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Abstract: The aim of this article is to study the estimation of the parameter of ЭРланга distribution based on complete 

samples. The Bayes estimators of the parameter of ЭРланга distribution are obtained under three different loss functions, 

namely, weighted square error loss, squared log error loss and entropy loss functions by using conjugate prior inverse Gamma 

distribution. Then the minimax estimators of the parameter are derived by using Lehmann’s theorem. Finally, performances of 

these estimators are compared in terms of risks which obtained under squared error loss function. 
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1. Introduction 

In reliability and supportability data analysis field, the 

most commonly used distribution are the exponential 

distribution, normal distribution and Weibull distribution, etc. 

But in some practical application, such as the repair time, 

guarantee the distribution delay time, the above several 

distributions does not just as one wish. At this time ЭРланга 

distribution was proposed as a suitable alternative 

distribution [1]. 

Suppose that the repair time T  obeys the ЭРланга 

distribution with the following probability density function 

(pdf) and distribution function respectively: 

2 2( ; ) 4 , 0, 0tf t t e tθθ θ θ−= ≥ >                  (1) 

2( ; ) 1 (1 2 ) , 0, 0tF t t e tθθ θ θ−= − + ≥ >             (2) 

Here, θ is the unknown parameter. It is easily to see that
1ET θ −= , and then the parameter 1θ −  is also often referred 

to as the mean time to repair equipment. 

Lv et al. [1] studied the characteristic parameters, such as 

mean, variance and median and the maximum likelihood 

estimation of ЭРланга distribution was also derived. Pan et 

al. [2] studied the interval estimation and hypothesis test of 

ЭРланга distribution based on small sample, and the 

difference of exponential distribution with З рланга 

distribution was also discussed. Long [3] studied the 

estimation of the parameter of З рланга distribution based on 

missing data. Yu et al. [4] used the Эрланга distribution to fit 

the battlefield injury degree, and established the simulating 

model, then proposed a new method to solve the problem in 

the production and distribution of battlefield injury in 

campaign macrocosm. Long [5] studied the Bayes estimation 

of Эрлангa distribution under type-II censored samples on 

the basis conjugate prior, Jeffreys prior and no information 

prior distributions. 

The minimax estimation was introduced by Abraham Wald 

in 1950, and then minimax approach has received great 

attention and application many aspects by researchers [6-9]. 

Minimax estimation is one of the most aspect in statistical 

inference field. Under quadratic and MLINEX loss functions, 

The references [10-13] studied the minimax estimation of the 

Weibull distribution, Pareto distribution and Rayleigh 

distributions and Minimax distribution, respectively. Rasheed 

and Al-Shareefi [14] discussed the minimax estimation of the 

scale parameter of Laplace distribution under squared-log 

error loss function. Li [15] studied the minimax estimation of 

the parameter of exponential distribution based on record 

values. Li [16] obtained the minimax estimators of the 

parameter of Maxwell distribution under different loss 

functions. 

The purpose of this paper is to study maximum likelihood 

estimation (MLE) and Bayes estimation of the parameter of 

ЭРланга distribution. Further, by using Lehmann’s theorem 

we derive minimax estimators under three loss functions, 
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namely, weighted squared error loss, squared log error loss 

and entropy loss functions.  

2. Maximum Likelihood Estimation 

Let 1 2
( , , , )

n
X X X X= …  be a sample drawn from ЭРланга 

distribution with pdf (1), and 1 2
( , , , )

n
x x x x= …  is the 

observation of X . For given sample observation, we can get 

the likelihood function of the parameter θ  as follows: 

2

1

2
22

1 1 1

2( ; ) ( ; ) 4 ( 4 )
θ

θθ θ θ θ =

−
−

= = =

∑
= = = ⋅ ⋅∏ ∏ ∏

n

i

i i

n n n x
x n

i i i

i i i

l x f x x e x e  (3) 

That is 

2

1

2( )
2 2

1 1

( ; ) ( 4 ) ( 4 )
θ

θθ θ θ=

−
−

= =

∑
= ⋅ = ⋅∏ ∏

n

i

i

n nx
n n t

i i

i i

l x x e x e     (4) 

Here 
1

2
n

i

i

t x
=

= ∑  is the observation of 
1

2
n

i

i

T X
=

= ∑ . 

