Existence of Coupled Solutions of BVP for φ-Laplacian Impulsive Differential Equations

Xiufeng Guo
College of Sciences, Hezhou University, Hezhou, China
Email address: llgx88@163.com

Received: November 4, 2016; Accepted: November 25, 2016; Published: December 14, 2016

Abstract: In this paper, we study the existence of coupled solutions of anti-periodic boundary value problems for impulsive differential equations with φ-Laplacian operator. Based on a pair of coupled lower and upper solutions and appropriate Nagumo condition, we prove the existence of coupled solutions for anti-periodic impulsive differential equations boundary value problems with φ-Laplacian operator.

Keywords: Boundary Value Problems, Coupled Solutions, Impulsive Differential Equations, φ-Laplacian Operator

1. Introduction

In recent years, the study boundary value problems (BVPs for short) with p-Laplacian operator has been emerging as an important area and obtained a considerable attention. Since p-Laplacian operator appears in the study of flow through porous media (p = 3/2), nonlinear elasticity (p ≥ 2), glaciology (1 ≤ p ≤ 4/3) and so on, there are many works about existence of solutions for differential equations with p-Laplacian operator [24, 25]. Usually, p-Laplacian operator is replaced by abstract and more general version φ-Laplacian operator, which lead to clearer expositions and a better understanding of the methods which ware employed to derive the existence results [12, 22, 23].

Moreover, impulsive differential equations have become an important aspect in some mathematical models of real processes and phenomena in science. There has a significant development in impulsive differential equations and impulse theory (see [2, 3, 14]). Moreover, p-Laplacian operator arises in turbulent filtration in porous media, non-Newtonian fluid flows and in many other application areas [10, 12].

Furthermore, the study of anti-periodic problem for nonlinear evolution equations is closely related to the study of periodic problem which was initiated by Okochi [17]. Anti-periodic problem which is a very important area of research has been extensively studied during the past decades, such as anti-periodic trigonometric polynomials [11] and anti-periodic wavelets [4]. Moreover, anti-periodic boundary conditions also appear in physics in a variety of situations (see [1, 13]) and difference and differential equations (see [6, 8, 19, 20]). The anti-periodic problem is a very important area of research.

In addition, we known that every T-anti-periodic solution gives rise to a 2T-periodic solution if the nonlinearity f satisfy some symmetry condition. Indeed, the periodic and anti-periodic boundary value problems have attracted many researchers great interest (see [6, 8, 9, 15, 16, 19, 20] and references therein). Recently, Guo and Gu [22] study a class of nonlinear impulsive differential equation with anti-periodic boundary condition:

\[
(\phi(u(t)))' = f(t, u(t), u'(t)) \quad a.e. \ t \in [0, T], P, \tag{1}
\]

\[
I_k(u(t_k), u(t_k^+)) = 0, \quad k = 1, 2, \ldots, p, \tag{2}
\]

\[
M_k(u(t_k), u(t_k^+), u'(t_k), u'(t_k^+), u) = 0, \quad k = 1, 2, \ldots, p, \tag{2}
\]

\[
u(0) = -u(T), \quad u'(0) = -u'(T). \tag{3}
\]

where \(\phi \) is an increasing homeomorphism from \(R \) to \(R \), \(f : [0, T] \times R^2 \to R \) is a Carathéodory function. \(P = \{ t_1, \ldots, t_p : 0 = t_0 < t_1 < \cdots < t_p < t_{p+1} = T \} \), \(I_k \in C^0(R^2), M_k \in C^0(R^4 \times C'_p), k = 1, \ldots, p \) are impulsive functions. \(C'_p \) will be given later. In [22], the authors obtained the existence of solution for anti-periodic boundary value problems (1)-(3)
for impulsive differential equations with \(\phi \)-Laplacian operator. In this paper, we will continue to consider the existence of coupled solutions for boundary value problems (1)-(3).

This paper is organized as follows: In section 2, we will state some preliminaries that will be used throughout the paper. In section 3, we will obtain the existence of coupled solutions for anti-periodic \(\phi \)-Laplacian impulsive differential equations boundary value problems (1)-(3).

2. Preliminaries

In this section, we will introduce some definitions and preliminaries which are used throughout this paper.

