#### Science Research

2014; 2(1): 1-6

Published online January 30, 2014 (http://www.sciencepublishinggroup.com/j/sr) doi: 10.11648/j.sr.20140201.11



# New conceptions of transitivity and minimal mappings

#### Mohammed Nokhas Murad Kaki

Mathematics Department, School of Science, Faculty of Science & Science Education, University of Sulaimani, Kurdistan Region-Iraq

#### **Email address:**

muradkakaee@yahoo.com

#### To cite this article:

Mohammed Nokhas Murad Kaki, New Conceptions of Transitivity and Minimal Mappings. *Science Research*. Vol. 2, No.1, 2014, pp.1-6. doi: 10.11648/j.sr.20140201.11

**Abstract:** The concepts of topological δ- transitive maps, α-type transitive maps, δ-minimal and α-minimal mappings were introduced by M. Nokhas Murad Kaki. In this paper, the relationship between two different notions of transitive maps, namely topological δ-type transitive mapsandtopological α-type transitive maps has been studied and some of their properties in two topological spaces  $(X, \tau^{\delta})$  and  $(X, \tau^{\alpha})$ ,  $\tau^{\delta}$  denotes the δ-topology (resp.  $\tau^{\alpha}$  denotes the α-topology) of a given topological space  $(X, \tau)$  has been investigated. Also, we have proved that there exists a dense orbit in X, where X is locally compact Hausdorff space and  $\tau$  has a countable basis. The main results are the following propositions: Every topologically α-type transitive map is a topologically transitive map which implies topologically δ- transitive map, but the converse not necessarily true., and every α-minimal map is a minimal map which implies δ- minimal map in topological spaces, but the converse not necessarily true. Finally, we have proved that a map which is γr- conjugated to γ-transitive (resp. γ-minimal, γ-mixing) map is γ-transitive (resp. γ-minimal, γ-mixing).

**Keywords:** Topologically δ-Transitive, δ-Irresolute, δ-Type Transitive, δ-Dense, γ-Dense, γ-Transitive

## 1. Introduction

Let A be a subset of a topological space  $(X, \tau)$ . The closure and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space  $(X, \tau)$ is said to be regular open [1] (resp. preopen [2]) if A = Int(Cl(A)) (resp.  $A \subset Int(Cl(A))$ ). A set  $A \subset X$  is said to be δ-open [3] if it is the union of regular open sets of a space X. The complement of a regular open (resp.  $\delta$ -open) set is called regular closed (resp. δ-closed). The intersection of all  $\delta$ -closed sets of  $(X, \tau)$  containing A is called the  $\delta$ -closure [3] of A and is denoted by  $Cl_{\delta}(A)$ .. Recall that a set S is called regular closed if S = Cl(Int(S)). A point x  $\varepsilon$  X is called a  $\delta$ -cluster point [3] of S if  $S \cap U \neq \phi$  for each regular open set U containing x. The set of all δ-cluster points of S is called the  $\delta$ -closure of S and is denoted by  $Cl_{\delta}(S)$ . A subset S is called  $\delta$ -closed if  $\delta Cl(S) = S$ . The complement of a  $\delta$ -closed set is called  $\delta$ -open. The family of all δ-open sets of a space X is denoted by  $\delta O(X, \tau)$ . The  $\delta$ -interior of S is denoted by  $Int_{\delta}(S)$  and it is defined as follows  $\operatorname{Int}_{\delta}(S) = \{x \in X : x \in U \subseteq \operatorname{Int}(\operatorname{Cl}(U)) \subseteq S\}$ some open set U of X.

