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Abstract: A density-matrix approach is developed to provide a theoretical description of the intensity, angular distribution, 

and polarization of superradiative emission from an ensemble of many-electron atomic systems. The many-electron atomic 

systems are described as cooperatively interacting by means of forces that can be long range. Particular emphasis is given to 

the coherent excitation of the collective atomic-ensemble states, which may be produced by incident laser radiation. The initial 

excitation and spontaneous emission processes may be described as independent. Both frequency-domain and time-domain 

formulations of the density-matrix approach are developed. The collective atomic-ensemble states are specified in a detailed 

hyperfine representation, corresponding to successively coupling the individual hyperfine angular momenta F pertaining to the 

many-electron atoms. A less detailed fine-structure angular-momentum representation may also be used. In the density-

operator approach, account can be taken of the coherent excitation of a particular subspace of the initial atomic-ensemble 

states. For a comprehensive and unified development of time-domain (equation-of-motion) and frequency-domain (resolvent-

operator) formulations, a reduced-density-matrix (quantum-open-systems) approach is introduced. The non-equilibrium 

atomic-ensemble-state kinetics and the homogeneous spectral-line shapes can thereby be systematically and self-consistently 

determined. The collective atomic-ensemble states may be obtained using a variety of different methods. These states can be 

determined using a dressed-state approach, in which the required states are calculated in the presence of an electromagnetic 

field. 
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1. Introduction 

Superradiant emission was first described by Dicke [1]. 

Due to the cooperative nature of the interaction among the 

individual members of an ensemble of N quantum systems, e. 

g., many-electron atoms, the intensity of superradiant 

emission can be proportional to N
2
. Moreover, the 

cooperative interaction can produce a large, superradiant 

dipole. A related phenomenon, known as subradiance, has 

also been investigated [2]. In the present investigation, we 

consider the angular distribution and polarization of 

superradiant emission. The angular distribution and 

polarization measurements can provide more detailed 

information, which would be unobtainable in a spectroscopy 

measurement of only the total intensity. The theoretical 

analysis of the total intensities, angular distributions, and 

polarizations can be developed using a density-matrix 

approach [3]. For a comprehensive theoretical description, it 

is necessary to employ a reduced-density-matrix (quantum-

open-systems) approach, by means of which the influence of 

environmental decoherence and relaxation processes, 

together with the corresponding spectral-line broadening 

mechanisms, can be systematically and self-consistently 

incorporated [4]. 

A. Density-Matrix Approach 

By means of a density-matrix approach, a general 

quantum-mechanical description of the intensity, angular 

distribution, and polarization of superradiant emission from 

an ensemble of N many-electron atomic systems can be 

developed. Account can thereby be taken of the coherent 

excitation of the atomic-ensemble states, which can be 

produced by incident lasers. Accordingly, it is advantageous 
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to adapt a previously developed density-matrix description 

for the investigation atomic radiative emission, where the 

primary emphasis was directed at the influence of external 

electric and magnetic fields [3]. In the density-matrix 

description of the intensity, angular distribution, and 

polarization of superradiant emission, account can be taken 

of a general set of steady-state or time-varying (possibly 

coherent) atomic-ensemble excitation and de-excitation 

processes. 

In the theoretical description of the angular distribution 

and polarization of atomic radiative emission, it is desirable 

to distinguish between a restricted polarization-density-

matrix description [3], which is rigorously applicable only to 

an isolated atomic system combined (or entangled) with the 

relevant (observable) modes of the quantized electromagnetic 

field, and a more comprehensive quantum-open-systems 

reduced-density-matrix formulation [4], in which the 

influence of a larger system (environment) of charged 

particles and photons can be systematically and self-

consistently incorporated. In the reduced-density-matrix 

formulation, the environmental collisional and radiative 

interactions are treated in terms of decoherence and 

relaxation processes, together with the associated spectral-

line broadening mechanisms. 

B. Earlier Investigations for Directed-Electron Excitation 

The ordinary Hilbert-space quantum theory of the 

intensity, angular distribution, and polarization of radiative 

emission, following directed-electron collisional excitation of 

an isolated atomic system, was first presented by 

Oppenheimer [5] and subsequently refined by Percival and 

Seaton [6], who also included an extensive set of references 

to earlier related investigations. A polarization-density-matrix 

formulation of the theory of radiative emission has been 

presented by Inal and Dubau for ordinary bound-bound 

atomic transitions [7] and subsequently extended for 

application to the dielectronic-recombination radiation 

process [8]. A polarization-density-matrix description for 

dielectronic recombination radiation has been developed by 

Shlyaptseva, Urnov, and Vinogradov [9, 10] and applied by 

Shlyaptseva et al. [11]. Spectroscopic observations of 

radiative emission from atomic transitions excited by 

electrons spirally in magnetic fields has been treated by Gu, 

Savin, and Beiersdorfer [12], using a polarization-density-

matrix approach. In a previously developed polarization-

density-matrix description, which was primarily directed at 

bound-bound atomic radiative transitions [3], it has been 

found to be advantageous to exploit the angular-momentum 

methods and techniques advanced in earlier density-matrix 

descriptions of the angular distribution and polarization 

phenomena that can occur in single-photon and multi-photon 

atomic ionization processes [13, 14], as well as those adopted 

in the density-matrix description of the angular distribution 

and polarization of atomic radiative emission developed by 

Inal and Dubau [7, 8]. 

C. Reduced-Density-Matrix Approach 

The more comprehensive reduced-density-matrix 

formulation can be developed using a quantum-open-systems 

approach [4]. A compact formulation is achieved by adopting 

the Liouville-space operator representation. This formulation 

can provide a detailed non-equilibrium quantum-statistical 

description of the angular distribution and polarization of 

radiative emission from an atomic ensemble for a general set 

of steady-state or time-varying (possibly coherent) excitation 

and de-excitation processes involving the atomic-ensemble 

states, under the influence of environmental collisional and 

radiative decoherence and relaxation processes. 

D. Many-Electron Atomic-Ensemble States 

In order to provide precise interpretations and theoretical 

predictions for spectroscopic observations of superradiant 

emission, it will be necessary to carry out reliable 

calculations for the relevant collective quantum states of the 

ensemble of many-electron atomic systems. Separate 

calculations should be performed for different assumptions 

regarding the possible influence of the incident laser fields in 

the excitation process. Accordingly, it might be appropriate 

to introduce a representation corresponding to “dressed” 

atomic-ensemble states, which would depend on the 

characteristics of the incident electromagnetic field. 

E. Organization 

The remainder of this paper is organized as follows. In 

Section II, we present the steady-state polarization density-

matrix description of superradiant emission, emphasizing that 

a realistic treatment of the superradiant emission process is 

expected to require the incorporation of initial-state 

coherences. In Section III, a time-dependent description of 

superradiant emission is presented. In Section IV, we discuss 

the representation of the atomic-ensemble states. In Section 

V, we present a more comprehensive reduced-density-

operator approach, considering the influence of 

environmental decoherence and relaxation processes on both 

the atomic-ensemble states and the spectral-lines shapes. Our 

conclusions and future planes are presented in Section VI. 