For a given Banach space \(E \), let \(C^0(E) \) be the set of all continuous functions \(f : E \to R \). Let \(C^m(I) \) be the set of functions \(u \) which are \(m \) times continuously differentiable on \(I \) with finite norm

\[
\| u \|_{C^m(I)} = \max_{k=0,\ldots,m} \| u^{(k)} \|_E.
\]

For \(1 \leq q \leq \infty \), let \(L^q(I) \) be the set of Lebesgue measurable functions \(u \) on \(I \) such that \(\| u \|_q \) is finite. \(AC(I,q) \) denotes the set of absolutely continuous functions \(u \) on \(I \) satisfying \(u^q \in L^q(I) \). \(W^{m,q}(I) \) denotes the set of functions \(u \in C^{m-1}(I) \) and \(u^{(m-1)} \in AC(I,q) \) with finite norm

\[
\| u \|_{W^{m,q}(I)} = \max_{k=0,\ldots,m} \| u^{(k)} \|_q.
\]

It is easy to see that \(C^m(I) \) and \(W^{m,q}(I) \) are Banach spaces and \(W^{m,q} \) is a usual Sobolev space.

Let \(p \in N \). A finite subset \(P \) of the interval \([0,T]\) and defined by

\[
P = \{ t_0, \ldots, t_p : 0 = t_0 < t_1 < \cdots < t_p < t_{p+1} = T \}.
\]

Let \(J_0 = [0,t_1) \) and \(J_k = (t_{k-1},t_k] \) for all \(k = 1, \ldots, p \). For \(m \in N \cup \{0\} \) and \(1 \leq q \leq \infty \), we denote

\[
C^m_p = \{ u : [0,T] \to R : \text{for all} \ k = 0, \ldots, p, u \in C^m(J_k), \ \text{there exist} \ u^{(k)}(t_i), \ k = 1, \ldots, p \ \text{and} \ u^{(l)}(t_i) = u^{(l)}(t_{i-1}), \ k = 1, \ldots, p-1, l = 0, \ldots, m \},
\]

\[
W^{m,q}_p = \{ u : [0,T] \to R : u_{j_k} \in W^{m,q}(J_k), k = 0, \ldots, p \}.
\]

It is easy to verify that the spaces \(C^m_p \) and \(W^{m,q}_p \) are Banach spaces with the norms

\[
\| u \|_{C^m_p} = \max_{k=0,\ldots,p} \| u_{j_k} \|_{C^m(J_k)} \ \text{and} \ \| u \|_{W^{m,q}_p} = \max_{k=0,\ldots,p} \| u_{j_k} \|_{W^{m,q}(J_k)}.
\]

We say that \(f : [0,T] \times S \to R \) satisfies the restricted Carathéodory conditions on \([0,T] \times S\) if

i. for each \(x \in S \) the function \(f(\cdot,x) \) is measurable on \([0,T]\);

ii. the function \(f(t,\cdot) \) is continuous on \(S \) for a.e. \(t \in [0,T] \);

iii. for every compact set \(K \subset S \), there exists a nonnegative function \(\mu \in L^1(0,T) \) such that

\[
| f(t,x) | \leq \mu(t) \text{ for a.e. } t \in [0,T] \text{ and all } x \in K.
\]

In this paper, we use \(\text{Car}([0,T] \times S) \) to denote the set of functions satisfying the restricted Carathéodory conditions on \([0,T] \times S \). In what follows, \(D^x \) and \(D_z \) denote the Dini derivatives.

Definition 1. The functions \(\alpha, \beta \in W^{\infty}_p \) such that \(\alpha \leq \beta \) are called a pair of coupled lower and upper solutions of problem (1)-(3) if \(\alpha, \beta \) satisfy the following conditions:

(i) \(D_+ \alpha(t) \leq D_+ \beta(t) \) for all \(t \in [0,T], P \). Moreover, if \(\tau \in [0,T], P \) such that \(D_+ \beta(\tau) = D_+ \beta(\tau) \), then there exists \(\varepsilon > 0 \) such that

\[
\alpha \in C^1([\tau-\varepsilon, \tau+\varepsilon]), \quad \phi \circ D_\alpha \in AC([\tau, \tau+\varepsilon])
\]

and

\[
(\phi(\alpha'(t)))' \geq f(t, \alpha(t), \alpha'(t)) \text{ a.e. } t \in [\tau, \tau+\varepsilon].
\]

