost also sharply increases as in 
Table 1. Therefore, for creating Kriging surrogate model, 
there is a trade-off between accuracy and computational cost. 

Table 1. Time cost of Kriging models fitting and predicting in Example 1. 

 KM0 KM1 KM2 

LHS(200) 0.0615 0.1438 0.1323 

LHS(500) 0.3296 0.3353 0.3499 

LHS(1000) 1.5545 1.5945 1.6401 

LHS(2000) 6.6056 6.7608 9.2099 

LHS(5000) 62.829 58.204 65.002 

MCS(200) 0.0756 0.0747 0.0825 

MCS(500) 0.3356 0.3488 0.3381 

MCS(1000) 1.5767 1.5835 1.6291 

MCS(2000) 6.6484 6.8306 6.8552 

MCS(5000) 52.465 58.248 59.021 

Units in Table 1 for time cost are second. The results are tested in the same 
computer. 

Table 2. Relative error of Kriging models prediction in Example 1. 

 KM0 KM1 KM2 

LHS(200) 4.4316 e-4 5.5266 e-4 9.2171 e-4 

LHS(500) 2.0669 e-7 1.1147 e-7 1.0959 e-5 

LHS(1000) 1.0467 e-7 1.1143 e-6 4.5837 e-6 

LHS(2000) 3.9162 e-8 2.1744 e-8 3.4246 e-8 

LHS(5000) 7.0082 e-8 3.2972 e-8 3.4849 e-8 

MCS(200) 9.1157 e-5 2.2110 e-4 0.0529 

MCS(500) 3.2057 e-6 4.9294 e-4 1.2637 e-4 

MCS(1000) 4.7832 e-6 1.6464 e-5 7.9070 e-6 

MCS(2000) 1.4250 e-7 8.8909 e-8 7.5655 e-6 

MCS(5000) 5.1851 e-7 7.2244 e-7 1.1270 e-5 

The results predicted by Kriging model in Example 2 do 
not have the same level of accuracy as in Example1. In Table 
4, we can find the relative errors are unable to be ignored. To 
make Kriging surrogate model to be more appropriate in 
complicated situation, we still have a lot of work to do. In 
order to track the property of Kriging models, tests of zero-
order, first –order and second-order Kriging models which 
are based on the database of LHS and MCS are performed 
and recorded in Fig. 5. Firstly, the results predicted by 
Kriging models which are based on database of LHS are 
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more approximated to the exact results of analytical function 
in Example 2 than that based on database of MCS. Therefore, 
for creating Kriging surrogate models, LHS method is a more 
effective and competitive method than MCS method. 
Secondly, at the beginning of the prediction, Kriging models 
have large fluctuation and the predicted results are not 
precise when compared with the exact results, this part 

should be taken into consideration and chosen to be removed 
or filtered. Lastly, compared the results predicted by zero-
order, first –order and second-order Kriging models which 
are based on the database of LHS with different number of 
sampling, choice of best Kriging model depends on the 
certain situation. It is difficult to define which Kriging model 
is the best. 

 

Fig. 5. Kriging models prediction in Example 2 (Fig 5.a, Fig 5.c and Fig 5.e are the results predicted by zero-order, first-order and second-order Kriging 

models respectively which are based on database of LHS; Fig 5.b, Fig 5.d and Fig 5.f are the results predicted by zero-order, first-order and second-order 

Kriging models respectively which are based on database of MCS). 

Table 3. Time cost of Kriging models fitting and predicting in Example 2. 

 KM0 KM1 KM2 

LHS(200) 0.0724 0.0880 0.0858 

LHS(500) 0.3934 0.3660 0.3690 

LHS(1000) 1.7373 1.4166 1.8091 

LHS(2000) 4.6267 4.6012 6.1435 

LHS(5000) 27.170 27.082 27.405 

MCS(200) 0.0699 0.0861 0.0674 

MCS(500) 0.3038 0.3661 0.3729 

MCS(1000) 1.3988 1.5859 1.6189 

MCS(2000) 5.9070 3.8678 4.6432 

MCS(5000) 26.815 32.289 43.2507 

(Units in Table 3 for time cost are second. The results are tested in the same 
computer.) 

