Science Research 2014; 2(1): 1-6 Published online January 30, 2014 (http://www.sciencepublishinggroup.com/j/sr) doi: 10.11648/j.sr.20140201.11 # New conceptions of transitivity and minimal mappings #### Mohammed Nokhas Murad Kaki Mathematics Department, School of Science, Faculty of Science & Science Education, University of Sulaimani, Kurdistan Region-Iraq #### **Email address:** muradkakaee@yahoo.com #### To cite this article: Mohammed Nokhas Murad Kaki, New Conceptions of Transitivity and Minimal Mappings. *Science Research*. Vol. 2, No.1, 2014, pp.1-6. doi: 10.11648/j.sr.20140201.11 **Abstract:** The concepts of topological δ- transitive maps, α-type transitive maps, δ-minimal and α-minimal mappings were introduced by M. Nokhas Murad Kaki. In this paper, the relationship between two different notions of transitive maps, namely topological δ-type transitive mapsandtopological α-type transitive maps has been studied and some of their properties in two topological spaces (X, τ^{δ}) and (X, τ^{α}) , τ^{δ} denotes the δ-topology (resp. τ^{α} denotes the α-topology) of a given topological space (X, τ) has been investigated. Also, we have proved that there exists a dense orbit in X, where X is locally compact Hausdorff space and τ has a countable basis. The main results are the following propositions: Every topologically α-type transitive map is a topologically transitive map which implies topologically δ- transitive map, but the converse not necessarily true., and every α-minimal map is a minimal map which implies δ- minimal map in topological spaces, but the converse not necessarily true. Finally, we have proved that a map which is γr- conjugated to γ-transitive (resp. γ-minimal, γ-mixing) map is γ-transitive (resp. γ-minimal, γ-mixing). **Keywords:** Topologically δ-Transitive, δ-Irresolute, δ-Type Transitive, δ-Dense, γ-Dense, γ-Transitive ## 1. Introduction Let A be a subset of a topological space (X, τ) . The closure and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be regular open [1] (resp. preopen [2]) if A = Int(Cl(A)) (resp. $A \subset Int(Cl(A))$). A set $A \subset X$ is said to be δ-open [3] if it is the union of regular open sets of a space X. The complement of a regular open (resp. δ -open) set is called regular closed (resp. δ-closed). The intersection of all δ -closed sets of (X, τ) containing A is called the δ -closure [3] of A and is denoted by $Cl_{\delta}(A)$.. Recall that a set S is called regular closed if S = Cl(Int(S)). A point x ε X is called a δ -cluster point [3] of S if $S \cap U \neq \phi$ for each regular open set U containing x. The set of all δ-cluster points of S is called the δ -closure of S and is denoted by $Cl_{\delta}(S)$. A subset S is called δ -closed if $\delta Cl(S) = S$. The complement of a δ -closed set is called δ -open. The family of all δ-open sets of a space X is denoted by $\delta O(X, \tau)$. The δ -interior of S is denoted by $Int_{\delta}(S)$ and it is defined as follows $\operatorname{Int}_{\delta}(S) = \{x \in X : x \in U \subseteq \operatorname{Int}(\operatorname{Cl}(U)) \subseteq S\}$ some open set U of X. The area of Dynamical Systems where one investigates dynamical properties that can be described in topological terms is called Topological Dynamics Let X be a compact topological space and let $f: X \to X$ be continuous. The pair (X, f) is so called topological system. The topological system (X, f) is called topologically δ -type transitive (or just δ -type transitive[4]) if for every pair of nonempty δ -open sets U and V in X