Situational Analysis of Access to Improved Sanitation in the Capital of Ethiopia and the Urgency of Adopting an Integrated Fecal Sludge Management (FSM) System

Abebe Beyene¹, Taffere Addis¹, Tamene Hailu², Esubalew Tesfahun³, Mikiyas Wolde², Kebede Faris⁴

¹Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia
²Research and Development Directorate, Ministry of Water, Irrigation and Energy (MoWIE), Addis Ababa, Ethiopia
³School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
⁴Water and Sanitation Programme (WSP), the World Bank, Ethiopia Country Office, Addis Ababa, Ethiopia

Email address: abebe.beyene@ju.edu.et (A. Beyene)

Abstract: In the faces of alarming urbanization and the high demand for basic sanitation, there are debts that urban sanitation in Sub-Saharan Africa has been steadily improving in one hand and worsening on the other hand in the recent decades. The objective of this research was to investigate the status of urban sanitation coverage in relation to Millennium Development Goal (MDG) 2015 target and the major gaps of fecal sludge management (FSM) system. For this purpose, we conducted the sanitation coverage survey in the urban slums of Addis Ababa and we compared it with the nationwide sanitation inventory conducted by Ethiopian Minister of Water, Irrigation and Energy (EMWIE) in 2014. The results revealed that only 11.4% of urban slum residents have access to improved sanitation. This sanitation coverage is by far lower than the improved sanitation coverage of the capital city (41.2%) and the national urban sanitation coverage (27%). Open defecation being a common practice in urban areas of Ethiopia accounts 8.2%, 5.8% and 8.0% for urban slums of the capital and all urban areas of the country respectively. Despite the increasing trend in urban sanitation coverage in Ethiopia, it is far from the MDG target and the majority of urban residents are living under severe health and environmental risks. The urban poor are the ones mainly excluded from the basic sanitation services. Most sanitation facilities (about 91%) in Addis Ababa are onsite sanitation that requires pit emptying nevertheless 85.4% of the residents dissatisfied with the pit emptying services. As results of the severe constraints of pit emptying and FSM services, most toilet facilities (about 50%) were full. The FSM system is totally ineffective to tackle environmental pollution and public health risks. This calls an urgent action towards the development of integrated FSM system that ensures environmental safety and targets valorization of human waste.

Keywords: Fecal Sludge Management, Sanitation Status, Urban Slum, Addis Ababa, Ethiopia

1. Introduction

Cities in developing countries are facing unprecedented demographic, environmental, economic, social and spatial challenges. One of the key 21st century global challenges in public health is improving the urban sanitation related problems [1, 2]. Since 2007, more people live in urban centers than in rural areas and this trend is expected to continue. Within the next 30 years, developing countries are predicted to account for 80% of the world’s urban population. Around one third of urban dwellers are living in urban slums of which more than 90% urban slums are located in developing countries [3]. Sub-Saharan Africa is urbanizing faster than any other continent having currently 37% urbanized population [4]. In 2012, 61.7 % of the Sub-Saharan Africa urban population live in slums where sanitation situation is highly deteriorated [5]. From an urban perspective, in Sub-Saharan Africa challenges related to water and sanitation will be higher in the future due to an ever-growing city population that share already insufficient and poorly managed resources.
An improved sanitation is defined as a sanitation system that hygienically separates human excreta from human contact [6] as depicted in the conceptual diagram (Figure 1). Sanitation is the single most cost-effective public health intervention to reduce child mortality [7, 8]. However, lack of improved sanitation is the most important feature of slums in the African urban context. The MDG sanitation target was to reduce the proportion of the world population without access to improved sanitation from 51% in 1990 to 25% in 2015. Despite progresses, meeting the MDG sanitation target is lagging behind and becomes a challenging task in developing countries mainly in Sub-Saharan countries [4]. According to the report, Ethiopia is in the list of countries that are not on track to meet MDG sanitation target, nevertheless, administrative reports claimed that the country is on the right track to meet the MDG.

Most attention for monitoring of the progress of access to sanitation worldwide has been mainly focused on household-level inventory of type and number of toilet facilities ignoring proper utilization and user behavior [11]. As reported by Bartram and Cairncross et al. [12], different levels of access along the sanitation ladder provide widely varying health benefits. For instance, the change from open defecation to the use of an improvised latrine is a step forward, but is unlikely to offer health benefits unless the latrine provides an adequate barrier between the users and their excreta. Hence, access to improved sanitation should consider the complete fecal sludge management (FSM) chain from containment to adequate treatment including waste valorization for sustainable sanitation system. In this regard, detail study is required to see the complete picture of sanitation service in relation to its aptness for pollution control and minimizing public health risks. The second objective of this research is therefore to investigate the chain of FSM system from confinement to disposal in relation to access to improved sanitation.