The area of Dynamical Systems where one investigates dynamical properties that can be described in topological terms is called Topological Dynamics Let X be a compact topological space and let  $f: X \to X$  be continuous. The pair (X, f) is so called topological system. The topological system (X, f) is called topologically  $\delta$ -type transitive (or just  $\delta$ -type transitive[4]) if for every pair of nonempty  $\delta$ -open sets U and V in X there is a nonnegative integer n such that  $f^n(U) \cap V \neq \emptyset$ . If the space X has no isolated points, this is equivalent to the existence of a point  $x \in X$  whose orbit  $O_f(x) = \{x, f(x), f^2(x), ...f^n(x), ....\}$  is  $\delta$ -dense in X. Consequently, a topologically  $\delta$ -type transitive topological system cannot be decomposed into two disjoint sets with nonempty  $\delta$ -interiors. For more information on topological  $\delta$ -type transitivity see, e.g. [4] and references there

In this paper, we will study some new class of topological transitive maps called topological  $\delta$ -type transitive[4], also, we will study the relationship between two types of minimal mappings, namely,  $\delta$ -minimal mapping and  $\alpha$ -minimal mapping, and we will prove that the properties of  $\delta$ -type transitive,  $\delta$ -mixing and  $\delta$ -minimal maps are preserved under  $\delta$ r-conjugacy and study some of its properties.

## 2. Preliminaries and Definitions

In this section, we recall some of the basic definitions. Let X be a space and  $A \subset X$ . The intersection (resp. closure) of A is denoted by Int(A) (resp. Cl(A).

Definition 2.1.Let  $(X, \tau)$  be a space. A subset A of X is called dense in X if Cl(A)=X

Definition 2.2(i) A space X is said to be 2nd countable if it has a countable basis.

(ii) X is said to be of First Category if it is a countable union of nowhere dense subsets of X. It is of second Category if it is not of First Category.

Theorem 2.3Let X be a non-empty locally compact Hausdorff space. Then the intersection of a countable collection of open dense subsets of X is dense in X. Moreover, X is of second Category.

Definition 2.4Let  $(X,\tau)$  be a topological space. X is second countable if and only if the topology of X has a countable basis.

Definition 2.5 Recall that a space X is said to be separable if X contains a countable dense subset.

Corollary 2.6 A subset A of a space  $(X, \tau)$  is dense if and only if  $A \cap U \neq \emptyset$  for all  $U \in \tau$  other than  $U = \emptyset$ 

Definition 2.7Let  $(X, \tau)$  be a topological space,  $f: X \to X$  be a continuous map then f is said to be topologically transitive if every pair of non-empty open sets U and V in X there is a positive integer n such that  $f^n(U) \cap V \neq \emptyset$ .

The purpose of the following theorem is to prove that topological transitivity implies dense orbits in a space X where X is a non-empty locally compact Hausdorff topological space.

Theorem 2.8Let (X, f) be a topological system where X is a non-empty locally compact Hausdorff topological space and  $f: X \to X$  is a continuous map and that X is separable. Suppose that f is topologically transitive. Then there is  $x \in X$  such that the orbit  $O_f(x) = \{x, f(x), f^2(x), ..., f^n(x), ....\}$  is dense in X.

Proof: Let B =  $\{U_i\}$  i = 1, 2, 3, ... be a countable basis for the topology of X. For each i, let  $O_i = \{x \in X : f^n(x) \in U_i \text{ for some } n \ge 0\}$ 

Then, clearly  $O_i$  is open and dense. It is open since f is continuous, so,  $O_i = \bigcup_{i=1}^{\infty} f^{-1}(U_i)$  is open and dense since f is topological transitive map. Further, for every open set V, there is a positive integer n such that  $f^n(V) \cap U_i \neq \phi$ .

Now, apply theorem 2.3 to the countable dense sets  $\{O_i\}$  to say that  $\bigcap_{i=0}^{\infty} O_i$  is dense and so non-empty. Let  $y \in \bigcap_{i=0}^{\infty} O_i$ . This means that, for each i, there is a positive integer n such that  $f^n(y) \in U_i$  for every i. Bycorollary 2.6 this implies

that  $O_{\epsilon}(x)$  is dense in X

Definition 2.9.If for  $x \in X$  the set  $\{f^n(x): n \in \mathbb{N}\}$  is dense in Xthenx is said to have a dense orbit. If there exists such an  $x \in X$ , then f is said to have a dense orbit.