there is a nonnegative integer n such that $f^n(U) \cap V \neq \emptyset$. If the space X has no isolated points, this is equivalent to the existence of a point $x \in X$ whose orbit $O_f(x) = \{x, f(x), f^2(x), ...f^n(x),\}$ is δ -dense in X. Consequently, a topologically δ -type transitive topological system cannot be decomposed into two disjoint sets with nonempty δ -interiors. For more information on topological δ -type transitivity see, e.g. [4] and references there In this paper, we will study some new class of topological transitive maps called topological δ -type transitive[4], also, we will study the relationship between two types of minimal mappings, namely, δ -minimal mapping and α -minimal mapping, and we will prove that the properties of δ -type transitive, δ -mixing and δ -minimal maps are preserved under δ r-conjugacy and study some of its properties. ## 2. Preliminaries and Definitions In this section, we recall some of the basic definitions. Let X be a space and $A \subset X$. The intersection (resp. closure) of A is denoted by Int(A) (resp. Cl(A). Definition 2.1.Let (X, τ) be a space. A subset A of X is called dense in X if Cl(A)=X Definition 2.2(i) A space X is said to be 2nd countable if it has a countable basis. (ii) X is said to be of First Category if it is a countable union of nowhere dense subsets of X. It is of second Category if it is not of First Category. Theorem 2.3Let X be a non-empty locally compact Hausdorff space. Then the intersection of a countable collection of open dense subsets of X is dense in X. Moreover, X is of second Category. Definition 2.4Let (X,τ) be a topological space. X is second countable if and only if the topology of X has a countable basis. Definition 2.5 Recall that a space X is said to be separable if X contains a countable dense subset. Corollary 2.6 A subset A of a space (X, τ) is dense if and only if $A \cap U \neq \emptyset$ for all $U \in \tau$ other than $U = \emptyset$ Definition 2.7Let (X, τ) be a topological space, $f: X \to X$ be a continuous map then f is said to be topologically transitive if every pair of non-empty open sets U and V in X there is a positive integer n such that $f^n(U) \cap V \neq \emptyset$. The purpose of the following theorem is to prove that topological transitivity implies dense orbits in a space X where X is a non-empty locally compact Hausdorff topological space. Theorem 2.8Let (X, f) be a topological system where X is a non-empty locally compact Hausdorff topological space and $f: X \to X$ is a continuous map and that X is separable. Suppose that f is topologically transitive. Then there is $x \in X$ such that the orbit $O_f(x) = \{x, f(x), f^2(x), ..., f^n(x),\}$ is dense in X. Proof: Let B = $\{U_i\}$ i = 1, 2, 3, ... be a countable basis for the topology of X. For each i, let $O_i = \{x \in X : f^n(x) \in U_i \text{ for some } n \ge 0\}$ Then, clearly O_i is open and dense. It is open since f is continuous, so, $O_i = \bigcup_{i=1}^{\infty} f^{-1}(U_i)$ is open and dense since f is topological transitive map. Further, for every open set V, there is a positive integer n such that $f^n(V) \cap U_i \neq \phi$. Now, apply theorem 2.3 to the countable dense sets $\{O_i\}$ to say that $\bigcap_{i=0}^{\infty} O_i$ is dense and so non-empty. Let $y \in \bigcap_{i=0}^{\infty} O_i$. This means that, for each i, there is a positive integer n such that $f^n(y) \in U_i$ for every i. Bycorollary 2.6 this implies that $O_{\epsilon}(x)$ is dense in X Definition 2.9.If for $x \in X$ the set $\{f^n(x): n \in \mathbb{N}\}$ is dense in Xthenx is said to have a dense orbit. If there exists such an $x \in X$, then f is said to have a dense orbit. Definition 2.10. A function $f: X \to X$ is called γ r-homeomorphism if f is γ -irresolute bijective and $f^{-1}: X \to X$ is γ -irresolute. Definition 2.11 [19] Two topological systems $f: X \to X$, $x_{n+1} = f(x_n)$ and $g: Y \to Y$, $y_{n+1} = g(y_n)$ are said to be topologically γ -conjugate if there is γ -homeomorphism $h: X \to Y$ such that $h \circ f = g \circ h$ (i.e. h(f(x)) = g(h(x))). We will call h a topological γ -conjugacy. Remark 2.12[19] If $\{x_{0_1}, x_1, x_2, ...\}$ denotes an orbit of $x_{n+1} = f(x_n)$ then $\{y_0 = h(x_0), y_1 = h(x_1), y_2 = h(x_2), ...\}$ yields an orbit of g since $y_{n+1} = h(x_{n+1}) = h(f(x_n)) = g(h(x_n)) = g(y_n)$. In particular, h maps periodic orbits of f onto periodic orbits of g. In [19], we introduced and defined the new type of transitive called γ -type transitive in such a way that it is preserved under topologically γ r- conjugation. It means; we have proved that a map which is γ r- conjugated to γ -transitive (resp. γ -minimal, γ -mixing) map is γ -transitive (resp. γ -minimal, γ -mixing). We proceed to prove the following important proposition: Proposition 2.13 [19] Let (X, f) and (Y, g) be two topological systems, if $f: X \to X$ and $g: Y \to Y$ are topologically \mathcal{Y} -conjugate. Then - (1) f is topologically γ transitive if and only if g is topologically γ -transitive; - (2) f is γ -minimal if and only if g is γ -minimal; - (3) f is topologically γ -mixing if and only if g is topologically γ -mixing. #### Proof (1) Assume that $f: X \to X$ and $g: Y \to Y$ are topologically γ r-conjugated by $h: X \to Y$. Suppose f is γ -type transitive. Let A, B be γ -open subsets of Y (to show $g^n(A) \cap B \neq \varphi$ for some n > 0). $U = h^{-1}(A)$ and $V = h^{-1}(B)$ are γ -open subsets of X since h is an γ -irresolute Then there exists some n>0 such that $f^n(U) \cap V \neq \varphi$ since f is γ -type transitive. Thus (as $f \circ h^{-1} = h^{-1} \circ g$ implies $f^n \circ h^{-1} = h^{-1} \circ g^n$), $$\phi \neq f^{n}(h^{-1}(A)) \cap h^{-1}(B) = h^{-1}(g^{n}(A)) \cap h^{-1}(B)$$ Therefore, $h^{-1}(g^n(A) \cap B) \neq \phi$ implies $g^n(A) \cap B \neq \phi$ since h^{-1} is invertible. #### Proof (2) Assume that $f: X \to X$ and $g: Y \to Y$ are topological systems, which are topologically γ r-conjugated by $h: Y \to X$ Thus, h is γ r-homeomorphism (that is, h is bijective and thus invertible and both h and h^{-1} are γ -irresolute) and $h \circ g = f \circ h$, that is, the following diagram commutes: $$Y \xrightarrow{g} Y$$ $$\downarrow^{h} \downarrow \qquad \downarrow^{h}$$ $$X \xrightarrow{f} X$$ We show that ifgis γ -minimal, then f is γ -minimal. We want to show that for any $x \in X$, $O_f(x)$ is γ -dense. Since h is surjective, there exists $x \in X$ such that $y = h^{-1}(x)$. Since g is γ -minimal, $O_g(y)$ is γ -dense. For any non-empty γ - open subset U of X, $h^{-1}(U)$ is an γ -open subset of X since h^{-1} is γ -irresolute because the map h is γ homeomorphism and it is non-empty since h is invertible map. By γ -density of $O_g(y)$ there exist k in N such that $g^{k}(y) \in h^{-1}(U) \Leftrightarrow h(g^{k}(y)) \in U$ Since h is γ r-conjugacy; as $f \circ h = h \circ g$ implies $f^k \circ h = h \circ g^k$ so $f^k(h(y)) = h(g^k(y)) \in U$ thus $O_f(h(y))$ intersects U. This holds for any non-empty γ open set U and thus shows that $O_f(x) = O_f(h(y))$ is γ dense #### Proof (3) We only prove that