Exploring the Socio-Ecological Characteristics of Gahkuch Marshland: A Unique Wetlands Ecosystem in Hindukush Mountain Ranges

Yawar Abbas1,2,*, Babar Khan1, Farasat Ali1, Garee Khan1, Syed Naeem Abbas3, Rizwan Karim4, Saeed Abbas1, Nawazish Ali5, Ejaz Hussain1

1World Wide Fund for Nature-Pakistan, NLI Colony Jutiyal, Gilgit, Pakistan
2Department of Earth and Environmental Sciences, Bahria University, Islamabad, Pakistan
3Forest, Parks and Wildlife Department, Gilgit, Pakistan
4Department of Forestry and Range Management, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
5Department of Agriculture and Food Sciences, Karakoram International University, Gilgit, Pakistan

Email address: yawar_zaid@yahoo.com (Y. Abbas)

To cite this article:
Exploring the Socio-Ecological Characteristics of Gahkuch Marshland: A Unique Wetlands Ecosystem in Hindukush Mountain Ranges.

Abstract: Gahkuch marshland spreading over 133.54 hectare amidst Hindukush mountain ranges in northern Pakistan is characterized by typical wetlands ecosystem, comprising of small lakes, streams, peat lands, bogs, marshy areas and riverain forests. The area abodes largest resident population of waterfowl in Gilgit- Baltistan, in addition to providing wintering and staging ground for a large number of migratory birds and other aquatic life. A detailed socio ecological study conducted during August to September, 2011 revealed that the area is rich in biodiversity, harboring eight large and three small mammal species, 35 species of birds, seven species of fish, eight species of trees and 18 species of medicinal and economic plants and seventeen families of benthic-macro invertebrates. Moreover, six physical, nineteen chemical and three biological parameters of water bodies were also determined. In addition to its ecological significance the area also supports livelihoods of about 10000 people by providing timber, fuel wood, grazing ground and fish resources. Anthropogenic pressures includes solid waste, influent and illegal hunting were key threats to wetlands and its resources. Wetlands management planning in collaboration with key stakeholders would be effective approach to protect important biodiversity and wetlands resources of the area.

Keywords: Gahkuch, Marshland, Wetlands, WWF, Benthic, Hindukush

1. Introduction

Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters. (Ramsar Convention, 1971). It is difficult to clearly demarcate boundaries between wetlands and adjacent deep-water systems, especially when water levels fluctuate greatly and frequently between extremes (seasonal wetlands) (RCS, 2006). Wetlands are sensitive ecosystems providing habitats for a variety of plants species, birds, small mammals and other aquatic biota. The term “wetland” is mostly used to explain diverse habitats where the land is wet for extensive period of the year or season but not essentially permanent waterlogged (Collins, 2005). ‘Wetland’ is a term used to define a variety of habitats in different climatic zones of the Globe. Ecologically, wetlands are transitional (ecotonal) systems between upland terrestrial and deep open water systems. They are characterized by aquatic vegetation (hydrophytes) (Mitsch and Gosselink, 2007). Wetlands are most important freshwater resources; fresh water forms the habitat of large number of species. These aquatic organisms and the ecosystem in which they live, represent a substantial sector of the Earth’s biological diversity (UNEP, 1994). Around 50% of the world’s wetlands have been lost in the past century alone due to urbanization, drainage for agriculture, and water system regulation (Shine and de Klemm, 1999).
High altitude wetlands, which include lakes, marshes, seeps, peat bogs etc, in the Himalayas have several characteristics that make them unique in terms of their biodiversity value. The plants and animals that occur in and around them are often endemic and highly adapted to their locations. (WWF, 2010). Alpine wetlands are critical ecosystems at risk from natural and manmade threats. In the Indian subcontinent, they are reservoirs of biodiversity, providing staging and breeding ground for migratory birds across Himalayas, and supporting many types of endemic wildlife. Human communities also inhabit the regions surrounding the high-altitude wetlands; they rely upon the ecosystem services (Srinivasan, 2002). High-altitude wetlands cover only approximately 3% of the total land area (Maltby and Immirzi, 1993). Alpine wetlands can store approximately 30% of the global terrestrial carbon (Gorham, 1991; Blodau, 2002). Pakistan supports an estimated 7,800,000 hectares (ha) of wetlands and in excess of 225 significant wetland resources are recorded by 2004, nineteen of these have been internationally recognized by the Ramsar Convention Bureau as being of global importance and about one-third of Pakistan bird species use wetlands for food, shelter, and (or) breeding (Ali, 2005), however, the birds that visit or breed in poorer quality habitats will not contribute to a sustainable population through the years (Pulliam and Danielson 1991).

Gahkuch Marshland is one of such valued and critical wetland ecosystem, occurring at higher elevations but its socio ecological significance has never been documented. The current paper elaborates finding of a study conducted during August to September, 2011 to explore and record key socio ecological characteristics of Gahkuch Marshland.