2. Steady-State Polarization  

Density-Matrix Description 

The steady-state (time-independent) description of the 

radiative emission from an ensemble of many-electron 

atomic systems following photon (laser) excitation can be 

investigated on the bases of the following expression for the 

matrix elements of the photon density operator ρ�: 

< 	k���	λ	|ρ�	|k��′	
� >= ∑ < γ�, 	k���	λ|T|γ�, 0 >< ��|ρ�|γ�� >< γ�� , 0|T|γ�, k��	λ� >�,�,�� 	                                    (1) 

The angular frequency ω of the emitted electromagnetic 

radiation is given in terms of the magnitude k of the photon 

wave-vector k�� by means of the free-space relationω= kc. The 

angular distribution will be obtained from the matrix 

elements that are diagonal with respect to the photon wave-

vector. The photon-helicity quantum numbers, which 

represent the projections of the intrinsic spin of the spin-1 
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quanta along the propagation direction, may have only the 

numerical values λ, λ' = ± 1, corresponding the right (λ=-1) 

and left (λ=+1) circular polarization. An alternative linear-

polarization representation can be employed if desired. The 

summations over f, i, and i' will be understood to include 

only the quantum numbers specifying degenerate or nearly 

degenerate sub-states of the final and initial collective 

atomic-ensemble states in the radiative transitions γi → γf. 

The degenerate sub-states of the individual atoms can be 

specified in terms of the usual angular-momentum projection 

(or magnetic) quantum numbers, either in the fine-structure 

(JMJ) representation or in the more detailed hyperfine (FMF) 

representation. In this investigation, we shall adopt the more 

detailed hyperfine representation. The initial excitation 

process and the subsequent radiative emission process will be 

assumed to be independent events, and only single-photon 

emission processes will be taken into consideration. 

The initial-state atomic density matrix ρ�  could be 

determined on the basis of a steady-state Master equation. 

More generally, a time-dependent Master equation can be 

employed as a starting point. A detailed discussion of the 

time-dependent description will be presented below and also 

in our more comprehensive reduced-density-matrix 

formulation, which will facilitate the systematic 

incorporation of the influence of the multitude of 

environmental interactions. In the lowest-order perturbation-

theory (Born) and short-memory-time (Markov) 

approximations, which are conventionally made in the 

treatment of environmental interactions, the equation-of-

motion for the diagonal matrix elements of ρ� 

(corresponding to the collective atomic-ensemble state 

populations) can be expressed in terms of the familiar (time-

independent) rates for all possible transitions between pairs 

of collective atomic-ensemble states. Including the non-

diagonal matrix elements (corresponding to the coherences) 

in the equation-of-motion description, one encounters 

interference terms involving the individual transition 

amplitudes. 

The steady-state spectral intensity, angular distribution, 

and polarization of the electromagnetic radiation that is 

emitted in the transitions γi → γf of an ensemble of many-

electron atoms can be systematically determined from a 

knowledge of the photon-polarization density operator	ρ�. In 

terms of the transition operator T, whose lowest-order 

contribution is given simply by the electromagnetic-

interaction operator V, the quantum-electrodynamics theory 

of the single-photon emission process, in the density-operator 

representation of the atomic-ensemble states, can be 

employed to express the matrix elements of the photon-

polarization density operator ρ� in a general form [15-23]: 

The transition operator T can be evaluated using the 

Lippmann-Schwinger relationship, which can be expressed 

as T = V + VGV = V +	VG��.  The full and zero-order 

resolvent (or Green) operators are defined by G = [E	–	H�	– 	V	 + 	i$]&'  and G�  = [E	–	H� 	+ 	i$]&' , where H� 

is the Hamiltonian operator describing the unperturbed 

(isolated) atomic ensemble combined with that for the free 

(vacuum) electromagnetic field and V is the electromagnetic 

interaction. The electromagnetic interaction can be taken as a 

first approximation to be the dipole interaction. However, 

higher multipole-components can be systematically included. 

The appropriate asymptotic boundary condition can be 

imposed by taking the $ → 0 limit. The description of single-

photon emission processes based on Eq. (1), retaining only 

the lowest-order contribution in the perturbation expansion 

for the transition operator T, is expected to be adequate for 

narrow, isolated emission lines or for blended emission 

features, whose individual spectral-line profiles may not be 

resolvable. In order to determine the precise spectral 

distribution of the possibly overlapping components, it will 

be necessary to retain a set of high-order contributions in the 

perturbation contributions. These high-order contributions 

give rise to the frequency shifts and the spectral widths of the 

radiative emission lines. The more comprehensive reduced-

density-matrix formulation will provide a systematic 

approach for the investigation of the spectral-line shape 

problem, taking into account the environmental interactions. 

A. Individual Atomic-Ensemble Eigenstate Representation 

Since polarization is intimately related to angular 

momentum, it is advantageous as a starting point to adopt an 

angular-momentum representation for the eigenstates of the 

many-electron atomic ensemble. An electromagnetic-

multipole expansion for the quantized radiation field will also 

be introduced. It then is apparent that the collective initial 

states pertaining to the many-electron atoms comprising the 

ensemble can be expanded in the detailed hyperfine-structure 

representation as follows: 

|γi> = ∑ |(�	)�	*+, Δi	Fi	M), >< Δi	Fi	M),|γi >          (2) 

Here Fi is the total angular momentum, M),  is the 

projection (or component) of this angular momentum along a 

suitably chosen quantization axis, and Δi denotes the set of 

remaining quantum numbers. Accordingly, the hyperfine-

structure representation is characterized by the total 

(combined electronic and nuclear) angular momentum F = J + I , where J represents the total electronic angular 

momentum and I is the total nuclear contribution. These 

angular-momentum quantum numbers are obtained by 

successively coupling the angular-momentum quantum 

numbers pertaining to the individual many-electron atomic 

systems comprising the ensemble. The individual final 

eigenstates of the atomic ensemble can be represented by an 

expansion in the same form as Eq. (2). We emphasize that the 

complete basis set of individual many-electron atomic states 

should ideally include the entire sets of the discrete bound 

states, the autoionizing resonances, and the non-resonance 

electron-ion-scattering (continuum-channel) states. This 

complete basis set can then be employed to represent the 

initial and final collective eigenstates of the many-electron 

atomic ensemble in the cooperative radiative emission 

process. Moreover, these collective eigenstates may be 

expanded in a basis consisting of (possibly symmetrized or 

anti-symmetrized) products of the individual many-electron 

atomic basis states. A detailed discussion of these collective 

states will be presented below. 

In simplified atomic-structure calculations, only a 

relatively small set of low-lying bound eigenstates is 
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normally considered. For an accurate determination of the 

spectral patterns, highly excited bound and continuum 

individual atomic eigenstates must be taken into account. 

The atomic-state representation based on eigenstates of 

either the total electronic angular momentum J or the total 

angular momentum F has sufficient generality to 

accommodate a relativistic many-electron Hamiltonian 

description, and the corresponding individual atomic wave 

functions can be determined using existing relativistic multi-

configuration atomic-structure computer programs. However, 

it is well known that the relativistic many-electron atomic-

structure problem cannot be described in terms of a closed-

form configuration-space Hamiltonian operator. The existing 

relativistic many-electron atomic-structure computer 

programs are based on the retention of only the lowest-order 

(Feynman-diagram) contributions in the perturbation 

expansion of quantum electrodynamics. 