2. Study Area and Method

2.1. Study Area Description

The study was focused on Addis Ababa, the capital of Ethiopia and Africa. It is located at 9º 1' 48'' N and 38º 44' 24'' E with an average elevation of 2355 m.a.s.l. The estimated area of the city is 527 km² with a population density of 5165 persons/km². It is considered as one of the largest cities in Africa with more than 3 million residents. The population is projected to grow by 3.8% per year.

2.2. Method

We compiled the improved sanitation coverage (ISC) of the administrative government report (AGR) from Ethiopian Ministry of Health (MoH) that are available under the topics of “health and health related indicators” as well as the Ethiopian Central Statistical Authority (CSA) survey data. Finally, the trends of access to ISC were plotted to see the real variability through time both for Addis Ababa and urban Ethiopia. The sanitation ladder, which was established by JMP (WHO and UNICEF, 2008), is a useful tool for monitoring progress towards the MDGs. Nationwide inventory of sanitation facilities in accordance to the sanitation ladder was conducted by Ethiopian Ministry of Water, Irrigation and Energy in the year 2014. The inventory data were compiled and analyzed to verify the current status of improved urban sanitation coverage in relation to the MDG target. In addition, we also conducted inventory of sanitation facilities in accordance to the sanitation ladder in randomly selected urban slums of Addis Ababa in the year 2013 and 2014 to investigate the status of ISC in the urban poor segment of the population. We calculated the sample size based on Daniel and Cross [13] considering 10% none response rate, 5% margin of error and 50% proportion that will give the maximum sample size. Based on these

![Figure 1. Conceptual diagram of access to improved sanitation technology supplemented with proper utilization and fecal sludge management (FSM) to protect the environment and promote public health.](image-url)
assumptions, the calculated sample size is 403 households. To select the households, 5 sub-cities were randomly selected from a total 10 sub-cities in Addis Ababa. Then, we selected randomly 2 districts from each sub-city. Finally, we selected purposively a total of 40 households of urban slum area from each selected districts. In total 400 households were involved for the survey. We used both face-to-face interview and observation using semi-structured questionnaire and checklist respectively. Environmental and public health professionals were the data collectors for the sanitation field survey. Finally, we entered the data into SPSS statistical software version 16.0, and performed data cleaning and analysis.

3. Results

3.1. Current Status of Sanitation

<table>
<thead>
<tr>
<th>Sanitation status</th>
<th>Sanitation ladder</th>
<th>Addis Ababa</th>
<th>Ethiopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved sanitation</td>
<td>Pour/flush toilet</td>
<td>1.0</td>
<td>20.2</td>
</tr>
<tr>
<td></td>
<td>IPL private</td>
<td>5.2</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Pit latrine private</td>
<td>5.2</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>11.4</td>
<td>20.2</td>
</tr>
<tr>
<td>Unimproved sanitation</td>
<td>Shared latrine</td>
<td>58.1</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td>USTs (e.g., open pit, bucket, etc.)</td>
<td>22.3</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td>Open defecation</td>
<td>8.2</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>88.6</td>
<td>58.8</td>
</tr>
</tbody>
</table>

Note: IPL = Improved Pit latrine; USTs = Unsanitary toilets; * = our survey result; ** = Ethiopian-MoWIE, 2014; *** = CSA, 2014

3.2. Trend of Sanitation Coverage

The trend of access to improved sanitation coverage (ISC) for urban residents of Ethiopia revealed declining over time (Fig. 2). The current access to ISC for urban residents is 17.5% which is by far less than the MDG target (75%) of 2015. Unfortunately, the highest (44%) and the lowest (17.5) urban-national access to ISC was reported in 2004 and 2014 respectively. Although a relatively higher access to ISC was reported in Addis Ababa than urban-national, the trend showed a sharp decrease from 2010 to 2014 (Fig. 2). The trend also revealed that urban ISC was above the MDG target from 2002 to 2010 while the recent sanitation reports (2012 and 2014) were far from MDG target.

3.3. User Behavior and Pit Emptying Practice in Urban Slums

Compositions of anal cleansing materials are the major factors influencing the decomposition processes occurring in the pit and the pit-filling rate. As shown in Table 2, the commonly used anal cleansing materials (39%) are a combination of hard paper, tissue paper and water followed by hard paper and water (35.5%). Among the anal cleaning materials, hard paper is the most commonly used both as a single and combined use (91.4%). None of the households added chemicals to their toilets.

