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Abstract: The Van der Pol oscillator is a nonlinear damping and non-conservative oscillator. Energy is generated at low 

amplitude and dissipated at high amplitude. This nonlinear oscillator was first introduced by Dutch electrical engineer and 

physicist B. Van der Pol and it was originally used to investigate vacuum tubes. Nowadays, it is used in both physical and 

biological sciences. It is also used in sociology and even in economics. It has a limit cycle and in earlier it was determined by 

the classical perturbation methods when the nonlinear term is small. Then the harmonic balance method was used to determine 

the limit cycle for stronger nonlinear case. Moreover, many researchers have been analyzed this oscillator by various numerical 

approaches. In this article, a new analytical approach based on harmonic balance method is presented to determine the limit 

cycle as well as approximate solutions of this nonlinear oscillator. The frequency as well as the limit cycle obtained by new 

approach has been compared with those obtained by other existing methods. The present method gives better result than other 

existing results and also close to the corresponding numerical result (considered to the exact result). Moreover, the present 

method is simpler than the existing harmonic balance method. 
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1. Introduction 

Van der Pol oscillation has become the interest of many 

researchers because of its various applications in human 

activities, sciences, technologies and industrial applications. 

Thus, in present time, nonlinear processes are one of the 

biggest challenges and not easy to control because the 

nonlinear characteristic of the system abruptly changes due 

to some small changes of valid parameters including time. 

The general theory and solution technique for linear 

differential equations in both science and engineering as well 

as in other disciplines have extensively developed. Yet very 

often many oscillatory systems are governed by nonlinear 

differential equation. Although it is possible in many cases to 

replace the nonlinear differential equation by a 

corresponding linear differential equation which 

approximates the original equation, such linearization is not 

always feasible or possible. In such cases, the actual 

differential equations must be directly dealt with. Many 

researchers have been determined the approximate solutions 

of nonlinear problems by using various methods such as 

perturbation method which is originally developed for 

handling weak nonlinear problems in which small 

parameters exist [1-3]. The parameters are analytically 

expanded into power series of the parameter. The coefficients 

of the series are found as solutions of a set of linear algebraic 

problem. However, in both science and engineering, there 

exist many nonlinear problems without small parameters. 

Even if there exists such a parameter, the analytical solution 

determined by the perturbation method has a small validity. 

Thus, many approximation methods were developed for 

solving strongly nonlinear oscillators, including modified 

Lindstedt-Poincare method [4-5], harmonic balance method 

[6-10], residue harmonic balance method [11], global residue 

harmonic balance method [12], iterative homotopy harmonic 

balance method [13], amplitude-frequency formulation [14] 

and homotopy analysis method [15]. Moreover energy 

balance method is used technique for solving strongly 

nonlinear oscillators [16-21]. A detailed review on some 

recently developed nonlinear analytical methods can be 

found in [22-28]. Also in a recent work, Rahman et al. has 

used harmonic balance method to determine an approximate 
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solution of Van der Pol oscillator [10]. But the method is not 

a simple one. However, the approximate solutions obtained 

by these methods are not significantly improved. On the 

other hand, any particular method is not suitable for all 

problems i.e., the special method is appropriate for the 

special nonlinear problems. Also, the solution procedure of 

some methods is laborious and difficult as well as results are 

not so closed to exact results. Also, these methods involve 

tedious derivations and computations, and they are difficult 

to implement. In an attempt to improve the accuracy of the 

existing analytical methods, a new analytical approach based 

on harmonic balance method has been presented to obtain 

the approximate solution of Van der Pol nonlinear oscillator. 

The obtained results have been compared with those 

obtained by Rahman et al. [10]. 

2. Formulation and Solution Method 

Let us consider a nonlinear differential equation 

( , ), (0) , (0) 0x x f x x x a xε+ = = =&& & & ,               (1) 

where, over dot denotes the derivative with respect to time t,

( , )f x x&  is a nonlinear function and ε  is constant. Consider a 

periodic solution as in the form: 

))cos7(cos)cos5(coscos3cos(

))sin55(sin)sin33(sincoscos2)(

K+−+−+−+
−+−++=

ϕϕϕϕϕ
ϕϕϕϕϕϕδϕ

wvu

qptx
                                              (2) 

where 0 1, , , , ,p q u v wδ< << are constants, tφ ω=  and 

2 / Tω π= is a frequency of nonlinear oscillation, here T is a 

period. Solution Eq.(2) readily satisfies the initial conditions

(0) , (0) 0x a x= =& .  