B. Multipole Expansion of the Electromagnetic Interaction 

The photon angular-distribution and polarization 

parameters are most naturally defined with respect to the 

direction of spectroscopic observation. In the theoretical 

analysis, however, it is more convenient to relate these 

parameters to the fundamental electromagnetic-transitions 

amplitudes, which are most naturally defined with respect to 

a suitably selected atomic quantization axis. The desired 

transformation is automatically introduced as a result of the 

irreducible spherical-tensor expansion of the electromagnetic 

interaction, as described in detail by Fano and Racah [18] 

and also by Berestetskii, Lifshitz, and Pitaevskii [19]. By 

means of this transformation, an irreducible spherical-tensor 

expansion is obtained for the electromagnetic-transition 

matrix elements, in terms of the matrix elements of effective 

electric and magnetic multipole operators. This expansion 

can be expressed in the form [18, 19]: 

< Δ�F�M)2 , k��
|T|Δ�F�M), , 0 > =	∑ ∑ 3456'78 9'/4; 	A=j?DA,;=5? =k?B5 ×	=−1?; 	< Δ�F�M)2 FQH&;=5? F Δ�F�M), >.         (3) 

Here QH&;=5?  denotes the irreducible spherical-tensor form of 

the effective electromagnetic-multipole-moment operator for 

the ensemble of many-electron atomic systems. The lowest-

order perturbation-theory component, which corresponds to 

the retention of only the electromagnetic-interaction operator 

V in the expression for the transition operator T, is the usual 

electromagnetic-multipole-moment tensor operator	Q&;=5? . The 

higher-order components may be viewed as corresponding to 

the radiative corrections that are predicted by quantum-

electrodynamical perturbation theory, and these higher-order 

components represent the contributions from the various non-

linear electromagnetic processes arising from the absorption 

and emission of virtual photons and the creation and 

destruction of intermediate many-electron atomic states. It 

should be pointed out that the irreducible spherical tensor 

representation employed in Eq. (3) is valid for both the 

relativistic and the non-relativistic forms of the 

electromagnetic interaction. The quantities DA,;=5? =k?B  designate 

the matrix elements DA,;=5? =ϕ, ϑ, 0?  of the Wigner rotation 

operator corresponding to the desired coordinate rotation. 

The multiplying factors A(j) are defined individually for the 

various electromagnetic-multipole components. Explicit 

expressions for these multiplying factors have been presented 

by Berestetskii, Lifshitz, and Pitaevskii [19]. An expansion in 

the same form as Eq. (3) has also been employed by Inal and 

Dubau [7] for polarized radiative emission, taking into 

account all electromagnetic multipole contributions in 

lowest-order perturbation theory. The photon eigenstate 

representation characterized by linear momentum and 

intrinsic spin is thereby replaced by the alternative 

representation based on angular momentum and parity. 

The matrix elements of the effective electromagnetic-

multipole-moment operator can be evaluated in the angular-

momentum representation, in terms of Wigner 3-j symbols and 

reduced matrix elements of the effective electromagnetic-

multipole moment, by means of the Wigner-Eckart theorem: 

< Δ�F�M)2 FQH;=5?F Δ�F�M), > = =−1?)2	&*+2 	 K F� j F�−M)2 m M),M NΔ�F�OQH=5?OΔ�F�P.                                  (4) 

In order to take into account both the electric and the 

magnetic multipole contributions associated with a given 

value of j, the effective electromagnetic-multipole-moment 

operator QH;=5?  should be defined to include the components 

associated with all permissible values of the photon parity. In 

contrast with the photon helicity λ, which can have only the 

values ±1, the angular-momentum projection m is not limited 

to the values ±1. The symmetry (or angular-momentum 

conservation) information is completely represented by the 3-

j symbols, while the dynamical information is entirely 

contained in the reduced matrix elements of the effective 

electromagnetic-multipole-moment operators. 

C. Photon-Polarization Density Matrix Allowing for 

Coherent Excitation Processes 

For ordinary bound-bound atomic radiative transitions, an 

expression for the photon-polarization density matrix has 

been obtained as Eq. [3]. In the derivation of this expression, 

only the lowest-order contribution, corresponding to the 

electromagnetic-interaction operator V, was retained in the 

perturbation-theory expansion of the electromagnetic-

transition operator T. In order to provide a more detailed 

spectral description for radiative transitions, as well as to 

incorporate quantum-mechanical interference phenomena, it 

will be necessary to consider the entire electromagnetic-

transition operator T. Accordingly, we now introduce the 

effective electromagnetic-multipole-moment operators QH;=5? 
based on Eq. (3). Considering only the photon-polarization 

density matrix elements that are diagonal in the photon 

wavevector, we obtain the following expression: 
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< λ|ρ�|λ� ≥	∑ < γ�	|ρ�|γ��	R	�,��,�   

×	∑ ∑ < γ�|Δ�	F�	M)2	 ><(2�	)2� 	*+2�(2	)2	*+2	 γ�|Δ��F��M)2� >∗  

×	∑ ∑ < Δ�	F�	M),|γ� ><(,�	),�	*+,�(,	),	*+, Δ��F��M),�|γ�� >∗  

× ∑ ∑ ∑ NΔ�F�OQH(5)OΔ�F�P	NΔ��F��OQH(5�)OΔ	��F��P∗T,*,*�5�,;�5,;   

× 3 '7U9 (2j + 1)'/4(2j� + 1)'/4	(2J + 1)'/4A(j)A(j�)∗ 
× (−1))26)2�&*+2	&*+2�&;&;�6A�&;�645&45�&*&*�

  

× K F� j F�−M)2	 −m M),M W
F�� j� F��−M)2� −m� M),�

X  

× 3j j� Jλ −λ� −M9	3 j j� Jm −m� −M9	D*,*�	(T) NkYP.                                                          (5) 

The summations over f, i, and i' are to be taken over 

quantum numbers specifying degenerate or nearly degenerate 

substates of the final and initial collective states of the 

ensemble of many-electron atoms. In the derivation of this 

expression, the product of two Wigner rotation matrices, with 

ranks j and j�, has been expanded as a summation of Wigner 

rotation matrices corresponding to the total angular momentum 

J, each of which is multiplied by two additional 3-j symbols. 

Although the primary interest has been in electric-dipole 

transitions, it is advantageous to retain at the beginning of the 

description the general form that is applicable for arbitrary 

electromagnetic-multipole interactions, including the 

interference between different multipole amplitudes. The 

general, non-perturbative expression for the effective 

electromagnetic-multipole-moment operators QH(5)  can be 

expressed in terms of the entire electromagnetic-transition 

operator T. In the lowest-order perturbation-theory 

approximation for the effective electromagnetic-multipole-

moment operators QH(5), our result is found to be in agreement 

with that obtained by Inal and Dubau [7]. 

It should also be emphasized that the general expression 

given by Eq. (5) can be employed for a general set of steady-

state (or time-dependent) non-equilibrium atomic-ensemble 

state excitation and de-excitation processes. The non-diagonal 

elements of ρ�  describe the coherent excitation of the initial 

states of the ensemble of atoms. Coherences involving atomic-

ensemble states with different energy eigenvalues, which can 

be produced by short-pulse laser-photon excitation, are known 

to generate quantum beats in a time-resolved photon-detection 

process. With the incorporation of environmental relaxation 

and decoherence processes, the time-dependent density-matrix 

description can provide a comprehensive framework for the 

introduction of the time-integrated, reduced photon-density-

operator formulation. The coherences for excited atomic states 

with different energy eigenvalues are expected to be important 

when the energy-level separations are not large in comparison 

with the spectral-line widths. 

If the coherences corresponding to the non-diagonal matrix 

elements of the initial atomic-ensemble state density operator ρ�  are neglected, the general expression for the photon-

polarization density matrix elements may be reduced to the 

result: 

< λ|ρ�|λ� >	= 	ZNNΔ�F�M),P	Z(−1)),6565�6A�&*+,
5,5�,T*+,

 

× �(2j + 1)(2j� + 1)(2J + 1)/4π%'/4A(j)A(j�)∗ 
× NΔ�F�OQH(5)OΔ�F�P	NΔ�F�OQH(5�)OΔ�F�P∗  

× 3 J j j�λ� − λ λ −λ�9 K
J F� F�0 −M), M),M ^

J F� F�J� j� j _ 	YA�&A(T) NkYP.                                              (6) 

The diagonal matrix elements of ρ�, which correspond to 

the usual level population densities, are now denoted by 

NNΔ�F�M),P. The condition M′ = 0 follows from the neglect 

of the non-diagonal matrix elements of ρ� . The Wigner 

rotation matrix elements D*,*�	(T) NkYP can then be reduced to the 

spherical harmonic functions YA�&A(T) NkYP, for which the total 

angular momentum J can assume only integer values. The 

dominant radiative emission process is usually assumed to 

involve only a single multipole component of the 

electromagnetic field, in which case j = j�. Eqs. (5) and (6) 

are valid for interfering electromagnetic-multipole 

components, corresponding to j	 ≠ j� . This interference can 

have a more important effect on the angular distribution and 

polarization than on the total frequency-integrated photon 

intensity. 

