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Abstract: This paper presents numerical simulations of a circular cylinder under the action of current or wave only. The model 

solves the three-dimensional (3D) Reynolds-averaged Navier-Stokes equations using an explicit projection method. The 3D grid 

system is made of lots of prisms, which are built from a two-dimensional horizontal triangular grid by adding a number of 

horizontal layers. A non-linear k-ε model, which can take into account the anisotropy of turbulence is incorporated as a 

turbulence model. Two test cases including the current flows around and regular waves interact with a circular cylinder are used 

to demonstrate the capability of the model. The model gives reasonable results in comparison with available experimental data. 
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1. Introduction 

The study of current or wave interacting with a circular 

cylinder has been of interest for many decades. It is 

well-known that flows around the cylinder induced by the 

current or wave are very complicated. For example, horseshoe 

vortex in front of the cylinder and vortex shedding in the back 

region of the cylinder may be generated. The presence of the 

cylinder also can induce the contraction of streamlines, and as 

a result the amplification of the bed shear stress is produced, 

which has very important effect on the scour around the 

cylinder. In a word, the knowledge of the flow generated 

around cylinders is very essential in the design of coastal and 

oceanic vertical structures.  

To date, many numerical predictions have been performed 

to study the interaction between a current and a cylinder. For 

example, Ong et al. (2009) investigated high Reynolds 

number flows around a smooth circular cylinder [10] using 2D 

unsteady Reynolds-averaged Navier-Stokes equations with a 

standard high Reynolds number k-ε turbulence model. Salih 

Kirkgoz et al. (2009) presented numerical simulations of 2D 

turbulent flow around a smooth horizontal circular cylinder 

near a rigid bed with gap ratio G/D=0.3 [12]. The Ansys 

10.0-FLOTRAN program package is used to solve the 

governing equations by FEM, and the performance of 

different turbulence models are examined. For the study of the 

interaction between wave and a cylinder, there are also many 

numerical models. Boussinesq equation models are 

depth-averaged two-dimensional (2D) models and have been 

extensively used for the study of wave-induced run-up and 

forces on cylinders (Li et al., 1999[6]; Li and Zhan, 2001 [4]; 

Zhao et al., 2007 [15]; Zhong and Wang, 2009 [17]). In 

addition, potential flow models are the other class of 

widely-used numerical models. For example, Ma et al. (2001a, 

2001b) developed a fully nonlinear finite element model for 

simulating the interactions between fixed vertical cylinders 

and steep waves [8, 9]. Wang and Wu (2010) studied the 

nonlinear interactions between water waves and vertical 

cylinder arrays in a finite-element based numerical tank [14]. 

However, although considerable numerical models have been 

applied to study current or wave interacting with a cylinder, it 

is very rare that a numerical model has the capability of 

simultaneously predicting a current interacting with a cylinder 

and the interaction between wave and a cylinder. 

In this paper, we proposed a 3D numerical model to predict 

flows around a circular cylinder under the action of current or 

wave only. The model is developed based upon a former model 

(Ai and Jin, 2010 [1]), which has been successfully applied to 

study solitary waves interacting with structures. A non-linear 
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k-ε model is adopted in the model as a turbulence model. 

2. Governing Equations 

The governing equations are the 3D Reynolds-averaged 

Navier-Stokes (RANS) equations, which are based on the 

conservation of mass and momentum and can be expressed as: 
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where t  is the time; iU  are the time-averaged velocity 

components; iu  are the turbulent velocity components; ix  

is the spatial coordinate; p  is the normalized pressure 

divided by a constant reference density; and ig  are the 

gravitational accelerations. 

tm ννν +=                    (3) 

where mν  is the molecular kinematic viscosity; tν  is the 

eddy viscosity and is determined by the following non-linear 

k -ε  turbulence model (Kimura and Hosoda, 2003 [5]) 
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where k  is the averaged turbulent energy and ε  is the 

averaged turbulent energy dissipation rate. The Reynolds 

stress tensors jiuu−  in Eqs. (2), (4) and (5) are evaluated 

by the following non-linear expression instead of the linear 

equation used in the standard k -ε  model.  
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The coefficients in Eqs. (6) and (7) are expressed as 

follows: 
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3. Boundary Conditions 

Boundary conditions are required at all the boundaries of a 

three-dimensional domain including the free surface and the 

bottom. At the moving free surface η , the kinematic 

boundary condition is 
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In addition, atmospheric pressure is assumed at free surface 

elevation, giving  
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For the impermeable bottom surface ),( yxhz −= , the 

kinematic bottom boundary condition is 
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Using kinematic boundary conditions (18) and (20) in the 

integrated form of the continuity equation (1) over the water 

column, the free surface equation is obtained: 
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At rigid wall boundaries, velocity normal to the wall is zero 

and the tangential velocity is determined by the wall-function 

approach. In this study, only smooth rigid walls are considered, 
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so velocity parallel to the wall is described by the following 

logarithmic law: 
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where κ  is von Karman’s constant; τU  is velocity parallel 

to the smooth wall; *U  is the shear velocity; and nD  is the 

normal distance from the wall. 

At the free surface, the boundary conditions for turbulent 

quantities are 
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where hH +=η  is the water depth. 

At the rigid walls, the following boundary conditions for 

turbulent quantities are specified. 
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At inflow boundaries, the velocity normal to the boundary 

and turbulent quantities are specified as follows: 
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4. Numerical Methods 

The overall numerical algorithm consists of the following 

three steps. 