Then the log-likelihood function is 

1

[ ( ; )] ln(4 ) 2 ln
n

i

i

Ln l x x n tθ θ θ
=

= + −∑  

By solving log-likelihood equation 

[ ( ; )]
0

dLn l x

d

θ
θ

= , 

the maximum likelihood estimator of θ  can be easily derived 

as follows: 

ˆ
M

n

T
θ =                                        (5) 

And by Eq. (1), we can easily show that T  is a random 

variable distributed with the Gamma distribution (2 , )n θΓ , 

which has the following probability density function: 

2 1( ; ) , 0, 0
(2 )

n
t

T

nf t t e t
n

θθθ θ−−= > >
Γ

        (6) 

3. Bayesian Estimation 

In Bayesian statistical analysis, loss function plays an 

important role in the Bayes estimation and Bayes test 

problems. Many loss function are proposed in Bayesian 

analysis, and squared error loss function is the most common 

loss function, which is a symmetric loss function. In many 

practical problems, especially in the estimation of reliability 

and failure rates, symmetric loss may be not suitable, because 

it is to be thought the overestimation will bring more loss 

than underestimation [17]. Then some asymmetric loss 

functions are developed. For example, Zellner [18] proposed 

the LINEX loss in Bayes estimation, Brown [19] put forward 

the squared log error loss function for estimating unknown 

parameter, Dey et al. [20] proposed the entropy loss function 

in the Bayesian analysis.  

In this paper, we will discuss the Bayes estimation of the 

unknown parameter of ЭРланга distribution under the 

following loss functions: 

(i) Weighted squared error loss function 

2

1 2

( )
( , )L

δ θθ δ
θ
−=                           (7) 

Under the weighted squared error loss function (7), the 

Bayes estimator of θ  is  

1

2

[ | ]ˆ
[ | ]

BS

E X

E X

θδ
θ

−

−=                              (8) 

(ii) Squared log error loss function 

Squared log error loss function is a asymmetric loss 

function, which first proposed by Brown for estimating scale 

parameter. This loss function can also be found in Kiapoura 

and Nematollahib [21] with the following form: 

2( , ) (ln ln )L θ δ δ θ= −                         (9) 

Obviously, ( , )L θ δ → ∞ as 0δ → or ∞ . The loss function 

(9) is not always convex, and it is convex for e
δ
θ

≤  and 

concave otherwise. But the risk function of this function has 

minimum value, which we also call it the Bayes estimator 

ˆ
SLδ  under squared log error loss function. That is 

ˆ exp[ (ln | )]SL E Xδ θ=                          (10) 

(iii) Entropy loss function 

In many practical situations, it appears to be more realistic 

to express the loss in terms of the ratio 
θ̂
θ

. In this case, Dey 

et al. [20] pointed out a useful asymmetric loss function 

named entropy loss function: 

ˆ( , ) ln 1L
δ δθ θ
θ θ

= − −                           (11) 

Whose minimum occurs atδ θ= . Also, this loss function 

has been used in Singh et al. [22], Nematollahi and 

Motamed-Shariati [23]. The Bayes estimator under the 

entropy loss (11) is denoted by ˆ
BEθ , obtained by 

1 1ˆ [ ( | )]BE E Xδ θ − −=                            (12) 

In this section, we will estimate the unknown parameter θ  

on the basis of the above three mentioned loss functions. We 

further assume that some prior knowledge about the 

parameter θ  is available to the investigation from past 

experience with the ЭРланга model. The prior knowledge 

can often be summarized in terms of the so-called prior 

densities on parameter space of θ . In the following 
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discussion, we assume the following Jeffrey’s non-

informative quasi-prior density defined as,   

1
( ) , 0

d
π θ θ

θ
∝ >                           (13) 

Hence, 0d =  leads to a diffuse prior and 1d =  to a non-

informative prior. 