if g is topologically γ -mixing then f is also topologically γ -mixing. Let U, V be two γ -open subsets of X. We have to show that there is N>0 such that for any n>N, $f^n(U) \cap V \neq \phi$. $h^{-1}(U)$ and $h^{-1}(V)$ are two γ -open sets since the map h is γ -irresolute. If gis topologically γ -mixing then there is N >0 such that for any n>M, $g^n(h^{-1}(U)) \cap h^{-1}(V) \neq \phi$. Therefore thereexits $x \in g^n(h^{-1}(U)) \cap h^{-1}(V)$. That is, $x \in g^n(h^{-1}(U))$ and $x \in h^{-1}(V)$ if and only if $x = g^n(V)$ for $v \in h^{-1}(U)$ and $h(x) \in V$. Thus, since $h \circ g^n = f^n \circ h$, so that, $h(x) = h(g^n(y)) = f^n(h(y)) \in f^n(U)$ and we have $h(x) \in V$ that is $f^n(U) \cap V \neq \emptyset$. So, f is γ -mixing ## 3. Transitive and Minimal Systems Topological transitivity is a global characteristic of dynamical systems. By a dynamical system (X, f) [15] we mean a topological space X together with a continuous map $f:X\to X$. The space X is sometimes called the phase spaceof the system. A set $A\subseteq X$ is called f – inveriant if $f(A)\subseteq A$. - (X, f) is α -minimal (resp. θ -minimal), - every orbit is α -dense (resp. θ -dense) in X, - $\omega_f(x) = X$ for every $x \in X$. A minimal map f is necessarily surjective if X is assumed to be Hausdorff and compact. Now, we will study the Existence of minimal sets. Given a dynamical system (X, f), a set $A \subseteq X$ is called a *minimal set* if it is non-empty, closed and invariant and if no proper subset of A has these three properties. So, $A \subseteq X$ is a minimal set if and only if (A, f|A) is a minimal system. A system (X, f) is minimal if and only if X is a minimal set in (X, f). Let (X, f) be a topological system, and $f: X \to X$ α r-homeomorphism of X onto itself. For A and B subsets of X, we let $N(A, B) = \{n \in \mathbb{Z} : f^n(A) \cap B \neq \emptyset\}$ We write N(A, B) = N(x, B) for a singleton $A = \{x\}$ thus $N(x, B) = \{n \in \mathbb{Z} : f^n(x) \in B\}$ For a point $x \in X$ we write $O_f(x) = \{f^n(x) : n \in \mathbb{Z}\}$ for the orbit of x and $Cl_\alpha(O_f(x))$ for the α -closure of $O_f(x)$. We say that the topological system (X, f) is α -type point transitive if there is a point $x \in X$ with $O_f(x)$ α -dense. Such a point is called α -type transitive. We say that the topological systems (X, f) is topologically α -type transitive (or just α -type transitive) if the set N(U, V) is nonempty for every pair U and V of nonempty α -open subsets of X. ## 3.1. Topologically a-Transitive Maps In [11], we introduced and defined a new class of transitive maps that are called topologically α -transitive maps on a topological space (X, τ) , and we studied some of their properties and proved some results associated with these new definitions. We also defined and introduced a new class of α -minimal maps. In this paper we discuss the relationship between topologically α -transitive maps and θ -transitive maps. On the other hand, we discuss the relationship between α -minimal and θ -minimal in topological systems. Definition 3.1.1 Let (X, τ) be a topological space. A subset A of X is called α-dense in X if $Cl_{\alpha}(A) = X$. *Note that,* in general topology, for any subset A of the space $X, A \subset Cl_{\alpha}(A) \subset Cl(A)$, therefore if A is α -dense, in X, then A is dense in X. Remark 3.1.2Any α -dense subset in X intersects any α -open set in X. *Proof:* Let A be an α -dense subset in X, then by definition, $Cl_{\alpha}(A) = X$, and let U be a non-empty α -open set in X. Suppose