Definition 2.10. A function  $f: X \to X$  is called  $\gamma$ r-homeomorphism if f is  $\gamma$ -irresolute bijective and  $f^{-1}: X \to X$  is  $\gamma$ -irresolute.

Definition 2.11 [19] Two topological systems  $f: X \to X$ ,  $x_{n+1} = f(x_n)$  and  $g: Y \to Y$ ,  $y_{n+1} = g(y_n)$  are said to be topologically  $\gamma$ -conjugate if there is  $\gamma$ -homeomorphism  $h: X \to Y$  such that  $h \circ f = g \circ h$  (i.e. h(f(x)) = g(h(x))). We will call h a topological  $\gamma$ -conjugacy.

Remark 2.12[19] If  $\{x_{0_1}, x_1, x_2, ...\}$  denotes an orbit of  $x_{n+1} = f(x_n)$  then  $\{y_0 = h(x_0), y_1 = h(x_1), y_2 = h(x_2), ...\}$  yields an orbit of g since  $y_{n+1} = h(x_{n+1}) = h(f(x_n)) = g(h(x_n)) = g(y_n)$ . In particular, h maps periodic orbits of f onto periodic orbits of g.

In [19], we introduced and defined the new type of transitive called  $\gamma$ -type transitive in such a way that it is preserved under topologically  $\gamma$ r- conjugation. It means; we have proved that a map which is  $\gamma$ r- conjugated to  $\gamma$ -transitive (resp.  $\gamma$ -minimal,  $\gamma$ -mixing) map is  $\gamma$ -transitive (resp.  $\gamma$ -minimal,  $\gamma$ -mixing).

We proceed to prove the following important proposition: Proposition 2.13 [19] Let (X, f) and (Y, g) be two topological systems, if  $f: X \to X$  and  $g: Y \to Y$  are topologically  $\mathcal{Y}$ -conjugate. Then

- (1) f is topologically  $\gamma$  transitive if and only if g is topologically  $\gamma$ -transitive;
  - (2) f is  $\gamma$ -minimal if and only if g is  $\gamma$ -minimal;
- (3) f is topologically  $\gamma$ -mixing if and only if g is topologically  $\gamma$ -mixing.

#### Proof (1)

Assume that  $f: X \to X$  and  $g: Y \to Y$  are topologically  $\gamma$ r-conjugated by  $h: X \to Y$ . Suppose f is  $\gamma$ -type transitive. Let A, B be  $\gamma$ -open subsets of Y (to show  $g^n(A) \cap B \neq \varphi$  for some n > 0).

 $U = h^{-1}(A)$  and  $V = h^{-1}(B)$  are  $\gamma$ -open subsets of X since h is an  $\gamma$ -irresolute

Then there exists some n>0 such that  $f^n(U) \cap V \neq \varphi$  since f is  $\gamma$ -type transitive. Thus (as  $f \circ h^{-1} = h^{-1} \circ g$  implies  $f^n \circ h^{-1} = h^{-1} \circ g^n$ ),

$$\phi \neq f^{n}(h^{-1}(A)) \cap h^{-1}(B) = h^{-1}(g^{n}(A)) \cap h^{-1}(B)$$

Therefore,  $h^{-1}(g^n(A) \cap B) \neq \phi$  implies  $g^n(A) \cap B \neq \phi$  since  $h^{-1}$  is invertible.

#### Proof (2)

Assume that  $f: X \to X$  and  $g: Y \to Y$  are topological systems, which are topologically  $\gamma$ r-conjugated by  $h: Y \to X$  Thus, h is  $\gamma$ r-homeomorphism (that is, h is

bijective and thus invertible and both h and  $h^{-1}$  are  $\gamma$ -irresolute) and  $h \circ g = f \circ h$ , that is, the following diagram commutes:

$$Y \xrightarrow{g} Y$$

$$\downarrow^{h} \downarrow \qquad \downarrow^{h}$$

$$X \xrightarrow{f} X$$

We show that ifgis  $\gamma$ -minimal, then f is  $\gamma$ -minimal. We want to show that for any  $x \in X$ ,  $O_f(x)$  is  $\gamma$ -dense. Since h is surjective, there exists  $x \in X$  such that  $y = h^{-1}(x)$ . Since g is  $\gamma$ -minimal,  $O_g(y)$  is  $\gamma$ -dense. For any non-empty  $\gamma$ - open subset U of X,  $h^{-1}(U)$  is an  $\gamma$ -open subset of X since  $h^{-1}$  is  $\gamma$ -irresolute because the map h is  $\gamma$ homeomorphism and it is non-empty since h is invertible map. By  $\gamma$ -density of  $O_g(y)$  there exist k in N such that  $g^{k}(y) \in h^{-1}(U) \Leftrightarrow h(g^{k}(y)) \in U$ Since h is  $\gamma$ r-conjugacy; as  $f \circ h = h \circ g$ implies  $f^k \circ h = h \circ g^k$ so  $f^k(h(y)) = h(g^k(y)) \in U$ thus  $O_f(h(y))$  intersects U. This holds for any non-empty  $\gamma$  open set U and thus shows that  $O_f(x) = O_f(h(y))$  is  $\gamma$ dense

#### Proof (3)

We only prove that if g is topologically  $\gamma$ -mixing then f is also topologically  $\gamma$ -mixing. Let U, V be two  $\gamma$ -open subsets of X. We have to show that there is N>0 such that for any n>N,  $f^n(U) \cap V \neq \phi$ .

 $h^{-1}(U)$  and  $h^{-1}(V)$  are two  $\gamma$ -open sets since the map h is  $\gamma$ -irresolute. If gis topologically  $\gamma$ -mixing then there is N >0 such that for any n>M,  $g^n(h^{-1}(U)) \cap h^{-1}(V) \neq \phi$ . Therefore thereexits  $x \in g^n(h^{-1}(U)) \cap h^{-1}(V)$ . That is,  $x \in g^n(h^{-1}(U))$  and  $x \in h^{-1}(V)$  if and only if  $x = g^n(V)$  for  $v \in h^{-1}(U)$  and  $h(x) \in V$ .

Thus, since  $h \circ g^n = f^n \circ h$  , so that,  $h(x) = h(g^n(y)) = f^n(h(y)) \in f^n(U)$  and we have  $h(x) \in V$  that is  $f^n(U) \cap V \neq \emptyset$ .

So, f is  $\gamma$ -mixing

## 3. Transitive and Minimal Systems

Topological transitivity is a global characteristic of dynamical systems. By a dynamical system (X, f) [15] we

mean a topological space X together with a continuous map  $f:X\to X$ . The space X is sometimes called the phase spaceof the system. A set  $A\subseteq X$  is called f – inveriant if  $f(A)\subseteq A$ .

- (X, f) is  $\alpha$ -minimal (resp.  $\theta$ -minimal),
- every orbit is  $\alpha$ -dense (resp.  $\theta$ -dense) in X,
- $\omega_f(x) = X$  for every  $x \in X$ .

A minimal map f is necessarily surjective if X is assumed to be Hausdorff and compact.

Now, we will study the Existence of minimal sets. Given a dynamical system (X, f), a set  $A \subseteq X$  is called a *minimal set* if it is non-empty, closed and invariant and if no proper subset of A has these three properties. So,  $A \subseteq X$  is a minimal set if and only if (A, f|A) is a minimal system. A system (X, f) is minimal if and only if X is a minimal set in (X, f).