Let 1 2
( , , , )

n
X X X X= …  be a sample drawn from ЭРланга 

distribution with pdf (1), and 1 2
( , , , )

n
x x x x= …  is the 

observation of X . Combining the likelihood function (3) 

with the prior density (13), the posterior probability density 

of θ  can be derived using Bayes Theorem as follows 

2 2 2( | ) ( ; ) ( ) θ θθ θ π θ θ θ θ− − − −∝ ⋅ ∝ ∝n t d n d th x l x e e    (14) 

Theorem 1. Let 1 2
( , , , )

n
X X X X= …  be a sample of Э 

Рланга distribution with probability density function (1), and 

1 2
( , , , )

n
x x x x= …  is the observation of X . 

1

2
n

i

i

t x
=

= ∑  is the 

observation of 
1

2
n

i

i

T X
=

= ∑   

Then  

(i) Under the weighted square error loss function (7), the 

Bayes estimator is  

1

2

[ | ] 2 1ˆ
[ | ]

BS

E X n d

TE X

θδ
θ

−

−

− −= =                 (15) 

(ii) The Bayes estimator under the squared log error loss 

function (9) is  

(2 )

ˆ exp[ (ln | )]
n

SL

e
E X

T
δ θ

Ψ

= =              (16) 

(iii) The Bayes estimator under the entropy loss function 

(11) is 

1 1 2ˆ [ ( | )]BE

n d
E X

T
δ θ − − −= =               (17) 

Proof. (i) Form Equation (14), it is obviously concluded 

that the posterior distribution of the parameter θ  is Gamma 

distribution (2 1, )n d tΓ − + . 

That us 

| ~ (2 1, )X n d Tθ Γ − + , 

Then  

1

2
2

[ | ] ,
2

[ | ]
(2 )(2 1)

T
E X

n d

T
E X

n d n d

θ

θ

−

−

=
−

=
− − −

            (18) 

Thus, the Bayes estimator under the weighted square error 

loss function (7) is derived as  

1

2

[ | ] 2 1ˆ
[ | ]

BS

E X n d

TE X

θδ
θ

−

−

− −= =
 

For the case (ii): By using (14),  

2 1
(2 1) 1

0
(ln | ) ln

(2 1)

θθ θ θ θ
− + ∞ − + − −= ⋅

Γ − + ∫
n d

n dT
E X e d

n d
 

ln (2 1) ln( ) (2 1) ln( )= Γ − + − = Ψ − + −d
n d T n d T

dn
 

Where  

1ln
( ) ln ( ) 0 ( )

yny y ed
n n dy

dn n

−−⋅+∞Ψ = Γ = ∫ Γ
 

is a Digamma function. 

Then the Bayes estimator under the squared log error loss 

function (9) is come out to be  

(2 1)

ˆ exp[ (ln | )]
n d

SL

e
E X

T
δ θ

Ψ − +

= =
 

(iii) By Eqs. (12) and (17), the Bayes estimator under the 

entropy loss function (11) is given by 

1 1 2ˆ [ ( | )]BE

n d
E X

T
δ θ − − −= =

 

4. Minimax Estimation of ЭРланга 

Distribution 

This section will derive the minimax extimators of Э 

Рланга Distribution by using Lehmann’s Theorem, which 

depends on specific prior distribution and loss functions of a 

Bayesian method. The Lehmann’s Theorem is stated as 

follows: 

Lemma 1 Let { };Fθτ θ= ∈ Θ  be a class distribution 

functions and D be the estimators ofθ . Suppose that Dδ • ∈
is a Bayes estimator, which derived on the basis of a prior 

distribution ( )π θ•
on Θ . Then if the Bayes risk function 

( ),R δ θ•
 equals constant on Θ , then δ • is a minimax 

estimator of θ . 

Theorem 2 Let 1 2( , , , )nX X X X= …  be a sample drawn 

from ЭРланга distribution with pdf (1), and 

1 2( , , , )nx x x x= …  is the observation of 

1 2( , , , )nX X X X= … . Suppose that 
1

2
n

i

i

t x
=

= ∑  is the 

observation of the statistics
1

2
n

i

i

T X
=

= ∑  Then  

(i) Under the weighted square error loss function (7),

2 1ˆ
BS

n d

T
δ − −=  is the minimax estimator of parameter 

θ   
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(ii) Under the squared log error loss function,
(2 1)

ˆ
n d

SL

e

T
δ

Ψ − +

=  is the minimax estimator of parameter 

θ   

(iii) Under the entropy loss function,
3 2ˆ

BE

n d

T
δ −=  is the 

minimax estimator of parameter θ   

Proof. To use Lehmann’s Theorem for the proof of the 

results. We need calculate the risk function of Bayes 

estimators and prove these risk functions are constants. 