that $A \cap U = \varphi$. Therefore $B = U^c$ is α -closed and $A \subset U^c = B$. So $Cl_{\alpha}(A) \subset Cl_{\alpha}(B)$, i.e. $Cl_{\alpha}(A) \subset B$, but $Cl_{\alpha}(A) = X$, so $X \subset B$, this contradicts that $U \neq \varphi$ *Definition 3.1.3* [12] A map $f: X \to Y$ is called α-irresolute if for every α-open set H of Y, $f^{-1}(H)$ is α-open in X Example 3.1.4 [11] Let (X, τ) be a topological space such that $X=\{a, b, c, d\}$ and $\tau=\{\varphi, X, \{a, b\}, \{b\}\}$. We have the set of all α-open sets is $\alpha(X, \tau)=\{\varphi, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}\}$ and the set of all α-closed sets is $\alpha C(X, \tau)=\{\varphi, X, \{c, d, \{a, c, d\}, \{a, d\}, \{\}a, c\}, \{d\}, \{c\}\}$. Then define the map $f: X \rightarrow X$ as follows f(a)=a, f(b)=b, f(c)=d, f(d)=c, we have f is α-irresolute because $\{b\}$ is α-open and $f^1(\{b\})=\{b\}$ is α-open; $\{a, b\}$ is α-open and $f^1(\{a, b\})=\{a, b\}$ is α-open; $\{a, b, c\}$ is α-open and $f^1(\{a, b, c\})=\{a, b, d\}$ is α-open; $\{a, b, d\}$ is α-open and $f^1(\{a, b, c\})=\{a, b, c\}$ is α-open so f is α-open and $f^1(\{a, b, d\})=\{a, b, c\}$ is α-open so f is α-irresolute. Definition 3.1.5A subset A of a topological space (X,τ) is said to be nowhere α-dense, if its α-closure has an empty α-interior, that is, $\operatorname{int}_{\alpha}(Cl_{\alpha}(A)) = \phi$. Definition 3.1.6 [11] Let (X, τ) be a topological space, $f: X \to X$ be α-irresolute map—then f is said to be topological α-transitive—if every pair of non-empty α-open sets U and V in X there is a positive integer n such that $f^n(U) \cap V \neq \phi$. In the forgoing example 3.1.4: we have f is α-transitive—because b belongs to any non-empty α-open set V and also belongs to f(U) for any α-open set it means that $f(U) \cap V \neq \phi$ so f is . α-transitive. Example 3.1.7[11] Let (X, τ) be a topological space such that $X = \{a, b, c\}$ and $\tau = \{\varphi, \{a\}, X\}$. Then the set of all α -open sets is $\tau^{\alpha} = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Define f: $X \rightarrow X$ as follows f(a) = b, f(b) = b, f(c) = c. Clearly f is continuous because $\{a\}$ is open and $f(\{a\}) = \varphi$ is open. Note that f is transitive because $f(\{a\}) = \{b\}$ implies that $f(\{a\}) \cap \{b\} \neq \varphi$. But f is not α -transitive because for each n in N, $f^{n}(\{a\}) \cap \{a, c\} = \varphi$; since $f^{n}(\{a\}) = \{b\}$ for every $n \in N$, and $\{b\} \cap \{a, c\} = \varphi$. So we have f is not α -transitive, so we show that transitivity not implies α -transitivity. Definition 3.1.8 Let (X, τ) be a topological space. A subset A of X is called θ -dense in X if $Cl_a(A) = X$. Remark 3.1.9Any θ -dense subset in X intersects any θ -open set in X. *Proof:* Let A be a θ-dense subset in X, then by definition, $Cl_{\theta}(A) = X$, and let U be a non-empty θ-open set in X. Suppose that A∩U=φ. Therefore $B = U^c$ is θ-closed because B is the complement of θ-open and $A \subset U^c = B$. So $Cl_{\theta}(A) \subset Cl_{\theta}(B)$, i.e. $Cl_{\theta}(A) \subset B$, but $Cl_{\theta}(A) = X$, so X \subset B, this contradicts that U ≠ φ Definition 3.1.10.