(ii) \(D_+ \beta(t) \geq D_+ \beta(t) \) for all \(t \in [0,T], P \). Moreover, if \(\tau \in [0,T], P \) such that \(D_+ \beta(\tau) = D_+ \beta(\tau) \), then there exists \(\varepsilon > 0 \) such that

\[
\beta \in C^1([\tau-\varepsilon, \tau+\varepsilon]), \quad \phi \circ D_\beta \in AC([\tau, \tau+\varepsilon])
\]

and

\[
(\phi(\beta'(t)))' \leq f(t, \beta(t), \beta'(t)) \text{ a.e. } t \in [\tau, \tau+\varepsilon].
\]

(iii) For all \(k = 1, \ldots, p \), \(l_i(\alpha(t_i), \bullet, \bullet) \) are injective and there exist \(D^0 \alpha(t_i), D^1 \alpha(t_i), D^2 \beta(t_i), D^2 \beta(t_i) \) in \(R \) such that

\[
I_1(\alpha(t_i), \alpha(t_i)) = 0 \leq M_1(\alpha(t_i), \alpha(t_i), D \alpha(t_i), D^2 \alpha(t_i), \alpha), \quad I_2(\beta(t_i), \beta(t_i)) = 0 \geq M_2(\beta(t_i), \beta(t_i), D^2 \beta(t_i), D \beta(t_i), \beta).
\]

and there exist \(D^0 \alpha(0), D^1 \alpha(T), D^2 \beta(0), D^2 \beta(T) \) in \(R \) such that

\[
\alpha(0) + \beta(T) = 0 \leq D^0 \alpha(0) + D^2 \beta(T), \quad \alpha(T) + \beta(0) = 0 \geq D^0 \alpha(T) + D^2 \beta(T).
\]

Definition 2. Given a function \(u \in C^1_p \) is called a solution of the problem (1)-(3) if \(\phi \circ u' \in W^{\infty}_p \) and \(u \) satisfies (1) and fulfills conditions (2) and (3).

Definition 3. Assume that \(f \in \text{Car}([0,T] \times R^2) \) and
\(\alpha, \beta \in W^{1}_{+} \) satisfying \(\alpha(t) \leq \beta(t) \) for \(\forall t \in [0, T] \). We say that \(f \) satisfies a Nagumo condition with respect to \(\alpha \) and \(\beta \) if, for \(k = 1, \ldots, p \), there exist \(\phi_{k} \in C[0, \infty) \) and \(w \in L^{0}(0, T), 1 \leq q \leq \infty \), such that \(\phi_{k} > 0 \) on \([0, \infty) \),

\[
| f(t, u, v) | \leq w(t) \phi_{k}(| v |) \quad \text{on} \quad J_{k} \times [\alpha(t), \beta(t)] \times R.
\]

Moreover, there exists a constant \(K = K(\alpha, \beta) \) with \(K > \max \{ t_{k}, \| \alpha \|, \| \beta \| \} \), such that

\[
\int_{t_{k}(\alpha)}^{t_{k}(\beta)} \phi_{k}(| f(x) |)^{\frac{1}{q}} dx > \| w \|_{L^{q}} \phi_{k}^{| \frac{1}{q} } , \quad \text{or}
\]

\[
-\int_{t_{k}(\beta)}^{t_{k}(\alpha)} \phi_{k}(| f(x) |)^{\frac{1}{q}} dx > \| w \|_{L^{q}} \phi_{k}^{| \frac{1}{q} } ,
\]

where \(\phi_{k} = \sup \{ \beta(t) - \inf \alpha(t) \mid t \in \mathbb{R} \} \) and \(r_{k} = \frac{1}{t_{k}(\alpha) - t_{k}(\beta)} \max \{ \beta(t_{k}) - \alpha(t_{k}), \beta(t_{k}^{+}) - \alpha(t_{k}^{-}) \} \). Any constant such \(K > \max \{ t_{k}, k = 0, \ldots, p \} > 0 \) will be called a Nagumo constant.

Throughout this paper, we impose the following hypotheses:

(H.1) The function \(\phi: R \rightarrow R \) is a continuous and strictly increasing function.

(H.2) The BVP (1)-(3) has a pair of coupled lower and upper solutions \(\alpha \) and \(\beta \).

(H.3) \(f \in \text{Car}(0, T) \times \mathbb{R}^{2} \) and satisfies a Nagumo condition with respect to \(\alpha \) and \(\beta \).

(H.4) The functions \(I_{k} \in C^{0}(\mathbb{R}^{2}) \) are non-decreasing in the first variable for \(k = 1, \ldots, p \), and the functions \(M_{k} \in C^{0}(\mathbb{R}^{2}) \) are non-increasing in the third variable and non-decreasing in the fourth and fifth variables.