2. Materials and Methods

2.1. Study Area

Gahkuch wetland complex located at 36° 10’ 19.5” N, 73° 46’ 25.3” E and at an elevation of 1899 m comprises of marshland, peats, riverain ecosystem along Ghizer River and more than a dozen lakes. The typical marshland spreading over 133.54 hectare is situated adjacent to Ghizer river in the district headquarter; Gahkuch and is owned by the Gilgit-Baltistan Forest & Wildlife Department and the local community, whereas, the upland cluster of three lake locally called Barosar, Chunosar and Photakesar covering some 427.24 sq km area are surrounded by lush green pastures abound in medicinal herbs.

2.2. Methods

A random sampling procedure was followed to study the large mammals around the Gahkuch Marshland and in some places transect methods were applied to estimate the population density of the large mammals while Transect method was also applied to study the small mammals of the areas. Techniques used during the studies are visual Sighting.
Vegetation survey was under taken and collected plant specimens during their specific blooming season. Collected specimens were gathered with field information’s and properly pressed with the help of plants presser. The ethno-botanical information and traditional uses of plants were documented by interviewing local and filling of questionnaires from local experts both men and women. Species identified with help books and desk assessment was done to develop a check list of plants from Gahkuch Marshland. Equipment used during field survey were Garmin Global Positioning System (GPS), Columbia digital camera , plants pressers, blotting papers, note book, maps, pencils, plants pressers, polythene bags, Sesser and magnifying mirror. Birds caught were identified and blood samples were taken per day (beginning at local sunrise) during the study. All the parameters of water samples were determined referring to the banks of clear shallow streams. Trapping used for specific species using specific baits. Gill netting and seine netting was used for DNA analysis. A 10x42 mm Olympus binocular, 20x45-60 mm Nikon telescope, Garmin Map 76 GPS receiver, note book, lead pencils, field guide, Birds of Pakistan by Grimmett et. al (2008). Pocket guide to the “Birds of Indian Subcontinent” by Richard Grimmett (2001) and “a field guide to the Birds of the Indian Subcontinent” by KrysKazmierczak (2000) were used in the field.

Hydro chemical and physical properties were tested from a total of five sampling sites selected in Gahkuch Marshland on the basis of topography, surface geology, break and human made structures. During survey, each site was marked using a GPS. To study the affect of water quality sampling bottle of 450ml was filled completely from each sampling site mentioned above for the determination of water quality and heavy metals contents. All the physical and chemical parameters of water samples were determined referring to the American Public Health Association (APHA).

For fish surveys recognized methods used included bank-side counts, trapping, cast netting, seine netting, gill netting, and electro-fishing. Bank-side counts are preferred on the banks of clear shallow streams. Trapping used for specific species using specific baits. Gill netting and seine netting was mainly done in Marshland (Survey guidelines for Australia’s threatened fish, 2004). All the specimen data and the relevant auxiliary information were recorded in the data sheet specially designed for these studies.

Baseline information on aquatic invertebrates (benthic macro-invertebrates and zooplanktons) of Gahkuch Marshland was studied by collecting three samples from different braided channels of Ghizer River. The samples were collected by two persons (first person hold D-frame dip net facing second person that help to disturb substrate by kicks). A total of 20 kicks were taken over the length of the stretch from all possible substrates. Four kicks were made at each transect. A total area of 3.1 m² was disturbed. After every 2 kicks, more often if necessary, the collected material was washed by running clean water through the net for two to three times. Then transferred to white enameled tray, thoroughly check all wooden debris for organism attachment and remove it from the sample. Then sample was transferred to preservation bottle having sufficient 5-10% formalin solution. External label was written with sampling locality, date of collection and collector name on external upper side of lid and lower bottom of sample container. An interior label written in pencil on waterproof paper was inserted as a backup. At last sampling bottle was placed inside an air tight ½ barrel hard plastic drum to avoid inhalation of formalin fumes and safe transportation during field operations.

To assess socio-economic conditions of local communities and understanding of extent of dependency on high altitude wetland, integrated management option for sustainable uses of natural resources a number of methodologies including group discussion, questionnaire survey and personal observation were employed during the study.

3. Results

3.1. Large Mammals and Small Mammals

A total of 8 species of mammals were recorded in the area. *Canis lupus* (Wolf), *Capra ibex* (Himalayan Ibex) and *Moschuschrysogaster* (Himalayan Musk Deer) were reported by the Wildlife staff and local peoples. Only one species of lagomorphs, *Lepus capensis* (Cape Hare) was seen. The fecal material of the *Vulpes vulpes* (Common Red Fox) was observed on different places of the area. The area is rich in large mammal species which adequate that the area is ecological rich in biodiversity. Three species of rodents, *Apodemousrusiges* (Himalayan Wood Mouse,), *Mus musculus* (House Mouse) and *Rattusturkestanicus* (Turkistan Rat) and one insectivore, *Crocidurapullata* (Asiatic White-toothed Shrew) were recorded in the study sites.