<table>
<thead>
<tr>
<th>Type of anal cleansing material</th>
<th>Frequency</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard paper</td>
<td>47</td>
<td>11.7</td>
</tr>
<tr>
<td>Tissue paper</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Water</td>
<td>18</td>
<td>4.5</td>
</tr>
<tr>
<td>Hard and tissue paper</td>
<td>21</td>
<td>5.2</td>
</tr>
<tr>
<td>Hard paper and water</td>
<td>143</td>
<td>35.5</td>
</tr>
<tr>
<td>Tissue paper and water</td>
<td>15</td>
<td>3.7</td>
</tr>
<tr>
<td>Hard and tissue paper, and water</td>
<td>157</td>
<td>39.0</td>
</tr>
</tbody>
</table>

Among the households which have toilet facilities, 327(88.38%) in urban slums of Addis Ababa used municipal emptying services whereas only 29 (7.84%) connected their toilet facilities to the nearby rivers (Table 3). There is no manual pit emptying practices in the study area.
Among the households that uses either municipal or private pit emptying services, only 59(14.6%) were satisfied with the services. The reasons for the dissatisfaction were its in availability (waiting at least 3 months) when needed and high cost for municipal and private pit emptying services respectively. The average price for municipal pit emptying per toilet is about US$ 9.3 and US$ 36.0 for private pit emptying. The average pit emptying frequency was 2 times per year. As the result of the severe constraints of pit emptying services, most toilet facilities (about 50%) were full (Figure 3).

Table 3. Type of pit emptying practices with their frequency and percentage in urban slums.

<table>
<thead>
<tr>
<th>Pit emptying practice</th>
<th>Frequency</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal emptying</td>
<td>327</td>
<td>88.38</td>
</tr>
<tr>
<td>Private pit emptying</td>
<td>6</td>
<td>1.62</td>
</tr>
<tr>
<td>Connected to sewer system</td>
<td>4</td>
<td>1.08</td>
</tr>
<tr>
<td>Construct new</td>
<td>4</td>
<td>1.08</td>
</tr>
<tr>
<td>Connected to river</td>
<td>29</td>
<td>7.84</td>
</tr>
</tbody>
</table>

Figure 3. Photo showing full pit latrines and the residents were forced even to use the slab for defecation.

3.4. Fecal Sludge Management

The chain of fecal sludge Management (FSM) system of Addis Ababa is summarized in Figure 4. In the chain of FSM system, the containment was mainly dry toilets (i.e., 74% in Addis Ababa and 90.8 % urban slums of Addis Ababa). In the dry toilets containment system, there was no complete treatment and safe disposal of FS. The FS from dry toilets was either partially treated with sludge drying beds to be disposed in agricultural land or directly connected to the rivers. The sludge drying bed also has no liner system that can result surface and ground water contamination. The stabilization pond treatment for flush toilets with sewer connection system was also partial and end up to rivers. Moreover, we observed few toilet facilities that were directly connected to the rivers. Resource recovery oriented FSM system was completely absent.

Figure 4. The chain of fecal management (FSM) system and current practices of FSM in Addis Ababa.
4. Discussion

4.1. Current Status of Sanitation

Although MDG of access to safe water was achieved in urban Africa, access to basic sanitation facilities is far from the target and considered to be extremely difficult in Sub-Saharan Africa [4]. Our finding showed that the current access to improved sanitation coverage in urban residents of Ethiopia including the capital city is enormously far from the MDG target. For instance, 82.5% of urban and 95.5% of national population have no access to improved sanitation. The survey also showed that access to ISC only accounts 11.4% for urban slums and 41.2% for the whole urban residents of Addis Ababa. Majority of urban slums (88.6%) used unimproved sanitation facilities including open field defection, which implies that urban poor are excluded from the sanitation services. A number of researchers have documented that inadequate access to improved sanitation in Sub-Saharan Africa leads to use unsanitary toilet facilities and open field for defection that creates significant environmental pollution [2, 17] and health hazards [18, 28, 29]. The reason behind this low access to improved sanitation is due to lack of contextualized strategies, policy and action [21] in addition to weak sectorial coordination and low national budget allocation [22].