For the case (i), we can derive the risk function of the 

Bayes estimator ˆ
BSδ  under the weighted square error loss 

function (7) as follows: 

( ) ( ) ( ) ( )2 2 1 2

2

2 1 1ˆ, , (2 1) 2 (2 1)θ θ δ θ θ θ
θ

− − − −    = = = − − − − − +         
BS

n d
R E L E L n d E T n d E T

T
 

From equation (6), we have ~ (2 , )T n θΓ , then we have 

2
1 2( ) , ( )

2 1 (2 1)(2 2)

θ θ− −= =
− − −

E T E T
n n n

 

Consequently, 

2 2
2 2

2

1 2 1 (2 1)
( ) (2 1) 2 (2 1) 1 2

(2 1)(2 2) 2 1 2 1 (2 1)(2 2)

θ θθ θ θ
θ

 − − − −= − − − − − + = − + − − − − − −

n d n d
R n d n d

n n n n n n
 

Then, for Bayes estimator ˆ
BSδ , the risk function ( )R θ  is a constant on the parameter θ  So, According to Lemma 1, ˆ

BSδ  is 

the minimax estimator of parameter θ  under the weighted square error loss function (7). 

For the case (ii). The risk function of the Bayes estimator ˆ
SLδ  is 

( ) ( ) ( )2
2 2ˆ ˆ ˆ ˆ, ln ln [ln ] 2ln ln[ ] (ln )θ θ δ δ θ δ θ δ θ  = = − = − ⋅ +      

SL SL SL SLR E L E E E  

By ~ (2 , )T n θΓ , we can easily get the result  

(ln ) (2 ) lnE T n θ= Ψ −
 

Then 

ˆ[ln ] ( (2 1) ln ) (2 1) [ (2 ) ln ] (2 1) (2 ) lnδ θ θ= Ψ − + − = Ψ − + − Ψ − = Ψ − + − Ψ +SLE E n d T n d n n d n  

2 2 2 2ˆ[ln ] [ (2 1) ln( )] (2 1) 2 (2 1) [ln( )] [(ln ) ]δ = Ψ − + − = Ψ − + − Ψ − + +
SL

E E n d T n d n d E T E T  

Let ~ ( ,1)Y nΓ , then we can prove that ~ (2 ,1)Y T nθ= Γ . 

The derivative of ( )nΨ  is 

2 1 2 1
2 2

0 0

(ln ) (ln )
( ) ( ) [(ln ) ] ( )

( ) ( )

− − − −∞ ∞
′Ψ = − Ψ = − Ψ

Γ Γ∫ ∫
n y n y

y y e y y e
n dy n dy E Y n

n n
 

Then 

2 2 2 2

2 2 2

(2 ) (2 ) [(ln ) ] [(ln( ) ln ) ] [(ln( )) ]

2 ln (ln( )) (ln ) [(ln( )) ] 2 ln ( (2 ) ln ) (ln )

θ
θ θ θ θ θ

′Ψ + Ψ = = + =
+ ⋅ + = + ⋅ Ψ − +

n n E Y E T E T

E T E T n
 

From above results, we can the fact  

2 2 2[(ln ) ] (2 ) (2 ) 2 ln (2 ) (ln )E T n n nθ θ′= Ψ + Ψ − ⋅ Ψ +
 

Further, we have  

2 2 2ˆ[ln ] (2 1) 2 (2 1) (ln( )) [(ln ) ]δ = Ψ − + − Ψ − + +SLE n d n d E T E T   
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2 2 2(2 1) 2 (2 1)[ (2 ) ln ] (2 ) (2 ) 2 ln (2 ) (ln )θ θ θ′= Ψ − + − Ψ − + Ψ − + Ψ + Ψ − ⋅ Ψ +n d n d n n n n  