Table 4. Relative error of Kriging models prediction in Example 2. 

 KM0 KM1 KM2 

LHS(200) 2.0766 e6 1.1141 e4 1.6238 e5 

LHS(500) 1.8833 e3 4.5290 e5 2.0888 e5 

LHS(1000) 7.3861 e3 5.1375 e4 1.9754 e4 

LHS(2000) 219.7084 3.9539 e5 5.6788 e3 

LHS(5000) 1.7566 e4 473.6334 2.6469 e3 

MCS(200) 1.8039 e5 1.0552 e4 4.9243 e5 

MCS(500) 1.9474 e5 2.2941 e4 1.9898 e3 

MCS(1000) 1.1578 e5 9.4862 e4 1.3671 e5 

MCS(2000) 9.2426 e3 1.6142 e5 3.8570 e3 

MCS(5000) 2.4799 e5 6.4827 e3 1.7360 e4 
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4. Example in Finite Element Model 

When the limit state function is implicit and each 
deterministic sampling is computational expensive, we 
propose creating Kriging surrogate models to have reliability 
assessment, LHS is chosen as an effective method to provide 
original database for Kriging models. Modal frequency is an 
important area of structural dynamics which has deservedly 
received much attention. Usually, researchers and designers 
identify the basic modal frequencies of a specific structural 
system and avoid the periodic loading coincide with them in 
order to prevent the damage or failure of resonance. The 
dynamic equation can be written as,  

[ ]{ } [ ]{ } [ ]{ } { }M x C x K x F+ + =ɺɺ ɺ                    (23) 

Where [ ]M  is the mass matrix describing the distribution 

of mass, it is about the structural degree of freedom, { }xɺ and 

{ }xɺɺ  are the first and second derivatives of the displacement 

with respect to time. Note that the force applied to the system 
is now a function of time. While mass and stiffness of a 
structure are measured and relatively easily derived, the 
mechanism whereby energy is lost through damping is less 
easily modeled. The viscous damping model represented by 
matrix [ ]C  is commonly but by no means exclusively used, 
being proportional to velocity. If there is no damping, the 
equation of motion is  

[ ]{ } [ ]{ } { }M x K x F+ =ɺɺ                          (24) 

For free (unforced) vibrations the following relationship is 
obeyed 

[ ]{ } [ ]{ } 0M x K x+ =ɺɺ                            (25) 

The solution to which can be written in the form  

{ } { } jiw t

j
x eψ=                              (26) 

Where jω  is the resonant frequency. Substituting back into 

the vibration equation leads to the well-known eigenvalue 
problem  

[ ]{ } [ ]{ }jj j
K Mψ λ ψ=                       (27) 

Where 2
j jλ ω= , and { }

j
ψ  can be thought of the mode 

shapes corresponding to the system natural frequencies{ }
j

ω . 

While the eigenvalues have an exact relationship with the 
resonant frequencies, the eigenvectors are arbitrarily scaled; 
it is common practice to define a uniquely scaled set of 
eigenvectors such that 

[ ] [ ][ ] [ ]T
M Iφ φ =                            (28) 

The result is 

[ ] [ ][ ] ( )
T

K diagφ φ λ=                        (29) 

Where [ ]φ  is the matrix of mass normalized eigen-vector. 

In this paper, our finite element model of wing structure, 
as presented in Fig. 1, is constructed by ANSYS Parameter 
Design Language. The parameters in the original 
deterministic model are corresponding with geometrical 
properties and material properties. Where S is the parameter 
representing the ratio of area between the two airfoil sections, 
it is 0.25 as in initial. L and D as presented in the Fig. 6, are 
6.25 m and 1.42 m respectively. For material property, 
Young’s module is 7e10 Pa, Poisson ratio is 0.33, and 
physical density is 2700 kg/m3.  

 

Fig. 6. Finite element model of wing structure. 

Table 5. Results of deterministic finite element model. 