The first step is to solve the RANS by using an explicit 

projection method, which is subdivided into two stages (Ai et 

al., 2011 [2]). 

The first stage is to project intermediate velocities by means 

of solving the momentum equations that contain the 

non-hydrostatic pressure at the previous time level. In this 

stage, the governing equations (1) and (2) are firstly integrated 

over a vertical layer. Then, the resulting momentum equations 

in question are obtained by subtracting the integrated 

continuity equation from the integrated momentum equations. 

Finally, a finite volume method with a first-order upwind 

scheme is used to discretize the advection terms of the 

momentum equations. The resulting discretized equations 

guarantee conservation of momentum. 

 In the second stage, the new velocities are computed by 

correcting the projected values after including the 

non-hydrostatic pressure terms, which are obtained by solving 

the discretized Poisson equation. It is worth mentioning that, 

because of a new grid arrangement employed in the present 

model, the Poisson equation is symmetric and positive definite 

and thus can be solved efficiently by preconditioned 

conjugated gradient method. In this study, the symmetric 

Gauss-Seidel method is used as the preconditioner to solve the 

Poisson equation. 

In the second step, by substituting the resulting velocities 

into a discretized form of the free surface equation (21), we 

can obtain the new free surface elevation. 

Finally, we employed finite volume method to discretize the 

Eqs. (4) and (5) to get the turbulence quantities. 

More details about the numerical solution can be found in 

the references (Ai and Jin, 2010 [1]; Ai et al., 2011 [2]; Ai and 

Jin, 2012 [3]; Ai et al., 2014 [4]). 

5. Numerical Results 

5.1. The Flow Around a Vertical Circular Cylinder Exposed 

to a Steady Current 

In order to examine the capability of the model to simulate a 

current interacting with a circular cylinder, the model validation 

was achieved against the experimental data obtained by 

Roulund et al. (2005) [14] in the first test case, which has been 

validated by Zhang Bojie et al. (2015) [16]. The experiment 

was conducted in a flume with 35 m long and 3 m wide. The 

water depth was maintained at 0.54 m. The cylinder diameter 

was D= 0.536 m. A schematic diagram is plotted in Fig. 1. In the 

simulation, a constant inflow velocity of 0.326 m/s was 

imposed at the upstream boundary. To discretize the 

computational domain, 16964 horizontal triangular grids and 40 

vertical layers are chosen. The horizontal grid spacing is equal 

to 0.0234 m around the cylinder surface and increases gradually 

in the radial direction. 

 

Fig. 1. A schematic diagram of current or wave interacting with a circular 

cylinder. 

 

Fig. 2. Comparison between the computed and measured horizontal velocity 

in the plane of symmetry at different distances from the bed. 
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Fig. 2 shows the computed and measured horizontal 

velocity in the plane of symmetry at different distances from 

the bed. Fig. 3 depicts the comparison of the bed shear stress 

along the x- axis between model results and the experimental 

data. It should be mentioned that the negative value in Fig. 3 

corresponds to the location of the horseshoe vortex in front of 

the cylinder. It can be found from Figs. 2 and 3 that reasonably 

good agreement is achieved between the numerical results and 

the experimental data. Fig. 4 shows the comparison of the 

amplification of the bed shear stress between the numerical 

results and the experimental data. Here, the bed shear stress is 

normalized by the undisturbed bed shear stress. The 

agreement between the model results. 

 

Fig. 3. Comparison of the bed shear stress along the x- axis between model 

results and the experimental data. 

 

Fig. 4. Comparison of the amplification of the bed shear stress between the 

numerical results and the experimental data. 

and the measurements is also reasonable. The maximum value 

of the bed shear stress is larger than 6.5 and the position of it is 

near the cylinder surface and located in the radial direction of 

θ = 60°, where θ  is measured clockwise from the x-axis 

through the center of the cylinder. 

5.2. Bed Shear Stress in Front of a Cylinder Exposed to 

Waves 

In the second test case, to examine the capability of the 

model to simulate waves interacting with a circular cylinder, 

the computed bed shear stress was compared with the 

experimental data obtained by Sumer et al. (2005) [13]. The 

numerical simulations were conducted in a wave tank with 30 

m long and 0.6 m width. A schematic diagram also can be 

referred to as Fig. 1. 

 

Fig. 5. Comparison of the bed shear stress in front of the cylinder between 

model results and experimental data. 

The cylinder diameter was D= 0.04 m. The computational 

domain is also discretized by horizontal triangular grids plus 

40 vertical layers. The horizontal grid spacing is equal to 

0.0017 m around the cylinder surface. The incoming regular 

waves with KC number = 2.8, 6.1, 10.3 and 20.1 were 

imposed in the upstream boundary, respectively. The 

corresponding computed bed shear stresses in front of the 

cylinder were compared with the experimental data, as shown 

in Fig. 5. Overall, the model reasonably predicts the 

distribution of the bed shear stress, although it underestimates 

the maximum value of the bed shear stress for KC number = 

6.1, 10.3 and 20.1. 

6. Conclusion 

In this paper, a numerical model based on 3D 

Reynolds-averaged Navier-Stokes equations is presented for 
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current or wave interacting with a circular cylinder. An 

explicit projection method is utilized to solve the governing 

equations. The computational grid system is built from a 

two-dimensional horizontal triangular grid by adding a 

number of horizontal layers. In model validations, generally 

good agreement between numerical results and experimental 

data is achieved, demonstrating that the present model with a 

non-linear k-ε turbulence model is capable of resolving 

current or wave interacting with a circular cylinder. 
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