D. Irreducible Spherical-Tensor Representation of the 

Density Operators 

By means of Eq. (5), the matrix elements of photon-

polarization density operator have been expressed in a non-
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perturbative form, in terms of the reduced matrix elements of 

the effective electromagnetic-multipole-moment operators 

denoted by QH=5? . The matrix elements of the photon-

polarization density operator ρ� are expressed as functions of 

the photon-emission direction, in terms of which the photon-

helicity quantum number λ is defined. Following Fano and 

Racah [18], Happer [20, 21], Omont [22], and Baylis [23], 

this photon-polarization density operator ρ�  may be 

represented, as an expansion in terms of the irreducible 

spherical-tensor operators T*=T?	=j, j�	?, as follows: 

ρ� =	∑ ∑ ρ�T,*,*� 	=j, j�; J, M�?	T*=T?	=j, j�	?D*,*�=T? 	NkYP.5,5�    (7) 

In the Liouville-space Dirac notation, which will be adopted 

in the more comprehensive reduced-density-operator 

formulation outlined below, this expansion corresponds to a 

transformation from the representation of the uncoupled states |jm, j�m� ≫  to the alternative representation of the coupled 

states |j, j�; J,M ≫. The quantities ρ�	=j, j�; J, M�? are referred to 

as the irreducible spherical-tensor components of the photon-

polarization density operator. These quantities are also known 

as state multipoles or statistical tensors. The photon-helicity 

quantum numbers are defined, with respect to the photon 

propagation direction, by means of the Wigner rotation 

matrices D*,*�=T? 	NkYP . The ordinary Hilbert-space matrix 

elements of the irreducible spherical-tensor operator T*=T?	=j, j�	? 
can be evaluated using the Wigner-Eckart theorem as follows: 

<jλdT*=T?	=j, j�?dj�λ� >	= 	 =−1?5&A	=2J + 1?'/4 3 j J j�−λ M λ�9. (8) 

The reduced matrix element of T*=T?	=j, j�?  is accordingly 

given by the factor =2J + 1?'/4. The general expression for 

the irreducible spherical-tensor components ρ�=j, j�; J, M�? 
can be obtained simply by comparing Eqs. (5) and (7), 

employing Eq. (8), and the symmetry properties of the 3-j 

symbols. This irreducible spherical-tensor representation is 

often advantageous for the photon density operator, because 

only a few multipole components of the electromagnetic field 

are usually required to provide an adequate description of the 

radiative-emission process. 

In contrast to the photon density operator, the irreducible 

spherical-tensor representation of the atomic-ensemble state 

density operator, which may be expressed in the form: 

ρ� =	∑ ∑ ∑ ρ�	=Δ�Δ�� , F�F��; K, N?	Tf=g?	=F�F��?,g,f),),�(,(,�  (9) 

involves two separate expansions that ideally should include 

the complete basis set of unperturbed individual many-

electron atomic-ensemble eigenstates. 

In order to express the irreducible spherical-tensor 

components of the photon-polarization density operator in 

terms of the atomic-ensemble irreducible spherical-tensor 

components	ρ�	=Δ�Δ�� , F�F��; K, N?, it is necessary employ the 

following transformation: 

< γ�	|ρ�|γ�� >	= 	 Z Z 〈Δ�	F�	M), 	|	γ�〉∗ 	〈	Δ��		F��M),� 	|	γ��〉	(,�		),�*+,�(,	),	*+,
 

×	∑ ρ�	=Δ�Δ�� , F�F��; K, N?	=−1?),&*+, 	=2K + 1?'/4g,f 	K F� K F��−M), N M),M.                                  (10) 

By means of Eqs. (5), (7), (9), and (10), the irreducible 

spherical-tensor components of the photon-polarization 

density operator ρ�  can be expressed in terms of the 

irreducible spherical-tensor components of the atomic-

ensemble density operator ρ�  and the reduced matrix 

elements describing the electromagnetic transition. A natural 

separation between the geometrical (or symmetry) and 

dynamical factors is thereby achieved. 

E. Electric-Dipole Transitions 

Although the importance of higher-order multipole 

(forbidden) radiative transitions from certain excited atomic 

states has been widely recognized, atomic systems have been 

customarily assumed to undergo spontaneous radiative decay 

predominantly by means of electric-dipole transitions. 

Moreover, the quantum-mechanical interference involving 

different electromagnetic-multipole components has usually 

been ignored. 

1. Atomic-Ensemble State Coherences Ignored 

As a first step, we will ignore initial atomic-ensemble state 

coherences, noting that this is not expected to be a valid 

assumption for cooperative radiative emission processes. The 

diagonal matrix elements of the photon-polarization density 

operator describing spontaneous electric-dipole emission, 

neglecting initial state coherences, can be expressed as 

follows: 

< λ|ρ�|λ >	= 	∑ N=∆�*+, F�M),?=−1?),646A	&	*+, k7l7Umno A=1?A=1?∗  
× =∆�F� FdQ='?dF ∆�F�?=∆�F� FdQ='?dF ∆�F�?∗  

× 32 1 10 λ −λ9 K2 F� F�0 −M), M),M ^2 F� F�J� 1 1_ Y�4NkYP.                                                    (11) 

This expression can be further evaluated as follows: 

< λ|ρ�|λ >	= 	∑ N=∆�*, F�M),?=−1?),646A	&	*+,   
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× k7l7Umno A=1?A=1?∗=∆�F� FdQ='?dF ∆�F�?=∆�F� FdQ='?dF ∆�F�?∗  
× =−1?'&A pAo	&4√'×'×p×4×l 	=−1?),&*+, p*+,o&	),=),6'?r=4),&'?),=4),6'?=),6'?=4),6p?  

× ^2 F� F�F� 1 1_s l'tU	 =3cos4θ − 1?.                                                               (12) 

The conventional spontaneous radiative-emission rate (or 

Einstein A coefficient) can be obtained after carrying out the 

summation over the final magnetic substates M),  and the 

photon polarizations λ, together with the integration over the 

photon emission angles. The result thereby obtained can be 

expressed in the familiar form: 

Az=∆�F� → ∆�F�? = 37p9 3|}
ℏ�}9 3 '4),6'9	F=∆�F� FdQ='?dF ∆�F�?F4.                                             (13) 

Equations (12) and (13) have been obtained by introducing 

the electric-dipole approximation for the electromagnetic 

interaction and by assuming a uniform (statistical) 

distribution of the initial magnetic-substate populations. 