 1 2 3 4 5 

Natural 
frequency / Hz 

61468 197798 291869 447981 578028 

Minimum 
stress / N/M2 

0.243e10 0.705e10 0.188e11 0.294e11 0.482e11 

Maximum 
stress / N/M2 

0.249e12 0.189e13 0.143e13 0.631e13 0.391e13 

The results of modal frequencies of wing structure in the 
deterministic finite element model are as presented in Table 
5. Latin Hypercube sampling method is performed in the 
deterministic finite element model to calculate the modal 
frequencies. The parameters corresponding with geometry (S, 
D, L) and material property (E, P, R) are as input variables in 
the process of Latin Hypercube sampling, while the modal 
frequencies of specific wing structure are output variable in 
each sampling iteration. We chose uniform distribution as 
probability distribution for input variables. The ranges of S, 
D, L are (0, 0.5), (0, 3) and (4, 10) respectively. The ranges 
of E, P, R are (le10, 1e11), (0, 0.5) and (1000, 8000) 
respectively. The units for input variables keep unchanging 
as in the deterministic finite element model. We had 10000 
samplings for each input variables by LHS method. Fig.7 
provides the records of five modal frequencies in the process 
of stochastic simulation. To be more obvious, the 
accumulative probabilities of five modal frequencies of wing 
structure are presented in Fig.8 as numerical statistics. The 
evaluation of the stochastic simulation in finite element 
model of wing by Latin Hypercube sampling method is 
presented in Table 2. The mean value, standard deviation, 
skewness, and also the minimum and maximum of five 
modal frequencies for wing structure by 10000 LHS are 
obtained and concluded in Table 2.  
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Fig. 7. Records of modal frequencies in the process of Latin Hypercube sampling. 

 

Fig. 8. Cumulative probability of five modal frequencies in LHS. 

Table 6. Results of Latin Hypercube Sampling method. 

 F1 F2 F3 F4 F5 

Mean value / *e5 
Hz 

0.48595 1.5632 2.2246 3.4208 4.7813 

Standard deviation 
/ *e5 Hz 

0.26679 0.81028 1.1919 1.6633 2.0616 

Skewness / *e5 Hz 1.2572 1.1292 1.2509 0.96708 0.91258 

Minimum / *e5 Hz 0.08809 0.32320 0.41714 0.74041 1.0691 

Maximum / *e5 Hz 1.9210 5.7092 9.4982 11.670 18.737 

 

Fig. 9. Tests of Kriging models as surrogate models for finite element model (Fig 9.a and Fig 9.b are the results of probabiltiy density of fist modal frequency 

predicted by Kriging models which are based on 1000 LHS and 2000 LHS, respectively; Fig 9.c presents the results predicted by second-order Kriging model 

based on different number of LHS; Fig 9.d presents the results predicted by second-order Kriging model with different amount of points). 
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In order to identify one Kriging model as a surrogate 

model to replace time-cost computation of original model, 
we should find answers for three questions: firstly, which 
Kriging model is the most appropriate to this specific case; 
secondly, how many LHS should be provided as original 
database for Kriging model; lastly, we set up how many 
points in Kriging model for prediction. These three questions 
can be solved in Fig. 9. Fig 9.a presents the results of 
probabiltiy density of fist modal frequency predicted by zero-
order, first-order and second-order Kriging models based on 
1000 LHS and compared with the results of 1000 LHS and 
10000 LHS. It is obvious that second-order Kriging model is 
more approximated to the original finite element model. Fig 
9.b which presents the results predicted by Kriging models 
based on 2000 LHS supports the same point. Then, second-
order Kriging model is chosen as surrogate model to have 
prediction. 