( ) 2 2 2 2ˆ ˆ[ln ] 2ln ln[ ] (ln ) (2 1) 2 (2 1)[ (2 ) ln ] (2 ) (2 ) 2ln (2 )θ δ θ δ θ θ θ′= − ⋅ + = Ψ − + − Ψ − + Ψ − + Ψ + Ψ − ⋅ ΨSL SLR E E n d n d n n n n  

2 2 2 2(ln ) 2ln [ (2 1) (2 ) ln ] (ln ) (2 1) 2 (2 ) (2 1) (2 ) (2 )θ θ θ θ ′+ − ⋅ Ψ − + − Ψ + + = Ψ − + − Ψ Ψ − + + Ψ + Ψn d n n d n n d n n  

Then ( )R θ  is also a constant about the parameter θ . So, according to Lemma 1, we know that, ˆ
SLδ  is a minimax estimator 

for parameter θ  under the squared log error loss function. 

For the case (iii). The risk function of the Bayes estimator ˆ
BEδ  can be obtained as follows: 

( ) ( ) 12 2 2ˆ, ln 1 ln(2 ) ln (ln ) 1

2 2
ln(2 ) ln (2 ) ln 1 ln(2 ) (2 ) 1

2 1 2 1

θ θ δ θ
θ θ θ

θ θ θ
θ

−− − −  = = − + = − − + + +     

− −= ⋅ − − + + Ψ − + = − − + Ψ +
− −

BE

n d n d n d
R E L E ET n d E T

T T

n d n d
n d n n d n

n n

 
Then ( )R θ  is also a constant about the parameter θ . So, according to lemma 1, we know that, ˆ

BEδ  is a minimax estimator 

for the parameter θ  under the entropy loss function. 

5. Performances of Bayes Estimators 

To illustrate the performance of these Bayes estimators, squared error loss function 2ˆ( , ) ( )L θ θ δ θ= − is used as a loss 

function to compare them. We note ˆ ˆ( ), ( )BS BLR Rδ δ and ˆ( )BER δ are the risk functions of estimators ˆ ˆ,BS BLδ δ and ˆ
BEδ  relative to the 

squared error loss, respectively. They can be easily derived as follows: 

2 22 1ˆ ˆ ˆ( ) [ ( , )] [( ) ] [( ) ]δ δ θ δ θ θ− −= = − = −BS BS BS

n d
R E L E E

T
 

2 2
2 2

20

(2 1) 2(2 1) (2 1) 2(2 1)
( ) 1

(2 1)(2 2) 2 1

θ θ θ
∞    − − − − − − − −= − + = − +   − − −   
∫ T

n d n d n d n d
f t dt

t n n nt
, 

(2 1) 2 (2 1) (2 1)
2 2 2 2ˆ ˆ( ) [( ) ] [( ) ] 1

(2 1)(2 2) 2 1
δ δ θ θ θ

Ψ − + Ψ − + Ψ − + 
= − = − = − + − − − 

n d n d n d

SL SL

e e e
R E E

T n n n
 

2
2 2 22 (2 ) 2(2 )ˆ ˆ ˆ( ) [ ( , )] [( ) ] [( ) ] 1

(2 1)(2 2) 2 1
δ δ θ δ θ θ θ

 − − −= = − = − = − + − − − 
BE BE BE

n d n d n d
R E L E E

T n n n
 

Let 1
L , 2

L  and 3
L  are the ratio of the risk functions to 2θ , which are plotted in Figs. 1-4 with different sample sizes, (n=10, 

20, 30, 50) 

 

Figure 1. Performance of estimators with n=10. 

 

Figure 2. Performance of estimators with n=20. 
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Figure 3. Performance of estimators with n=30. 

 

Figure 4. Performance of estimators with n=50. 

From Figure 1 to Figure 4, we know that no of these 

estimators is uniformly better that other estimators. Then in 

practice, we recommend to select the estimator according to 

the prior parameter value d when assuming the quasi-prior as 

the prior distribution. 

6. Conclusion 

This paper derived Bayes estimators of the parameter of Э 

Рланга distribution under weighted squared error loss, 

squared log error loss and entropy loss functions. Mote Carlo 

simulations show that the risk functions of these estimators, 

defined under squared error loss function, are all decrease as 

sample size n increases. The risk functions more and more 

close to each other aehen the sample size n is large, such as 

n>50.  
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