[14] A function $f: X \to X$ is called θ – irresolute if the inverse image of each θ – open set is a θ – open set in X. Definition 3.1.11 A subset A of a topological space (X, τ) is said to be nowhere θ-dense, if its θ-closure has an empty θ-interior, that is, $\inf_{\theta}(Cl_{\theta}(A)) = \phi$. Definition 3.1.12 [15] Let (X, τ) be a topological space, and $f: X \to X$ θ -irresolute) map, then f is said to be topologically θ -type transitive map if for every pair of θ -open sets U and V in X there is a positive integer n such that $f^n(U) \cap V \neq \emptyset$ Associated with this new definition we can prove the following new theorem. Theorem 3.1.13 [11]: Let (X, τ) be a topological space and $f: X \to X$ be α -irresolute map. Then the following statements are equivalent: - (1) f is topological α -transitive map - (2) For every nonempty α -open set U in X, $\bigcup_{n=0}^{\infty} f^{n}(U)$ is α -dense in X - (3) For every nonempty α -open set U in X, $\bigcup_{n=0}^{\infty} f^{-n}(U)$ is α -dense in X - (4) If $B \subset X$ is α -closed and B is f- invariant i.e. $f(B) \subset B$, then B=X or B is nowhere α -dense. - (5) If U is α -open and $f^{-1}(U) \subset U$ then U is either empty set or α -dense in X. Theorem 3.1.14:[4] Let (X, τ) be a topological space and $f: X \to X$ be θ -irresolute map. Then the following statements are equivalent: - (1) f is θ -type transitive map - (2) $\bigcup_{n=0}^{\infty} f^n(D)$ is θ -dense in X, with D is θ -open set in X. - (3) $\bigcup_{n=0}^{\infty} f^{-n}(D)$ is θ -dense in X with D is θ -open set in X - (4) If $B \subset X$ is θ -closed and $f(B) \subset B$, then B=X or B is nowhere θ -dense - (5) If $f^{-1}(D) \subset D$ and D is θ -open in X then D= φ or D is θ -dense in X. ## 4. Minimal Functions Weintroduced a new definition on α -minimal[11] (resp. δ -minimal[4]) maps and studied some new theorems associated with these definitions. Given a topological space X, we ask whether there exists α -irresolute (resp. θ -irresolute) map on X such that the set $\{f^n(x): n \geq 0\}$, called the orbit of x and denoted by $O_f(x)$, is α -dense(resp. δ -dense) in X for each $x \in X$. A partial answer will be given in this section. Let us begin with a new definition. Definition 4.1 (α -minimal) Let X be a topological space and f be α -irresolute map on X with α -regular operator associated with the topology on X. Then the dynamical system (X, f) is called α -minimal system (or f is called α -minimal map on X) if one of the three equivalent conditions hold[11]: - 1) The orbit of each point of X is α -dense in X. - 2) $Cl_{\alpha}(O_f(x)) = X$ for each $x \in X$ - 3) Given $x \in X$ and a nonempty α -open U in X, there exists $n \in N$ such that $f^n(x) \in U$ A system (X, f) is called δ -minimal if X does not containany non-empty, proper, δ - closed f -invariant subset. In such a case we also say that the map f itself is δ -minimal. Another definition of minimal function is that if the orbit of every point X is dense in X then the map f is said to be minimal. Theorem 4.2[4] For (X, f) the following statements are equivalent: - (1) f is an δ -minimal map. - (2) If E is an δ -closed subset of X with $f(E) \subset E$, we say E is invariant. Then $E = \phi$ or E = X. - (3) If U is a nonempty δ -open subset of X, then $\bigcup_{n=0}^{\infty} f^{-n}(U) = X$. ## 5. Topological Systems and Conjugacy Definition 5.1[4]Amap $h:Y\to X$ is said to be δ r-homeomorphism if h is bijective and thus invertible and both h and h^{-1} are δ r-irresolute Definition 5.2 Let (X, f) and (Y, g) be topological systems, then $f: X \to X$ and $g: Y \to Y$ are said to be topologically δr -conjugate if there is δr -homeomorphism $h: X \to Y$ such that $h \circ f = g \circ h$. We will call h a topological δr -conjugacy. Thus, the two topological systems with their respective function acting on them share the same dynamics Associated with these