In Fig 9.c, we find that the results predicted by second-
order Kriging model based on different amount of LHS, 
namely 1000 LHS, 2000 LHS and 5000 LHS, are close to 
each other and convergent very well to the precise result. In 
the other hand, having prediction to 1000 points and 2000 
points by defined second-order Kriging model has the same 
level of accuracy and stability as demonstrated in Fig 9.d. 
Kriging model as a surrogate model, in it, the second order 
regression provides convergent and accurate prediction 

results. In addition, the advantages of Kriging model are not 
only at their accuracy, but also reflect at time-saving process. 
The 5000 LHS and performing calculation of modal 
frequencies of wing structure in the finite element model 
costs 1955.491 s, and if 1000 sampling, it also cost 371.237 
s; while in the surrogate model, fitting 1000 LHS in second-
order Kriging model only costs 9.632 s, and predict the 
corresponding result of 1000 input random sampling, it only 
costs 10.713 s. The advantage of time-saving is very 
competitive as a surrogate model. 

The convenience of Kriging surrogate model is significant 
in reliability assessment. Mechanical resonance may cause 
violent swaying motions and even catastrophic failure in 
improperly constructed structures including bridges, 
buildings and airplanes, a phenomenon known as resonance 
disaster. It is the tendency of a mechanical system to respond 
at greater amplitude when the frequency of its oscillations 
matches the system's modal frequency of vibration. 
Designers struggle to avoid this physical phenomenon 
happening in the operation situation. However, the traditional 
deterministic model ignores the effects of uncertainties in the 
real complicated operation environment. To propagate the 
uncertainty in the deterministic model of complicated system, 
the calculation expense is a heavy burden. It is necessary to 
create an appropriate surrogate model to have prediction and 
provide reliability assessment. 

 

Fig. 10. Results predicted by Kriging model based on LHS for reliability assessment (Fig 10.a and Fig 10.b present median value and variance for five modal 

frequency respectively; Fig 10. c provides results of B for five modal frequency; Fig 10.d presents the difference between two neighbor modal frequencies). 
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In the example of finite element model of wing structure, 
the parameters corresponding with geometry (S, D, L) and 
material property (E, P, R) are supposed to be uncertain and 
fluctuate in a specific range in order to simulate the 
uncertainties in the real situation. To be general, the type of 
probability distribution is chosen to be Gaussian distribution, 

as ( , )
S S

µ σ , ( , )
D D

µ σ , ( , )L Lµ σ , ( , )E Eµ σ , ( , )P Pµ σ  and 

( , )
R R

µ σ  for the parameters respectively. The standard 

deviation is settled by 10% of the mean value for each 
parameter to simulate the fluctuation. Second–order Kriging 
model based on 1000 LHS is applied as surrogate model. 
Then, the relation between the probability property (mean 
value, variance, etc.) of five modal frequencies and mean 
value of input variables (the mean value of the input 
variables in this paper Synchronous increase, they can be set 
as any other tendency for reliability assessment). 

In Fig 10.a and Fig 10.b, we can find that both mean 
value and variance for all five modal frequency will reduce 
when the mean value of input variables increase. B is the 
result of mean value divided by the standard deviation for 
every modal frequency. In contrary with mean value and 
variance of modal frequency, B has positive gradient as in 
Fig 10.c. The difference between two neighbor modal 
frequencies is an important parameter in structural design. 
Fig 10.d presents difference of mean value between the 
second and first modal frequency, between the third and the 
second modal frequency, and between the fifth and the forth 
modal frequency has the same tendency, they all have 
negative gradient. In contrary, the difference of mean value 
between the fourth and the third modal frequency has 
positive gradient. Therefore, Fig.10 provides essential 
information for structural designers. 

5. Conclusion 

1. LHS method is more effective than MCS method for 
providing comprehensive original database to Kriging 
models. 

2. When the relation between the input variables and 
output results can be expressed as polynomial, Kriging 
models have satisfied accuracy as surrogate models to 
predict. Along with the increase in the number of 
sampling in LHS, the computational cost of creating 
Kriging models sharply grows, in the same time, the 
results predicted by Kriging models can be more 
precise. Therefore, there is a trade-off between 
computational expense and accuracy. 

3. Comparison between zero-order, first-order and second-
order Kriging model is not evident, which one is the 
most appropriate model depends on the specific relation 
between the input variables and output results. 

4. Kriging models as surrogate models are very promising 
in reliability assessment. Its advantages of time-saving 
and high level of accuracy are competitive in 
uncertainty analysis. 
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