3. Existence Results of Coupled Solutions

This section is devoted to proving the existence of coupled solutions for anti-periodic impulsive differential equations boundary value problems with \(\phi \)-Laplacian operator. Firstly, we state the following existence and uniqueness result.

\(\alpha, \beta \in W_{+}^{1} \) satisfying \(\alpha(t) \leq \beta(t) \) for \(\forall t \in [0, T] \). We say that \(f \) satisfies a Nagumo condition with respect to \(\alpha \) and \(\beta \) if, for \(k = 1, \ldots, p \), there exist \(\phi_{k} \in C[0, \infty) \) and \(w \in L^{0}(0, T), 1 \leq q \leq \infty \), such that \(\phi_{k} > 0 \) on \([0, \infty) \),

\[
| f(t, u, v) | \leq w(t) \phi_{k}(| v |) \quad \text{on} \quad J_{k} \times [\alpha(t), \beta(t)] \times R.
\]

Moreover, there exists a constant \(K = K(\alpha, \beta) \) with \(K > \max \{ t_{k}, \| \alpha \|, \| \beta \| \} \), such that

\[
\int_{t_{k}(\alpha)}^{t_{k}(\beta)} \phi_{k}(| f(x) |)^{\frac{1}{q}} dx > \| w \|_{L^{q}} \phi_{k}^{| \frac{1}{q} } , \quad \text{or}
\]

\[
-\int_{t_{k}(\beta)}^{t_{k}(\alpha)} \phi_{k}(| f(x) |)^{\frac{1}{q}} dx > \| w \|_{L^{q}} \phi_{k}^{| \frac{1}{q} } ,
\]

where \(\phi_{k} = \sup \{ \beta(t) - \inf \alpha(t) \mid t \in \mathbb{R} \} \) and \(r_{k} = \frac{1}{t_{k}(\alpha) - t_{k}(\beta)} \max \{ \beta(t_{k}) - \alpha(t_{k}), \beta(t_{k}^{+}) - \alpha(t_{k}^{-}) \} \). Any constant such \(K > \max \{ t_{k}, k = 0, \ldots, p \} > 0 \) will be called a Nagumo constant.

Throughout this paper, we impose the following hypotheses:

(H.1) The function \(\phi: R \rightarrow R \) is a continuous and strictly increasing function.

(H.2) The BVP (1)-(3) has a pair of coupled lower and upper solutions \(\alpha \) and \(\beta \).

(H.3) \(f \in \text{Car}(0, T) \times \mathbb{R}^{2} \) and satisfies a Nagumo condition with respect to \(\alpha \) and \(\beta \).

(H.4) The functions \(I_{k} \in C^{0}(\mathbb{R}^{2}) \) are non-decreasing in the first variable for \(k = 1, \ldots, p \), and the functions \(M_{k} \in C^{0}(\mathbb{R}^{2}) \) are non-increasing in the third variable and non-decreasing in the fourth and fifth variables.

u(t) = A_{k} + \int_{t_{k}}^{t} \phi_{k}^{-1}(\int_{t_{k}}^{\tau_{k}} f(s) ds + \tau_{k}) d\tau_{k}, \quad t \in J_{k}, \quad k = 0, \ldots, p,
\]

where \(\tau_{k} \) is the unique solution of the equation

\[
B_{k} - A_{k} = \int_{t_{k}}^{\tau_{k}} \phi_{k}^{-1}(\int_{t_{k}}^{\tau_{k}} f(s) ds + \tau_{k}) d\tau_{k}.
\]

Next, let us consider the following functions

\[
\delta_{k}(y) = \min \{ K, \max \{ y, -K \} \} \quad \text{for} \quad y \in R,
\]

where \(K \) is the constant introduced in definition 2.3,

\[
\rho(t, u) = \min \{ \beta(t), \max \{ u, \alpha(t) \} \} \quad \text{for} \quad (t, u) \in [0, T] \times R
\]

coupled with functionals \(A_{k}, B_{k} : C_{p} \rightarrow R \) given by

\[
A_{k}(u) = \rho(0, -u(T)),
\]

\[
B_{k}(u) = \rho(T, u(T) - u'(0) - u'(T)).
\]

Moreover, for each \(u \in C_{p} \), we consider a function \(\tilde{f}_{u} : [0, T] \rightarrow R \) defined by

\[
\tilde{f}_{u}(t) = f(t, \rho(t, u(t))), \quad \delta_{k}(\frac{d}{dt} \rho(t, u(t))).
\]