definitions we have the following theorem: Theorem 5.3 [4] Let (X, f) and (Y, g) be two systems, if $f: X \to X$ and $g: Y \to Y$ are topologically δr -conjugate. Then - (1) f is topologically δ -transitive if and only if g is topologically δ -transitive; - (2) f is δ -minimal if and only if g is δ -minimal; - (3) f is topologically δ -mixing if and only if g is topologically δ -mixing. ## 6. Conclusion The main results are the following: Proposition 6.1 Every topologically α -type transitive map is a topologically transitive map which implies topologically δ - transitive map, but the converse not necessarily true. Proposition 6.2Every α -minimal map is a minimal map which implies δ - minimal map in topological spaces, but the converse not necessarily true. Theorem 6.3Let (X, f) be a topological system where X is a non-empty locally compact Hausdorff topological spaceand X is separable. Suppose that f is topologically transitive. Then there is $x \in X$ such that the orbit $O_f(x) = \{x, f(x), f^2(x), ..., f^n(x),\}$ is dense in X. ## References - M. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 1934, Vol. 41, p374-381 - [2] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuousand weak precontinuous mappings, Proc.Math. Phys. Soc. Egypt, 1982, Vol. 51, p 47-53. - [3] N. V. Velicko, H-closed topological spaces. Amer. Math. Soc. Transl. 1968, Vol. 78, p102-118. - [4] Mohammed Nokhas Murad, New Types of δ-Transitive Maps, International Journal of Engineering & Technology IJET-IJENS Vol:12 No:06, pp.134-136. - [5] Levine N., Semi open sets and semi continuity in topological spaces. Amer. Math. Monthly.1963, Vol.70, p 36-41. - [6] Bhattacharya P., and Lahiri K.B., Semi-generalized closed sets in topology. Indian J. Math., 1987, Vol. 29, p376-382. - [7] Rosas E., Vielina J., Operator-compact and Operator-connected spaces. Scientific Math. 1998, Vol. 2, No. 1, p203-208. - [8] Kasahara S., Operation-compact spaces. MathematicaJaponica, 1979, Vol. 24, p97-105. - [9] M. Caldas, S. Jafari and M. M. Kovar, Some properties ofθopen sets, Divulge. Mat, 12(2)(2004), p 161-169. - [10] Caldas M., A note on some applications of α -open sets, UMMS, 2003, Vol. 2, p125-130. - [11] Mohammed Nokhas Murad, Topologically α Transitive Maps and Minimal Systems Gen. Math. Notes, 2012, Vol. 10, No. 2, pp. 43-53 ISSN 2219-7184; Copyright © ICSRS - [12] Maheshwari N. S., and Thakur S. S., On α-irresolute mappings, Tamkang J. Math, 1980, Vol. 11, p209-214. - [13] Ogata N., On some classes of nearly open sets, Pacific J. Math, 1965, Vol. 15, p 961-970.. - [14] F.H. Khedr and T. Noiri.On θ-irresolute functions. Indian J. Math., 1986, Vol. 3, No:28, p 211-217. - [15] M. Nokhas Murad Kaki, Introduction to θ-Type Transitive Maps on Topological spaces. International Journal of Basic & Applied Sciences IJBAS-IJENS 2012, Vol:12, No:06 p 104-108 - [16] Andrijevie D., Some properties of the topology of α-sets, Math. Vesnik, 1994, p 1-10 - [17] Arenas G. F., Dontchev J. and Puertas L.M. Some covering properties of the α-topology, 1998. - [18] Caldas M. and Dontchev J., On space with hereditarily compact α-topologies, Acta. Math. Hung, 1999. Vol. 82, p121-129. - [19] M. Nokhas Murad Kaki, ON SOME NEW γ -TYPE MAPS ON TOPOLOGICAL SPACES, Journal of Mathematical Sciences: Advances and Applications), 2013, Vol. 20 p. 45-60 - [20] M. Nokhas Murad Kaki, Relationship between New Types of Transitive Maps and Minimal Systems International Journal of Electronics Communication and Computer Engineering, 2013, Volume 4, Issue 6, p. 2278–4209