2. Atomic-Ensemble State Coherences Included 

It is expected that atomic-ensemble state coherences will 

play an important role in the cooperative radiative processes 

such as superradiant emission. If initial atomic-ensemble 

state coherences are now included, the diagonal matrix 

elements of the photon-polarization density operator 

describing spontaneous electric-dipole emission can be 

expressed as follows: 

< λ�ρ��λ ≥ 	∑ < γ�	|ρ�|γ��	R	�,��,�   

×	∑ ∑ < γ�|Δ�	F�	M)2 ><(2�	)2� 	*+2�(2	)2	*+2 γ�|Δ��F��M)2� >∗  

×	∑ ∑ < Δ�	F�	M),|γ� ><(,�	),�	*+,�(,	),	*+, Δ��F��M),�|γ�� >∗  

× ∑ ∑ NΔ�F�OQH(')OΔ�F�P	NΔ��F��OQH(')OΔ	��F��P∗T,*,*�;   

× 3 '7U9 (3)'/4(3)'/4	(2J + 1)'/4A(1)A(1)∗ 
× (−1))26)2�&*2&*2�&;&;6A&;&*�

  

× K F� 1 F�−M)2 −m M),M W
F�� 1 F��−M)2� −m M),�

X  

× 3j j Jλ −λ 09	3 1 1 Jm −m 09	D�,*�	(T) NkYP.                                                             (14) 

This expression can be further evaluated as follows: 

< λ�ρ��λ ≥ 	∑ < γ�	|ρ�|γ��	R	�,��,�   

×	∑ ∑ < γ�|Δ�	F�	M)2 ><(2�	)2� 	*+2�(2	)2	*+2 γ�|Δ��F��M)2� >∗  

×	∑ ∑ < Δ�	F�	M),|γ� ><(,�	),�	*+,�(,	),	*+, Δ��F��M),�|γ�� >∗  

× NΔ�F�OQH(')OΔ�F�P	NΔ��F��OQH(')OΔ	��F��P∗ 	3 '7U9 (3)'/4(3)'/4	A(1)A(1)∗  
∑ (2J + 1)no(−1))26)2�&*+2&*+2�&;&;6A&;&*�
;,*�  K F� 1 F�−M)2 −m M),M W

F�� 1 F��−M)2� −m M),�
X  

��
��
��
'
p (−1)&A&;	δ(M�, 0) + A;

t (−1)'&A&; W(−1)*�s7U
p 	Y∗'*�	(��)X

+
	 'p� (−1)&A&;(3λ4 − 2)(3m4 − 2)	W(−1)*� 	s7U

l 	Y∗4*�	(��)X ��
��
��.                             (15) 
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3. Time-Dependent Polarization Density-

Matrix Description 

A time-dependent description of superradiative emission 

from an ensemble of many-electron atomic systems 

accompanying photon (laser) excitation can be developed on 

the basis of the following expression for the matrix elements 

of the time-dependent photon-polarization density operator ρ�=t?: 
< λ	|ρ�=t?	|λ� >	= 	∑ < γ�, 	k���	λ|U=t, t�?|γ�, 0 >< γ�|ρ�=t�?|γ�� >�,�,�� ×< γ�� , 0|U=t, t�?&'|γ�, k��	λ� >.	            (16) 

The initial-state many-atom-ensemble photon-polarization 

density operator denoted by 

ρ�=t�?, which	is	specified	at	an	appropriate	intial	time	��,  

could be determined very generally by first solving a time-

dependent Master equation. A detailed discussion of the 

frequency-domain and time-domain formulations of this 

more comprehensive reduced-density-matrix description, 

which will enable the systematic incorporation of the 

influence of the multitude of environmental interactions, will 

be presented below. In the asymptotic limit, where t� =	−∞	and	t = 	+∞ , the evolution operator U=t, t�?  can be 

related to the transition operator T appearing in the time-

independent description based on Eq. (1). 

The spectral intensity, angular distribution, and 

polarization of the electromagnetic radiation that is emitted in 

the transitions �� →	��	 of an ensemble of many-electron 

atoms can be systematically determined from a knowledge of 

the time-dependent photon-polarization density operator ρ�=t?. In the Schrödinger picture, the time evolution operator U=t, t�?  can be related to the zero-order (unperturbed) 

Hamiltonian operator H�	and the electromagnetic-interaction 

operator V(t) as follows: 

iℏ ��=�,��?�� 	= 	 [H� + V=t?]U=t, t�?.                  (17) 

The quantum-electrodynamics theory of the single-photon 

emission process, in the density-operator representation of 

the atomic-ensemble states, can be employed to express the 

matrix elements of the time-dependent photon-polarization 

density operator ρ�=t?  in a general form [15-23], utilizing 

Eq. (16). 

The time evolution operator U=t, t�?  can be evaluated 

using the expansion: 

U=t, t�? = Τexp k3&�ℏ 9 ¡ dt′NH� + V=t′?P��� m = 	1 +	∑ 3'¢!9 3&�ℏ 9¢ 	∏ ¡ dt;Τ=H� + V=t;??���¢;¥'¦¢¥'                  (18) 

where T denotes the time-ordering operator. We are 

particularly concerned with the many-atom states arising 

from the collective interaction of the atoms comprising the 

ensemble undergoing excitation in the presence of the 

incident laser fields. These states could be treated in a 

“dressed-state” representation induced by a classical time-

dependent field [24]. In the time-dependent description, it 

will not be necessary (and may not be appropriate) to assume 

that the excitation and radiative emission processes can be 

treated as independent events, a we did in the time-

independent description, since we can now include all modes 

of the time-dependent electromagnetic field, particularly the 

incident laser and vacuum fields, in the electromagnetic-

interaction operator V(t). 

It then is apparent that the collective initial and final states 

pertaining to the many-electron atoms comprising the 

ensemble, which appear in Eq. (16), can be expanded in the 

detailed hyperfine representation, as expressed by means of 

Eq. (2). We can now introduce an electromagnetic-multipole 

expansion of the time-evolution operator U=t, t�?  given by 

Eq. (18). An irreducible spherical-tensor expansion is 

obtained for the matrix elements of the time-evolution 

operator U=t, t�?, in terms of the matrix elements of the time-

dependent effective electromagnetic-multipole-moment 

operators Q=t, t�?§ &;=5? , as follows: 

< Δ�F�M)2 , k��λ|U=t, t�?|Δ�F�M), , 0 > =	∑ ∑ 3456'7U 9'/4; 	B=j?DA,;=5? =k?B5 ×	=−1?; 	< Δ�F�M)2 FQ=t, t�?§ &;=5? F Δ�F�M), >.       (19) 

The multiplying factors B=j?,	which are analogous to the 

factors A(j) appearing in Eq. (3), may be determined by the 

requirement that the irreducible spherical-tensor forms of the 

time-dependent effective electromagnetic-multipole operators Q=t, t�?§ &;=5? 	 should reduce to the corresponding irreducible 

spherical-tensor forms of the time-independent effective 

electromagnetic-multipole-moment operators QH&;=5?  that have 

been introduced in Eq. (3) when the asymptotic limits giving 

rise to the transition operator are taken. The desired time 

dependence of the radiative emission will be introduced by 

means of the time-dependence of these effective 

electromagnetic-multipole-moment operators. 

4. Representation of Atomic-Ensemble 

States 

The quantum state that can be formed following single-

photon absorption by an ensemble of N many-electron 

atomic systems can be represented as follows: 

|Φf' ª = 	 '√f «	 ∑ exp¬­.z®�����������f̄¥' 	〈e¯	g⨂=f&'?	|Φf〉.         (20) 

In this representation, we have assumed that only one of 

the N atomic systems has been exited to the state |e> at the 

position r¯���� while the remaining atomic systems are in their 

ground state |g>. The symbol S denotes the symmetrization 
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operation. In some cases, the corresponding anti-

symmetrization operation should be employed. In order to 

obtain the detailed hyperfine-structure basis states that have 

been denoted by | γ > in the angular distribution and 

polarization analysis that we have presented above, it is 

necessary to successively couple the individual hyperfine-

structure angular-momentum quantum numbers pertaining to 

the separate N many-electron atomic systems to form the 

eigenstates of the total angular momentum F, which is the 

sum of the total electronic angular momentum J and nuclear 

angular momentum I. Although not explicitly indicated, this 

coupling operation will be understood to be carried out. 