Let (X, f) be a topological system, and  $f: X \to X$   $\alpha$ r-homeomorphism of X onto itself. For A and B subsets of X, we let  $N(A, B) = \{n \in \mathbb{Z} : f^n(A) \cap B \neq \emptyset\}$ 

We write N(A, B) = N(x, B) for a singleton  $A = \{x\}$  thus  $N(x, B) = \{n \in \mathbb{Z} : f^n(x) \in B\}$ 

For a point  $x \in X$  we write  $O_f(x) = \{f^n(x) : n \in \mathbb{Z}\}$  for the orbit of x and  $Cl_\alpha(O_f(x))$  for the  $\alpha$ -closure of  $O_f(x)$ . We say that the topological system (X, f) is  $\alpha$ -type point transitive if there is a point  $x \in X$  with  $O_f(x)$   $\alpha$ -dense. Such a point is called  $\alpha$ -type transitive. We say that the topological systems (X, f) is topologically  $\alpha$ -type transitive (or just  $\alpha$ -type transitive) if the set N(U, V) is nonempty for every pair U and V of nonempty  $\alpha$ -open subsets of X.

## 3.1. Topologically a-Transitive Maps

In [11], we introduced and defined a new class of transitive maps that are called topologically  $\alpha$ -transitive maps on a topological space  $(X, \tau)$ , and we studied some of their properties and proved some results associated with

these new definitions. We also defined and introduced a new class of  $\alpha$ -minimal maps. In this paper we discuss the relationship between topologically  $\alpha$ -transitive maps and  $\theta$ -transitive maps. On the other hand, we discuss the relationship between  $\alpha$ -minimal and  $\theta$ -minimal in topological systems.

Definition 3.1.1 Let  $(X, \tau)$  be a topological space. A subset A of X is called α-dense in X if  $Cl_{\alpha}(A) = X$ .

*Note that,* in general topology, for any subset A of the space  $X, A \subset Cl_{\alpha}(A) \subset Cl(A)$ , therefore if A is  $\alpha$ -dense, in X, then A is dense in X.

Remark 3.1.2Any  $\alpha$ -dense subset in X intersects any  $\alpha$ -open set in X.

*Proof:* Let A be an  $\alpha$ -dense subset in X, then by definition,  $Cl_{\alpha}(A) = X$ , and let U be a non-empty  $\alpha$ -open set in X. Suppose that  $A \cap U = \varphi$ . Therefore  $B = U^c$  is  $\alpha$ -closed and  $A \subset U^c = B$ . So  $Cl_{\alpha}(A) \subset Cl_{\alpha}(B)$ , i.e.  $Cl_{\alpha}(A) \subset B$ , but  $Cl_{\alpha}(A) = X$ , so  $X \subset B$ , this contradicts that  $U \neq \varphi$ 

*Definition 3.1.3* [12] A map  $f: X \to Y$  is called α-irresolute if for every α-open set H of Y,  $f^{-1}(H)$  is α-open in X

Example 3.1.4 [11] Let  $(X, \tau)$  be a topological space such that  $X=\{a, b, c, d\}$  and  $\tau=\{\varphi, X, \{a, b\}, \{b\}\}$ . We have the set of all α-open sets is  $\alpha(X, \tau)=\{\varphi, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}\}$  and the set of all α-closed sets is  $\alpha C(X, \tau)=\{\varphi, X, \{c, d, \{a, c, d\}, \{a, d\}, \{\}a, c\}, \{d\}, \{c\}\}$ . Then define the map  $f: X \rightarrow X$  as follows f(a)=a, f(b)=b, f(c)=d, f(d)=c, we have f is α-irresolute because  $\{b\}$  is α-open and  $f^1(\{b\})=\{b\}$  is α-open;  $\{a, b\}$  is α-open and  $f^1(\{a, b\})=\{a, b\}$  is α-open;  $\{a, b, c\}$  is α-open and  $f^1(\{a, b, c\})=\{a, b, d\}$  is α-open;  $\{a, b, d\}$  is α-open and  $f^1(\{a, b, c\})=\{a, b, c\}$  is α-open so f is α-open and  $f^1(\{a, b, d\})=\{a, b, c\}$  is α-open so f is α-irresolute.

Definition 3.1.5A subset A of a topological space  $(X,\tau)$  is said to be nowhere α-dense, if its α-closure has an empty α-interior, that is,  $\operatorname{int}_{\alpha}(Cl_{\alpha}(A)) = \phi$ .