Substituting Eq. (2) in Eq. (1) and expanding ( , )f x x&  in a 

Fourier series, it turns to an algebraic identity 
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Equating the coefficients of equal harmonics of Eq. (3), 

we obtain the algebraic equations are 

2
1( 2 )( 1)u v w Fδ ω ε− + + + − − = , 2

3(1 9 )u Fω ε− = , 

2
5(1 25 )v Fω ε− = ,L  

2
1(3 5 )( 1)p q Gω ε+ − = , 2

3(1 9 )p Gω ε− = , 

2
5(1 25 )q Gω ε− = ,L .                     (4) 

Since δ  is much smaller than 1 so all the constants 

, , , , , ,u v w p qω  of Eqs.(4) can be expanded inpowers ofδ as 
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                            (5) 

Now Eqs. (4) can be solved for 

1 2 3 4 5 6 1 2 3 4 5 6, , , , , , , , , , ,c c c c c c d d d d d d and δ . Substituting 

the values of , , , , ,u v w p qω and δ  from Eqs. (5) into Eq. (1) 

we obtain the solutions.

 

3. Example 

To illustrate the accuracy of the proposed method one 

example has been presented in this section. Consider the Van 

der Pol nonlinear conservative oscillator as in the following 

form 

2(1 ) , (0) , (0) 0.x x x x x a xε+ = − = =&& & &           (6) 

Consider a periodic solution as in the form:

))cos7(cos)cos5(coscos3cos(

))sin55(sin)sin33(sincoscos2)(

K+−+−+−+
−+−++=

ϕϕϕϕϕ
ϕϕϕϕϕϕδϕ

wvu

qptx
                                           (7) 

Substituting Eq. (7) into Eq. (6) and expanding in a Fourier series and equating the coefficients of cos ,φ cos 3 ,φ
cos 5 , cos 7φ φ  and sin , sin 3 , sin 5φ φ φ  respectively, we obtained the following equations as 
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                  (8) 
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2 3 2 2 2 2
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2
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Since δ  is much smaller than 1 so all the constants 

, , , , ,u v w p qω  of Eqs.(8)-(14) can be expanded in powers 

of δ as in the following form: 
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Substituting (15) into (8)-(12) and (14) and equating the 

coefficients of δ  we obtain a system of linear equations of 

1 2 3 1 2 3, , , , , , ,c c c d d dL L . Solving these equations and 

substituting the values of 1 2 3 1 2 3, , , , , , ,c c c d d dL L into (9) 

we obtain for 1ε = : 

21754 2958662347157
1

1581 71132506938

δ δω = − − +L  

22274 750917710871

527 7903611882
u

δ δ= + +L  

25035 2676227662505

4743 426795041628
v

δ δ= − − +L            (16) 
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4743 426795041628
w

δ δ= − − +L  
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1581 35566253469
p

δ δ= − − +L  
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.
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q

δ δ= − − +L  

Substituting (16) into (13) we obtain another series. 
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2 318146 44198163782443 2295665100755905642
2 0.

527 47421671292 168690740203467

δ δ δ− + + + + =L                                     (17) 

From this series (17) we obtain the value ofδ  and use the 

smallest δ  in Eq.(16). Finally, substituting the value of all 

constants in Eq. (7) we obtain the required solution. 

4. Results and Discussion 

To test the accuracy of an approximate solution, some 

authors compared analytical solutions to those obtained by 

the numerical techniques [9, 27]. Here, we have been 

presented a new analytical approach based on harmonic 

balance method to determine the approximate solution of 

Van der Pol nonlinear equation. The solutions have been 

compared with numerical solution for 1ε =  which are 

presented in figure 1. Also the solution of Rahman et al [10] 

for Van der Pol oscillator together with numerical solution 

for 1ε =  has been provided in figure 2. The corresponding 

numerical results have been calculated by Runge-Kutta 

fourth order formula. From the figures we observe that the 

present solutions are nicely agreement with the 

corresponding numerical solutions and gives almost similar 

results to those obtained by Rahman et al [10]. Though the 

present solution is almost similar to that of Rahman et al [10] 

but present method is much easier than that of Rahman et al 

[10]. Moreover in the article of Rahman et al. [10] two 

simultaneous algebraic-transcendental equations were solved 

which is laborious process. But in our present method a 

cubical equation has been solved (Eq. (17)). 

 

Figure 1. Comparison of present results with numerical resultsfor 1=ε . 

 

Figure 2. Comparison of Rahman et al [10] results with numerical results for 1=ε . 
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5. Conclusion 

An analytical technique based on the harmonic balance 

method has been presented to obtain approximate solution of 

Van der Pol oscillator as well as its limit cycle when the 

coefficient of the nonlinear term, ε  is not small. Earlier 

perturbation method was used to investigate this oscillator 

when ε  is small. In a recent article [10] harmonic balance 

method has been used to solve this equation when 1ε = . But 

the method is more complicated than the present technique. 

A new parameter has been introduced for solving the 

nonlinear algebraic equations related to the coefficients of 

higher harmonic terms and the frequency of oscillation. The 

solution has been compared with numerical and other 

existing solution. Comparing the results we say that the 

present method shows a good coincidence with the numerical 

method. 
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