The cooperative interaction involving the individual atomic 

systems should be incorporated by means of a diagonalization 

procedure. In this diagonalization procedure, it is expected to 

be necessary to include more general basis states, 

corresponding to the excitation of two or more many-electron 

atomic systems. Accordingly, we should consider a larger 

manifold of basis states of the ensemble of N many-electron 

states to include those states that can be formed by the 

absorption of M > 1 photons and the excitation of more than 

one of the N atomic systems. The more general basis states can 

be expressed by means of the following representation [25]: 

²Φ¢=*? >= '
s³µ́ 	∏ ∑ exp�­.�´������������exp�o¶·	{2=®?¹n]��������������ºµ́ 	f&*65¯»¥	¯»¹n6'*5¥' ²	Ψf=*?	=μ?�����>.                                  (21) 

A symmetric state can be formed, in which M excited 

states and N – M ground states are symmetrically distributed 

among all atoms with equal probabilities 
'³µ́ , where the 

symbol C denotes the binominal coefficients. n	 ∈ 	 ¿1, C*f Á 
and f=μ?����� = ∑ μ�*� . In the exponential factor, R*������ = ∑ r�¯Ã*;¥' . 

The bare states denoted by |Ψf=*?	=μ?����� >	with M excitations 

can be expressed by means of the follows: 

Ψf=*?	=μ?����� = 	∏ |e¯» >	 |g >⨂(f&*)*5¥' .              (22) 

μ�� is a vector with M components. Since a diagonalization 

the ensemble Hamiltonian including the cooperative 

interaction will introduce linear combination of these states 

expressed above, there are many alternatives to the 

representation for the ensemble basis states with M excited 

atonic states. 

5. Reduced-Density-Operator Approach 

A density-operator approach can provide an advantageous 

starting point for a non-perturbative and non-equilibrium 

quantum-statistical description of electromagnetic transitions. 

The quantum-open-systems (reduced-density-operator) 

approach [4, 15, 16, 28, 29] can serve as a general framework 

for a fundamental microscopic description of the 

decoherence and relaxation processes, which arise from the 

influence of a much larger system. The much larger system is 

referred to as the environment. In the conventional reservoir 

approximation, the environment is assumed to be essentially 

unaffected by its interactions with the relevant quantum 

system of interest. Accordingly, in the reservoir 

approximation, the environment can be represented by a 

time-independent density operator. 

A. Reduced-Density-Operator Description 

Within the framework of the reduced-density-operator 

approach, the influence of the environment on the relevant 

quantum system of interest is treated stochastically, in terms 

of decoherence and relaxation processes together with 

spectral-line broadening mechanisms. These stochastic 

kinetics and spectral phenomena can be systematically and 

self-consistently investigated in terms of the Liouville-space 

self-energy corrections that are introduced in the 

complimentary time-domain (equation-of-motion) and 

frequency-domain (resolvent-operator) formulations of our 

reduced-density-operator approach [4]. 

A statistical state of the combined, interacting (closed) 

quantum system is conventionally assumed to be initially 

expressible as the uncorrelated, tensor-product of the separate 

density operators representing the relevant quantum system 

of interest and the environment. The quantum-statistical state 

of the relevant system, at an arbitrary time t, can be 

represented by means of the reduced, relevant density 

operator defined by , where the quantum-

statistical average (partial-trace operation) indicated by  

is to be taken over the large set of quantum numbers 

corresponding to the environmental degrees of freedom. 

The partition of the entire, interacting quantum system into 

a relevant quantum system and an environment is inherently 

arbitrary and by no means apparent. In the ordinary Hilbert-

space description, different divisions of the total Hamiltonian 

operator into a zero-order (unperturbed) Hamiltonian 

operator and an interaction (or perturbation) operator would 

be equivalent if the interaction could be incorporated to all 

orders. In contrast, different partitions in the reduced-density-

operator description are fundamentally inequivalent and will 

inevitably lead to dissimilar predictions. In this investigation, 

we point out the consequences of different partitions for 

radiative transitions of an atomic ensemble. 

The reduced-density-operator description can be presented 

in compact forms by adopting the Liouville-space operator 

representation [30-36]. The Liouville-space operators are 

defined within a generalized Hilbert space, in which ordinary 

Hilbert-space operators, such as density operators, play the 

role of state vectors. The complete set of elementary Hilbert-

space (density) operators of the form  provides a 

complete Liouville-space basis set. The elements of the 

complete Liouville-space basis set may be denoted, in terms 

of the two Hilbert-space state indices, using the Liouville-

space Dirac notation . In this basis, the Liouville-

ρr (t)=TrE ρ t( ){ }
TrE

α β

α,β
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space operators (which will be denoted by overbars in the 

following analyses) are represented by tetradic matrices, 

which are specified by four ordinary Hilbert-space state 

indices. The complex inner product  of two 

Liouville-space state vectors and  is defined as the 

trace operation , where the superscript “+” 

indicates the adjoint. 

B. Reduced-Density-Operator Description in the 

Schrödinger picture 

In the Schrödinger picture, the reduced density operator is 

treated as a time-dependent operator, and either a frequency-

domain (resolvent-operator) formulation or a time-domain 

(equation-of-motion) formulation can be employed. 

However, the operators corresponding to physical 

observables, such as those representing the quantized 

electromagnetic field, are treated as time-independent. In our 

semi-classical description of the electromagnetic response 

[4], the interaction or perturbation operator  corresponds 

to the classical electromagnetic field and is treated as a time-

dependent quantity. 

1. Frequency-Domain (Resolvent-Operator) Formulation 

In the frequency-domain formulation of our reduced-

density-operator description, the electromagnetic-transition 

rate for a general multi-photon transition can be expressed, in 

terms of the reduced, relevant Liouville-space transition 

operator , in the generalized Fermi Golden-Rule 

form [4, 36, 37]: 

                (23) 

The reduced, relevant Liouville-space resolvent (or Green) 

operator is expressed by 

, where  is the 

relevant Liouvillian operator and  is the Liouville-

space self-energy operator. The tetradic-matrix elements 

 of the relevant Liouvillian operator  may be 

obtained by means of the following commutation 

relationships: 

                (24) 

The relevant Hamiltonian operator  describes the 

many-particle quantum system together with the quantized 

electromagnetic field. The relevant Liouvillian operator  

can be decomposed as , where  is the zero-

order (unperturbed) relevant Liouvillian operator 

corresponding to the zero-order relevant Hamiltonian 

operator  and the Liouville-space perturbation operator 

 describes the relevant electromagnetic interaction. Eq. 

(23) provides a more general definition of photon density 

matrix ρ� than is possible using only the polarization density 

matrix introduced by Eq. (1). 

The reduced, relevant Liouville-space transition operator 

can be more conveniently evaluated, in terms of the zero-

order reduced, relevant Liouville-space resolvent (or Green) 

operator , as a 

perturbation expansion in powers of : 

          (25) 

As a first approximation, we may retain only the lowest-

order non-vanishing contribution to the electromagnetic-

transition rate for a specific n-photon process of interest. 