Definition 3.1.6 [11] Let  $(X, \tau)$  be a topological space,  $f: X \to X$  be α-irresolute map—then f is said to be topological α-transitive—if every pair of non-empty α-open sets U and V in X there is a positive integer n such that  $f^n(U) \cap V \neq \phi$ . In the forgoing example 3.1.4: we have f is α-transitive—because b belongs to any non-empty α-open set V and also belongs to f(U) for any α-open set it means that  $f(U) \cap V \neq \phi$  so f is . α-transitive.

Example 3.1.7[11] Let  $(X, \tau)$  be a topological space such that  $X = \{a, b, c\}$  and  $\tau = \{\varphi, \{a\}, X\}$ . Then the set of all  $\alpha$ -open sets is  $\tau^{\alpha} = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$ . Define f:  $X \rightarrow X$  as follows f(a) = b, f(b) = b, f(c) = c. Clearly f is continuous because  $\{a\}$  is open and  $f(\{a\}) = \varphi$  is open. Note that f is transitive because  $f(\{a\}) = \{b\}$  implies that  $f(\{a\}) \cap \{b\} \neq \varphi$ . But f is not  $\alpha$ -transitive because for each n in N,  $f^{n}(\{a\}) \cap \{a, c\} = \varphi$ ; since  $f^{n}(\{a\}) = \{b\}$  for every  $n \in N$ , and  $\{b\} \cap \{a, c\} = \varphi$ . So we have f is not  $\alpha$ -transitive, so we show

that transitivity not implies  $\alpha$ -transitivity.

Definition 3.1.8 Let  $(X, \tau)$  be a topological space. A subset A of X is called  $\theta$ -dense in X if  $Cl_a(A) = X$ .

Remark 3.1.9Any  $\theta$ -dense subset in X intersects any  $\theta$ -open set in X.

*Proof:* Let A be a θ-dense subset in X, then by definition,  $Cl_{\theta}(A) = X$ , and let U be a non-empty θ-open set in X. Suppose that A∩U=φ. Therefore  $B = U^c$  is θ-closed because B is the complement of θ-open and  $A \subset U^c = B$ . So  $Cl_{\theta}(A) \subset Cl_{\theta}(B)$ , i.e.  $Cl_{\theta}(A) \subset B$ , but  $Cl_{\theta}(A) = X$ , so X  $\subset$  B, this contradicts that U ≠  $\varphi$ 

Definition 3.1.10.[14] A function  $f: X \to X$  is called  $\theta$  – irresolute if the inverse image of each  $\theta$  – open set is a  $\theta$  – open set in X.

Definition 3.1.11 A subset A of a topological space  $(X, \tau)$  is said to be nowhere θ-dense, if its θ-closure has an empty θ-interior, that is,  $\inf_{\theta}(Cl_{\theta}(A)) = \phi$ .

Definition 3.1.12 [15] Let  $(X, \tau)$  be a topological space, and  $f: X \to X$   $\theta$ -irresolute) map, then f is said to be topologically  $\theta$ -type transitive map if for every pair of  $\theta$ -open sets U and V in X there is a positive integer n such that  $f^n(U) \cap V \neq \emptyset$ 

Associated with this new definition we can prove the following new theorem.

Theorem 3.1.13 [11]: Let  $(X, \tau)$  be a topological space and  $f: X \to X$  be  $\alpha$  -irresolute map. Then the following statements are equivalent:

- (1) f is topological  $\alpha$ -transitive map
- (2) For every nonempty  $\alpha$ -open set U in X,  $\bigcup_{n=0}^{\infty} f^{n}(U)$  is  $\alpha$ -dense in X
- (3) For every nonempty  $\alpha$ -open set U in X,  $\bigcup_{n=0}^{\infty} f^{-n}(U)$  is  $\alpha$ -dense in X
- (4) If  $B \subset X$  is  $\alpha$ -closed and B is f- invariant i.e.  $f(B) \subset B$ , then B=X or B is nowhere  $\alpha$ -dense.
- (5) If U is  $\alpha$ -open and  $f^{-1}(U) \subset U$  then U is either empty set or  $\alpha$ -dense in X.