4.2. Trends of Sanitation Coverage

In the faces of alarming urbanization and the high demand for basic sanitation, there are debts that urban sanitation in Sub-Saharan Africa has been steadily improving in one hand and worsening on the other hand in the recent decades. However, the trend of access to ISC for urban residents of Ethiopia revealed declining over time (44% in 2004 to 17.5% in 2014) indicating mis-match between rural urban migration of people and corresponding service level growth. Although a relatively higher access to ISC was reported in Addis Ababa than urban-national, the trend showed a sharp decrease from 2010 to 2014. According to the trend analysis from 2000 to 2012 conducted by Hopewell and Graham [23] in 31 major Sub-Saharan Africa cities, Addis Ababa is listed as one of the cities found to have no significant change in terms of improved sanitation and upturn in the prevalence of open defection. When compared with these cities, the access to improved sanitation in Addis Ababa lower than most of the cities (78.3%) of Sub-Saharan Africa. Population growth coupled with rapid urbanization that outpace the government commitment and actions are the major potential reasons that lead to a decline access to improved sanitation.

4.3. User Behavior and Pit Emptying Practice in Urban Slums

The importance of sanitation to safeguard human health is well known and undisputed. Nevertheless, assess to improved sanitation coverage is only estimated based on simple counting on a hierarchy of predefined sanitation technologies [11] ignoring the functions of sanitation systems in relation to user behavior, pit emptying and FS treatment. Among the anal cleaning materials, hard paper is the most commonly used both as a single and combined use (91.4%) that can increase the pit filling rate and create obstacle of vacuum pit emptying. None of the households added chemicals to their toilets, which facilitate microbial degradation of fecal sludge. Pit emptying of dry toilets and fecal sludge treatment are the challenges of urban sanitation [24, 25]. Similarly, pit emptying and FS treatment were found to be the major constraints in urban slums of Addis Ababa. Among the households that uses either municipal or private pit emptying services, 85.4% were unsatisfied with the services provided due to the high price and limited number vacuum tracks that are not accessible when needed. There was also no local pit emptying technologies. As the result of these severe constraints, most toilet facilities (about 50%) were full which forced users to defecate on the slabs and outside the toilet facilities. Our findings pointed out the urgency of developing simple and low cost pit emptying technologies.

4.4. Fecal Sludge Management (FSM) System

Access to improved sanitation should consider the complete FSM chain from containment to adequate treatment including valorization for sustainable sanitation system. As indicated by Bartram and Cairncross [12], access to different levels of sanitation ladder provide widely varying health benefits. For instance, the change from open defection to the use of unimproved latrine is a step forward. Nevertheless, it is unlikely to offer health benefits unless the latrine provides an adequate barrier between the users and their excreta. Our finding showed that as containment of FS was mainly dominated by dry toilets with subsequent incomplete treatment and unsafe disposal confirming that simple counting of access to sanitation facilities will not guarantee in avoiding risk of environment contamination and public health. For example, the sludge drying beds in Addis Ababa has no liner system that can result in surface and ground water contamination besides the risks from subsequent direct agricultural application of untreated biosolids. Although flush toilets are considered improved sanitation facilities, their fecal sludge was either connected to the river or only partially treated by stabilization ponds. It is evident that untreated urban waste is grossly polluting the nearby lakes and rivers in Sub-Saharan Africa [26, 27, 28]. The outflow of highly polluted rivers in Addis Ababa are mere threats to downstream water sources.

We observed that resource recovery oriented [29] and safe FSM system is totally absent in Addis Ababa. Hence, future monitoring and evaluation of progress for access to improved sanitation coverage should consider the effectiveness of the complete FSM chain in addition to inventory of sanitation technologies.
5. Conclusion

The current access to improved sanitation coverage in urban residents of Ethiopia including the capital city is far from the MDG target. The coverage is also declining because of uncontrolled population growth and high urbanization. Pit emptying services were inadequate indicating the need for developing affordable pit emptying technologies. Safe and resource recovery oriented FSM system is totally absent in Addis Ababa that nullify even the current low access to improved sanitation coverage. Therefore, future progress updates for access to improved sanitation coverage should consider the effectiveness of the complete FSM chain in addition to inventory of sanitation technologies.

Ethics

The Addis Ababa sanitation inventory was not subjected to ethical review since it is an operational study without involving human subjects. Nevertheless, the protocols for the household survey were reviewed by the Ethical Review Board of the College of Health Sciences, Jimma University, Ethiopia and we received an ethical approval before conducting the survey.

Acknowledgments

This work is supported by Jimma University (Ethiopia), Ethiopian Ministry of Water, Irrigation and Energy (MoWIE), and Sanitation Research Fund for Africa (SRFA) from Bill and Melinda Gates Foundation (BMGF) and Water Research Commission of South Africa with a grant agreement number KS/2293/11.

References