Higher-order contributions will give rise to QED radiative 

corrections. For a single-photon transition, the lowest-order 

contribution will be given by . In the case 

of a two-photon transition, the lowest-order contribution will 

be provided by 

. In the spectral 

description of light-matter interactions, it may be necessary 

to take into account an extensive class of single-photon and 

multi-photon transitions. 

a. Frequency-Domain Liouville-Space Self-Energy 

Operator 

The frequency-domain Liouville-space self-energy 

operator  can be expressed in terms of the Zwanzig 

Liouville-space projection operators  and 

, where  denotes the environmental identity 

operator [30, 31]. The projection operator  projects onto 

the subspace of states for the relevant-system degrees of 

freedom (uncorrelated with the environmental degrees of 

freedom), while complementary projection operator  

projects onto the orthogonal subspace of states for the 

irrelevant (environmental) degrees of freedom (taking into 

account the system-environment correlations). The 

frequency-domain Liouville-space self-energy operator 

 can then be expressed in the forms [4, 36, 37]: 

                        (26) 

ρ1 ρ2

ρ1 ρ2

Tr(ρ1

+ρ2 )

V r

Tr (+iε)

AR (i → f)=− i
ε→0

lim Pf

r Tr (+iε) ρi

r =− i
ε→0

lim Pf

r Vr +Vr G r (+iε)Vr ρi

r .

G r (+iε) = [+iε − L r − Σ (+iε)]−1
L 

r

Σ (+iε)

L αβ;γδ
r

L 
r

  

α L 
r ρr β = α 1/ℏ( ) H

r
, ρr[ ] β = L αβ,γδ

r ργδ
r

δ
∑

γ
∑ = 1/ℏ( ) Hαγ

r δδβ −δαγHδβ
r( )ργδ

r

δ
∑

γ
∑ .

H
r

L r

L r =L 0
r +V r L 0

r

H0

r

V 
r

G 0
r
(+iε) = [+iε − L 0

r − Σ (+iε)]−1

V 
r

Tr (+iε) = Vr + VrG0

r (+iε)Vr + VrG0

r (+iε)VrG0

r (+iε)Vr + VrG0

r (+iε)VrG0

r (+iε)VrG0

r (+iε)Vr...

V r G 0
r
(+iε)V r

V r G 0
r
(+iε)V r G 0

r
(+iε)V r G 0

r
(+iε)V r

Σ (+iε)

P = ρE IE

Q =1−P IE

P 

Q 

Σ (z)

Σ (z)=P V 
ir

P +P V Q 
1

z − Q L Q 
Q V P =TrE V 

ir + V Q 
1

z − Q L Q 
Q V 

 

 
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 

 
 ρE
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 
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The complete Liouvillian operator  is defined in terms 

of the total Hamiltonian operator for the entire (closed) 

interacting quantum system. The total Liouville-space 

interaction operator  is partitioned as , where 

the irrelevant Liouville-space interaction operator  

includes the environmental interactions. A major advantage 

of the Liouville-space operator representation is that a 

fundamental microscopic treatment can be provided for the 

environmental interactions, on an equal footing with the 

QED radiative corrections, which arise from virtual 

transitions involving the creation and annihilation of 

electron-positron pairs together with photons. In many 

descriptions, the environmental interactions are represented 

by phenomenological parameters. 

b. Initial and Final States in the Electromagnetic 

Transitions 

In our description of an extensive class of single-photon (n 

= 1) and multi-photon (n > 1) processes, the initial-state 

reduced density operator  can be represented in terms of 

the tensor-product eigenstates . 

The relevant final-state projection operator  projects onto 

the subspace of tensor-product eigenstates formed from the 

unperturbed many-electron eigenstates  that can be 

created as a result of an electromagnetic transition. 

Accordingly, the required operator eigenstate decompositions 

can be expressed as follows: 

ρi

r = a ′a , n i{ } ′n i{ }
′ni{ }
∑

ni{ }
∑

′a

∑ a ′a
a

∑ ρi

S n i{ } ′n i{ } ρi

R ,
                                  (27) 

                   (28) 

Note that the indices that are used as subscripts on the 

reduced density operator and on the projection operator are 

intended to denote, respectively, the initial and final states of 

the relevant many-particle and many-photon quantum system 

in the electromagnetic transition, while the index i that is 

used as a subscript on the photon occupation numbers n and 

 will be understood to denote the various modes of the 

quantized electromagnetic field. Note that the various photon 

modes are specified by the propagation vector and the 

polarization. We emphasize that the general reduced-density-

operator description is applicable to non-equilibrium 

quantum-statistical distributions for the charged particles and 

the electromagnetic fields, which can be obtained starting 

from the time-domain (equation-of-motion) formulation of 

our reduced-density-operator description presented below. 

The general expression for the final-state projection operator 

given by Eq. (28) can be adapted to define the photon-

polarization density operator that will replace the simplified 

expression given by Eq. (1). 

Eq. (27) has been simplified by introducing the 

conventional assumption that the initial-state reduced density 

operator can be expressed as a tensor product of the separate 

initial-state density operators for the isolated charged-particle 

system (S) and for the relevant radiation field (R), i. e., 

. Note that, in this eigenstate decomposition, 

both the initial matter-state coherences (corresponding to the 

non-diagonal reduced-density-matrix elements with ) 

and the analogous initial-state electromagnetic-field 

correlations (involving non-diagonal reduced-density-matrix 

elements with ) have been taken into account. 

When the system-environment interactions are sufficiently 

weak, the Liouville-space self-energy operator  may be 

expanded in a perturbation series involving increasing 

powers of the total Liouville-space interaction operator . 

Retaining only the lowest-order non-vanishing contribution, 

which corresponds to the Born approximation, the total 

spectral-line shift and width in the diagonal-resolvent 

approximation can be reduced to the sums of the partial 

contributions from elementary collisional and radiative 

processes acting alone [4]. Interference between transition 

amplitudes can occur in the high-order contributions to the 

width and shift, as well as in our general tetradic-matrix 

expression, which is valid for overlapping spectral lines. 

2. Time-domain (Equation-of-Motion) Formulation 

The time-domain (equation-of-motion) formulation of the 

reduced-density-operator description is based on the 

generalized Master equation [36, 37]: 

    (29) 

This closed-form equation of motion for the reduced, 

relevant density operator  has been derived by 

neglecting the initial-state correlations. Initial-state 

correlations are automatically excluded by the conventional 

assumption that the entire initial-state density operator for the 

combined, interacting light-matter system can be represented 

as an uncorrelated, tensor product of individual density 

operators for the separate, isolated subsystems. The photon 

density matrix obtained by means of Eq. (29) can provide a 

more general time-dependent description than the photon 

density matrix ρ�=t?	that is obtained from Eq. (16). 

a. Time-Domain Self-Energy Operator 

The time-domain Liouville-space self-energy operator 

kernel  can be formally expressed by means of the 

relationships [36, 37]: 

                        (30) 

L 

V V =V 
r +V 

ir

V ir ρi

r

α = a, n i{ } = a ⊗ n i{ }
Pf

r

b
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r = bb, ′ni{ } ′n i{ }
′ni{ }
∑

b

∑ .

′n

ρi

r = ρi

S ⊗ρi

R

a≠ ′a 

n i{ }≠ ′ni{ }

Σ 

V 

∂
∂t

ρr (t)=− iLr (t)ρr (t) − i d ′t Σ(t, ′t )
t0

t

∫ ρr ( ′t ).