Theorem 3.1.14:[4] Let  $(X, \tau)$  be a topological space and  $f: X \to X$  be  $\theta$  -irresolute map. Then the following statements are equivalent:

- (1) f is  $\theta$ -type transitive map
- (2)  $\bigcup_{n=0}^{\infty} f^n(D)$  is  $\theta$ -dense in X, with D is  $\theta$ -open set in X.
- (3)  $\bigcup_{n=0}^{\infty} f^{-n}(D)$  is  $\theta$ -dense in X with D is  $\theta$ -open set in X
- (4) If  $B \subset X$  is  $\theta$ -closed and  $f(B) \subset B$ , then B=X or B is nowhere  $\theta$ -dense
- (5) If  $f^{-1}(D) \subset D$  and D is  $\theta$ -open in X then D= $\varphi$  or D is  $\theta$ -dense in X.

## 4. Minimal Functions

Weintroduced a new definition on  $\alpha$ -minimal[11] (resp.  $\delta$ -minimal[4]) maps and studied some new theorems associated with these definitions.

Given a topological space X, we ask whether there exists  $\alpha$ -irresolute (resp.  $\theta$ -irresolute) map on X such that the set  $\{f^n(x): n \geq 0\}$ , called the orbit of x and denoted by  $O_f(x)$ , is  $\alpha$ -dense(resp.  $\delta$ -dense) in X for each  $x \in X$ . A partial answer will be given in this section. Let us begin with a new definition.

Definition 4.1 ( $\alpha$ -minimal) Let X be a topological space and f be  $\alpha$ -irresolute map on X with  $\alpha$ -regular operator associated with the topology on X. Then the dynamical system (X, f) is called  $\alpha$ -minimal system (or f is called  $\alpha$ -minimal map on X) if one of the three equivalent conditions hold[11]:

- 1) The orbit of each point of X is  $\alpha$ -dense in X.
- 2)  $Cl_{\alpha}(O_f(x)) = X$  for each  $x \in X$
- 3) Given  $x \in X$  and a nonempty  $\alpha$ -open U in X, there exists  $n \in N$  such that  $f^n(x) \in U$

A system (X, f) is called  $\delta$ -minimal if X does not containany non-empty, proper,  $\delta$  - closed f -invariant subset. In such a case we also say that the map f itself is  $\delta$ -minimal. Another definition of minimal function is that if the orbit of every point X is dense in X then the map f is said to be minimal.

Theorem 4.2[4] For (X, f) the following statements are equivalent:

- (1) f is an  $\delta$ -minimal map.
- (2) If E is an  $\delta$ -closed subset of X with  $f(E) \subset E$ , we say E is invariant. Then  $E = \phi$  or E = X.
- (3) If U is a nonempty  $\delta$ -open subset of X, then  $\bigcup_{n=0}^{\infty} f^{-n}(U) = X$ .

## 5. Topological Systems and Conjugacy

Definition 5.1[4]Amap  $h:Y\to X$  is said to be  $\delta$ r-homeomorphism if h is bijective and thus invertible and both h and  $h^{-1}$  are  $\delta$ r-irresolute

Definition 5.2 Let (X, f) and (Y, g) be topological systems, then  $f: X \to X$  and  $g: Y \to Y$  are said to be topologically  $\delta r$ -conjugate if there is  $\delta r$ -homeomorphism  $h: X \to Y$  such that  $h \circ f = g \circ h$ . We will call h a topological  $\delta r$ -conjugacy. Thus, the two topological systems with their respective function acting on them share the same dynamics

Associated with these definitions we have the following theorem:

Theorem 5.3 [4] Let (X, f) and (Y, g) be two systems, if  $f: X \to X$  and  $g: Y \to Y$  are topologically  $\delta r$ -conjugate. Then

- (1) f is topologically  $\delta$ -transitive if and only if g is topologically  $\delta$ -transitive;
  - (2) f is  $\delta$ -minimal if and only if g is  $\delta$ -minimal;
- (3) f is topologically  $\delta$ -mixing if and only if g is topologically  $\delta$ -mixing.