The function \(\tilde{f}_{u} \) is well defined according to the following result (by redefining function \(\frac{d}{dt} \rho(t, u(t)) \) as zero when it does not exist). It can be proved in a similar way to Lemma 2 in [24].

\[
\text{Lemma 2. For given} \quad u, u_{n} \in C_{p} \quad \text{such that} \quad u_{n} \rightarrow u \quad \text{in} \quad C_{p}, \quad \text{then}
\]

\[\text{(i)} \quad \frac{d}{dt} \rho(t, u(t)) \text{ exists for a.e.} \quad t \in [0, T], \quad P; \]

\[\text{(ii)} \quad \frac{d}{dt} \rho(t, u_{n}(t)) \rightarrow \frac{d}{dt} \rho(t, u(t)) \quad \text{for a.e.} \quad t \in [0, T], \quad P. \]

Now, we can define a strictly increasing homeomorphism \(\hat{\phi} : R \rightarrow R \) by:

\[
x \in R \rightarrow \hat{\phi}(x) = \begin{cases} \phi(x), & | x | \leq K, \\ \frac{\phi(K) - \phi(-K)}{2} x - \frac{1}{2} (\phi(K) + \phi(-K)), & | x | > K. \end{cases}
\]

In the following, we are in a position to prove the existence theorem for our considering problems.

\[\text{Lemma 3. (Theorem 3.3 of [22]) Assume that} \quad (H_{1})-(H_{4}) \quad \text{hold. Then there exists at least one solution} \quad u \quad \text{of the problem} \]

\[(1)-(3) \quad \text{such that} \]

\[
\alpha(t) \leq u(t) \leq \beta(t)
\]

and

\[
| u'(t) | \leq K, \quad t \in [0, T].
\]
where $K = K(\alpha, \beta)$ is the constant introduced in Definition 2.3.

Next, we are devoted to the existence of coupled solutions. We first introduce the following definition.

Definition 4. The functions x, y are called coupled solutions of problems (1)-(3) if $x, y \in C^1_p$ and satisfy (1)-(2) and

$$
\begin{align*}
 x(0) &= -y(T), \\
 x'(0) &= -y'(T), \\
 y(0) &= -x(T), \\
 y'(0) &= -x'(T).
\end{align*}
$$

Remark If the coupled solutions x and y of problem (1)-(3) satisfy $x = y$, the $x = y$ is a solution of problem (1)-(3).

Next, we give the existence of coupled solutions for problems (1)-(3).

Theorem 5. Assume hypotheses (H$_1$)-(H$_4$) hold. Then there exists at least a pair of coupled solutions $x, y \in C^1_p$ of the impulsive differential equations boundary value problem (1)-(3) such that

$$
\begin{align*}
 x \in [\alpha, \beta] = \{u : \alpha(t) \leq u(t) \leq \beta(t), t \in [0, T]\},
 y \in [\alpha, \beta] = \{v : \alpha(t) \leq v(t) \leq \beta(t), t \in [0, T]\},
 |x'(t)| \leq K, \quad |y'(t)| \leq K, \quad \text{for } t \in [0, T],
\end{align*}
$$

where $K = K(\alpha, \beta)$ is the constant introduced in Definition 2.3.

Proof. Let us define $\rho, A_k, B_k, \text{ for each } k = 1, \ldots, p$ in the same way as above, and construct a modified problem (P') similar to the proof of Lemma 3, that is

$$
\begin{align*}
 (\mathcal{F}(x'(t)))' &= \tilde{f}_x(t), \quad \text{a.e. } t \in [0, T], \\
 (\mathcal{F}(y'(t)))' &= \tilde{f}_y(t), \quad \text{a.e. } t \in [0, T], \\
 x(t_k) &= B_{k, x}(x), \quad y(t_k) = B_{k, y}(y), \quad k = 1, 2, \ldots, p, \\
 x(t'_k) &= A_{k, x}(x), \quad y(t'_k) = A_{k, y}(y), \quad k = 1, 2, \ldots, p, \\
 x(0) &= A_0(x), \quad y(0) = A_0(y), \\
 x(T) &= B_p(x), \quad y(T) = B_p(y),
\end{align*}
$$

where

$$
\begin{align*}
 A_{k, x}(x) &= \rho(0, -y(T)), \\
 B_{p, x}(x) &= \rho(T, x(T) - y'(0) - x'(T)), \\
 A_{k, y}(y) &= \rho(0, -x(T)), \\
 B_{p, y}(y) &= \rho(T, y(T) - x'(0) - y'(T)).
\end{align*}
$$