ρr (t) =P ρ(t)

Σ (t, ′ t )

Σ (t, ′ t )=− iP V (t)Q g Q(t, ′ t )Q V ( ′ t )P =− iTrE V (t)Q g Q (t, ′ t )Q V ( ′ t )ρE[ ].
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The Q-subspace projection  of the Liouville-

space propagator is defined, in terms of the time-ordering 

operator T, as follows: 

              (31) 

In contrast to the propagator  corresponding to the 

total Liouvillian operator  for the closed interacting light-

matter system, which describes unitary (reversible) time 

evolution, the Q-subspace projection describes non-unitary 

(irreversible) time evolution. The Liouville-space self-energy 

operator kernel , which appears in the time-domain 

(equation-of-motion) formulation, can be related to the time-

independent Liouville-space self-energy operator , 

occurring in the frequency-domain (resolvent-operator) 

formulation. This relationship may be viewed in terms of the 

connection between the time-domain propagator and 

corresponding frequency-domain resolvent operator, which can 

be most generally expressed in the contour-integration form: 

      (32) 

where the general contour integration can be evaluated as a 

Fourier or a Laplace transformation. 

In the commonly adopted Markov (short-memory-time) 

approximation, the Liouville-space self-energy operator 

kernel  is assumed to be independent of time. The 

Markov approximation can be introduced into the equation of 

motion for the reduced, relevant density operator  by 

utilizing the relationship: 

                     (33) 

In this approximation, the corresponding frequency-

domain Liouville-space self-energy operator , which 

will be denoted simply by , is independent of the 

frequency. For a completely consistent treatment of the non-

Markovian dynamics, it may be necessary to retain the 

initial-state correlation term that was excluded in the 

derivation of the generalized Master equation. 

b. Many-Particle-System and Electromagnetic-Field 

Equations 

An equation of motion for the many-particle-system 

density operator can be derived from Eq. (29) by performing 

the additional average (partial-trace) operation over the 

photon states. On the other hand, the dynamical equation for 

the density operator representing the quantum-statistical state 

of the electromagnetic field can be obtained from Eq. (29) by 

carrying out the complimentary additional average (partial-

trace) operation over the many-particle-system states. 

Quantum-mechanical interference terms will be 

encountered in the evaluation of the tetradic matrix elements 

of the Liouville-space self-energy operator kernel that 

appears in the equation of motion for the many-particle-

system density operator. After introducing the Born (lowest-

order) and Markov (short-memory-time) approximations, the 

set of dynamical equations for the many-particle-system 

state-population densities (corresponding to the diagonal 

density-matrix elements) can be expressed in terms of the 

familiar (lowest-order) radiative and non-radiative transition 

rates that are obtained from an evaluation of the standard 

Fermi Golden-Rule formula of ordinary Hilbert-space 

perturbation theory. The optical Bloch equations are usually 

understood to correspond to the extended set of density-

matrix equations, taking into account the many-particle-

system state coherences (corresponding to the non-diagonal 

density-matrix elements). 

C. Reduced-Density-Operator Description in the 

Heisenberg Picture 

In the Heisenberg picture, the reduced density operator is 

treated as a time-independent operator, while operators 

corresponding to observable quantities, such as those 

representing the quantized electromagnetic field, are treated 

as time-dependent. It is convenient to introduce a set of time-

dependent operators  corresponding to observables 

on a quantum system [28, 38]. For examples, the 

macroscopic electromagnetic fields can be obtained by 

choosing the time-dependent operators to be the microscopic 

electromagnetic-field operators. It is well known that the 

dynamical equations for the macroscopic electromagnetic 

fields that are derived from the quantized-field operators 

have the same form as the Maxwell Equations of classical 

electromagnetic theory, provided that the microscopic charge 

density and current density operators (occurring in the 

equations for the microscopic electromagnetic-field 

operators) are allowed to have their most general non-local 

and non-linear forms. It is also well known that the 

corresponding definition in the Schrödinger picture should 

yield the same expectation values, when the density operator 

pertains to the entire interacting (closed) light-matter system. 

The analysis may be more advantageous in one of the two 

alternative pictures. For an open quantum system described 

by a reduced density operator, however, different 

expectations values may be obtained in the two alternative 

pictures. If this is the case, then the choice of the picture (that 

is adopted for the description of the non-unitary time 

evolution) will have a significant effect on the predictions 

that are obtained for various physical properties and 

phenomena. 

D. Hierarchical Reduced-Density-Operator Formulations 

for Many-Body Systems 

In the treatment of many-electron quantum correlations 

within the framework of the reduced-density-operator 

approach, it may be necessary to introduce a correlation (or 

cluster) decomposition for the reduced density operator, 

together with a set (hierarchy) of coupled equations of motion 

for the various correlation components. For example, the 

equation of motion for the single-electron reduced density 

operator would be coupled to that for the two-electron reduced 

density operator. This coupling is obviously a consequence of 

g Q(t, ′ t )

g Q(t, ′ t )=T exp − i d ′ ′ t Q L ( ′ ′ t )Q 
′ t 

t

∫
 

 
 

 

 
 .

g(t, ′t )

L

Σ (t, ′ t )

Σ (z)

Σ (t, ′ t )

ρr (t)

Σ (i0)

Σ 

{Gµ (t)}
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the electron-electron interaction. The introduction of this set 

(hierarchy) of coupled reduced-density-operator equations of 

motion is expected to be essential for the practical description 

of solid-state systems, for which the number of electrons is 

very large in comparison with that for atomic systems. In order 

to treat a quantized electromagnetic field on an equal footing 

with the quantized electronic system, it will be necessary to 

introduce a generalized correlation (or cluster) decomposition, 

together with a generalized correlation hierarchy of coupled 

reduced-density-operator equations of motion. In this 

generalization, quantum correlations involving the photons 

would be included, on an equal footing with the charged-

particle correlations. A further generalization would be 

necessary to take into account correlations involving phonons. 

In the reduced-density-matrix approach, it will be necessary to 

separate the many-body correlations that must be treated as a 

part of a fully correlated quantum system from those 

interactions (if any) that can be adequately treated as 

environmental effects. 

E. Perturbation-Theory Treatments 

In the Schrödinger picture, the reduced-density operator 

may be expanded in a perturbation-theory series, in 

increasing powers of the electromagnetic-interaction 

operator. An infinite set (hierarchy) of coupled integro-

differential equations can be obtained for the 

electromagnetic-field components of the reduce-density-

operator describing the matter system, and another 

(complimentary) infinite set (hierarchy) of coupled equations 

can be derived for the time-independent operators. In our 

semi-classical reduced-density-operator description of the 

electromagnetic interaction [4], the electromagnetic-field 

components are labeled by the powers of the electric-field 

components of the classical electromagnetic field. In the 

quantized-field description, a spatial photon-mode 

representation can be introduced, such as the plane-wave 

expansions. In the alternative Heisenberg picture, each of the 

time-dependent operators in the selected set of the physical 

observables may be expanded in a perturbation-theory series. 

6. Conclusions and Future Plans 

In Section II, we have presented a steady-state (time-

independent) polarization density-matrix description of 

superradiant emission, emphasizing that a realistic treatment 

of the superradiant emission process it expected to require 

the incorporation of initial-state coherences. The evaluation 

of the expression for the polarization density-matrix will also 

require a detailed knowledge of the cooperative interactions 

among the individual many-electron atomic systems 

comprising the ensemble. In Section III, a time-dependent 

description of superradiant emission has been presented. The 

time-dependent description is expected to be necessary for a 

more general characterization of the angular distribution and 

polarization of the superradiant emission under general 

excitation conditions. In Section IV, we discussed the 

representation of the atomic-ensemble states. In Section V, 

we presented a more comprehensive reduced-density-

operator approach, considering the influence of 

environmental decoherence and relaxation processes on both 

the atomic-ensemble states and the spectral-lines shapes. 

Reduced-density-operator descriptions have been previously 

employed for the description of superradiant emission in 

various many-electron ensembles [40]. A closely related 

phenomenon, known as superabsorption, has also been 

described [40]. Finally, the suppression of spontaneous 

emission for coherent momentum transfer has been observed 

experimentally [43]. 
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