## 6. Conclusion

The main results are the following:

Proposition 6.1 Every topologically  $\alpha$ -type transitive map is a topologically transitive map which implies topologically  $\delta$ - transitive map, but the converse not necessarily true.

Proposition 6.2Every  $\alpha$ -minimal map is a minimal map which implies  $\delta$ - minimal map in topological spaces, but the converse not necessarily true.

Theorem 6.3Let (X, f) be a topological system where X is a non-empty locally compact Hausdorff topological spaceand X is separable. Suppose that f is topologically transitive. Then there is  $x \in X$  such that the orbit  $O_f(x) = \{x, f(x), f^2(x), ..., f^n(x), ....\}$  is dense in X.

## References

- M. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 1934, Vol. 41, p374-381
- [2] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuousand weak precontinuous mappings, Proc.Math. Phys. Soc. Egypt, 1982, Vol. 51, p 47-53.
- [3] N. V. Velicko, H-closed topological spaces. Amer. Math. Soc. Transl. 1968, Vol. 78, p102-118.
- [4] Mohammed Nokhas Murad, New Types of δ-Transitive Maps, International Journal of Engineering & Technology IJET-IJENS Vol:12 No:06, pp.134-136.
- [5] Levine N., Semi open sets and semi continuity in topological spaces. Amer. Math. Monthly.1963, Vol.70, p 36-41.
- [6] Bhattacharya P., and Lahiri K.B., Semi-generalized closed sets in topology. Indian J. Math., 1987, Vol. 29, p376-382.
- [7] Rosas E., Vielina J., Operator-compact and Operator-connected spaces. Scientific Math. 1998, Vol. 2, No. 1, p203-208.
- [8] Kasahara S., Operation-compact spaces. MathematicaJaponica, 1979, Vol. 24, p97-105.
- [9] M. Caldas, S. Jafari and M. M. Kovar, Some properties ofθopen sets, Divulge. Mat, 12(2)(2004), p 161-169.
- [10] Caldas M., A note on some applications of  $\alpha$ -open sets, UMMS, 2003, Vol. 2, p125-130.
- [11] Mohammed Nokhas Murad, Topologically α Transitive Maps and Minimal Systems Gen. Math. Notes, 2012, Vol. 10, No. 2, pp. 43-53 ISSN 2219-7184; Copyright © ICSRS

- [12] Maheshwari N. S., and Thakur S. S., On α-irresolute mappings, Tamkang J. Math, 1980, Vol. 11, p209-214.
- [13] Ogata N., On some classes of nearly open sets, Pacific J. Math, 1965, Vol. 15, p 961-970..
- [14] F.H. Khedr and T. Noiri.On θ-irresolute functions. Indian J. Math., 1986, Vol. 3, No:28, p 211-217.
- [15] M. Nokhas Murad Kaki, Introduction to θ-Type Transitive Maps on Topological spaces. International Journal of Basic & Applied Sciences IJBAS-IJENS 2012, Vol:12, No:06 p 104-108
- [16] Andrijevie D., Some properties of the topology of α-sets, Math. Vesnik, 1994, p 1-10

- [17] Arenas G. F., Dontchev J. and Puertas L.M. Some covering properties of the α-topology, 1998.
- [18] Caldas M. and Dontchev J., On space with hereditarily compact α-topologies, Acta. Math. Hung, 1999. Vol. 82, p121-129.
- [19] M. Nokhas Murad Kaki, ON SOME NEW γ -TYPE MAPS ON TOPOLOGICAL SPACES, Journal of Mathematical Sciences: Advances and Applications), 2013, Vol. 20 p. 45-60
- [20] M. Nokhas Murad Kaki, Relationship between New Types of Transitive Maps and Minimal Systems International Journal of Electronics Communication and Computer Engineering, 2013, Volume 4, Issue 6, p. 2278–4209