From the proof of the Lemma 3, there exists a couple of solutions $x, y \in C^1_p$ such that

$$
\begin{align*}
 x \in [\alpha, \beta] = \{u : \alpha(t) \leq u(t) \leq \beta(t), t \in [0, T]\}, \\
 y \in [\alpha, \beta] = \{v : \alpha(t) \leq v(t) \leq \beta(t), t \in [0, T]\}, \\
 |x'(t)| \leq K, |y'(t)| \leq K, \quad \text{for } t \in [0, T],
\end{align*}
$$

and

$$
\begin{align*}
 \alpha(0) &\leq -y(T) \leq \beta(0), \\
 \alpha(0) &\leq -x(T) \leq \beta(0), \\
 \alpha(T) &\leq x(T) - y'(0) - x'(T) \leq \beta(T), \\
 \alpha(T) &\leq y(T) - x'(0) - y'(T) \leq \beta(T).
\end{align*}
$$

Furthermore, x, y satisfy the condition (2). Now, to prove that (5)-(8) is verified, it suffices to prove that

$$
\begin{align*}
 x(0) &= -\beta(0), \\
 y(0) &= \beta(0), \\
 x(T) &= \beta(T), \\
 y(T) &= \beta(T).
\end{align*}
$$

Firstly, we will prove (10), by contradiction, if $\alpha(0) > -y(T)$, then by $\alpha \leq y \leq \beta$, we have $\alpha(0) > -y(T) \geq -\beta(T)$, which contradict to $\alpha(0) + \beta(0) = 0$. Moreover, $-y(T) \leq \beta(0)$ can be proved similarly.

As the same way, we can obtain that the inequality (10) is holds. Thus we have

$$
\begin{align*}
 x(0) &= -y(T), \\
 y(0) &= -x(T).
\end{align*}
$$

Assume that the first inequality if (11) isn’t holds, as a consequence, we have

$$
\begin{align*}
 x(T) &= \alpha(T), \\
 y(T) &= \beta(T).
\end{align*}
$$

From (14) and $\alpha(T) + \beta(0) = 0$, we have

$$
\begin{align*}
 y(0) &= -x(T) = -\alpha(T) = \beta(0).
\end{align*}
$$

From these facts and the relation $\alpha \leq x, y \leq \beta$, we have

$$
\begin{align*}
 x'(T) \leq D, y'(T) \leq D, \alpha(0), \\
 y'(0) + x'(T) < 0.
\end{align*}
$$

From (14) and $\alpha(T) + \beta(0) = 0$, we have

$$
\begin{align*}
 y(0) &= -x(T) = -\alpha(T) = \beta(0).
\end{align*}
$$

From these facts and the relation $\alpha \leq x, y \leq \beta$, we have

$$
\begin{align*}
 x'(T) \leq D, y'(T) \leq D, \alpha(0), \\
 y'(0) + x'(T) < 0.
\end{align*}
$$

Thus

$$
0 < y'(0) + x'(T) \leq D, \alpha(0) + D, \beta(0) \leq 0.
$$

It is a contradiction. Moreover, the inequality in (13) be obtain in a similar way. Hence inequalities (11)-(12) are hold, that is to say x, y satisfy (5)-(8).

Therefore, the functions x, y is a coupled solutions of the problem (1)-(3), which completes the proof.
4. Conclusion

In this paper, we mainly discuss the existence of coupled solutions of anti-periodic boundary value problems for impulsive differential equations with ϕ-Laplacian operator. To give the existence results of coupled solutions for the problem (1)-(3), we first introduce a pair of coupled lower and upper solutions (see Definition 1). Then, we provide and prove the existence results of coupled solutions for anti-periodic ϕ-Laplacian impulsive differential equations boundary value problems based on a pair of coupled lower and upper solutions and appropriate Nagumo condition (Theorem 5).

Acknowledgments

The work was partially supported by NNSF of China Grants No.11461021, NNSF of Guangxi Grant No. 2014GXNSFAA118028, the Scientific Research Foundation of Guangxi Education Department No. KY2015YB306, the Scientific Research Project of Hezhou University Nos. 2015ZZZZK16, 2016HZXYX07, and Guangxi Colleges and Universities Key Laboratory of Symbolic Computation and Engineering Data Processing.

References