3.2. Records of Trapped Small Mammals in the Study Sites

Trapping results at Gahkuch Marshland shows that the site is productive as three species of rodents i.e., *Apodemousrusiges, Mus musculus, Rattusturkestanicus and Crocidurapullata* (Asiatic White-toothed Shrew) were trapped in the study area. The overall trapping success remains 51.76%. The 10.41% traps were tripped due to unknown reason while the 20.25% traps were dislocated from their original trapping stations, which can be ascribed about the fluent movement of some mammals at night. In terms of relative abundance, 45.30 % of the total trapped specimens were Himalayan Wood Mouse, 31.10% was *Mus musculus* (House Mouse), 15.11% *Rattusturkestanicus* (Turkestan Rat) while the 8.49% was *Crocidurapullata* (Asiatic White-toothed Shrew).
3.3. Taxonomic Records with Conservation Status

The conservation status of mammalian fauna in Gahkuch marshland is determined by referring to IUCN red list (2010). Out of 8 mammalian species of the area Moschus moschiferus (Himalayan Musk Deer) are listed on CITES appendix I and are classified as Endangered, while the other 7 species are included as Least Concerned. Three species i.e., Moschus moschiferus (Himalayan Musk Deer), Canis lupus (Wolf), are rare in the area. Vulpes vulpes (Common Red Fox), Lepus capensis (Cape Hare), Apodemus speciosus (Himalayan Wood Mouse), Mus musculus (House Mouse) and Rattus norvegicus (Turkistan Rat) are common in the area while the Crocidura russula (Asian White-toothed Shrew) are less common as compared to the other small mammals of the area which are described in Table 1.

3.4. Common Flora of the Area

The area falls in dry temperate zone, receiving no monsoon rains. It represents small patches of mixed, Blue pine, Spruce, Juniper, Salix and Birch forests. However, in community owned portion, Willow and Popular have been planted to meet timber and firewood needs. Major floral species identified were as follow in Table. 2.

3.6. Fish Fauna

Seven species of fishes have been recorded from the River Ghizer and in the marshland (Table 4). The fish Salmo trutta fario is an exotic fish and introduced in the Gilgit-Baltistan in 1916 by the British representative. It is common in the water bodies of Gilgit-Baltistan, especially in the lakes and streams. The brown trout is confined to crystal clear cold waters of high altitude lakes and streams. They generally avoid entering into main rivers due to high turbidity generally prevailing in these rivers. It is one of the major source of protein for the masses and is mainly caught by rod and line but netting by cast net is also practiced which is a major threat for this species. Different teams from the area come with their tents and ration on specific trout spots and they catch fish for many days for commercial purposes.

3.5. Avi Fauna

The recent study revealed 35 birds’ species of 11 orders in the Gahkuch Marshland from which 11 were resident species 9 were summer migrants while 8 were winter visitor species. Migratory waterfowl were recorded in the study area were common pintail, Anser indicus, Common Teal, Eurasian Wigeon and Gadwall. Gahkuch Marshland, typical wetland in Gilgit-Baltistan is important in term of migratory waterfowl because it provides staging ground for migratory birds while at the same time also harboring a sound population of resident. Mostly birds prefer this area because of food, shelter and nest. Identified birds in Gahkuch Marshland is given below in Table 3.
are endemic in the upper reaches of the Indus drainage. *Glyptosternum reticulatum* is the only cat fish in the area and is distributed up till Khalti Lake in the river Gilgit.
Tabanidae, Hydrophilidae, Naididae and Tubificidae were not recorded from S1. Sampling station S2 was found abundant with Chironomidae 52 individuals followed by Baetis sp. 36 individuals and Tanytopinae (Chironomidae) 31 individuals. Following six taxa were not recorded at S2, Epeorus sp., Lepidostoma sp., Simuliiidae, Culex sp., Elmidae and Hydracarina (Arachnida), Sampling station S1 was again dominated by Chironomidae 147 individuals followed by Tanytopinae 94 individuals and Baetis sp. 84 individuals. Five taxa including, Mesonemoura sp., Epeorus sp., Probezzia sp., Elmidae and Psychomyiidae were not recorded from S1. Organism’s pollution tolerance was taken from HKHbios (Hindukush Himalayan score Bioassessment) scoring list. Extremely pollution sensitive organisms richness were maximum at sampling station S2, e.g., Mesonemoura sp. and Rhithrogena sp. Extremely pollution tolerant taxa were Bezzia sp. and Probezzia sp. among them first one was found at all sampling sites while later in S2 only.

The diversity indices of benthic macro-invertebrates (BMIs) of Gahkuch Wetland Complex were displayed. The dominance index score 0.25 was detected higher at S1. It was attained due to the increase of relative abundance of single taxon Tanytopinae 35.9% of the total count, consequently other taxon were poorly represented. For that reason, the diversity indices including Shannon Weiner and Simpson score were lower due to higher dominance score of sampling station S1. These results were a sign of less equitable distribution of BMIs taxa at S1 and S2. At sampling station S2 the dominance index score 0.15 was two times less than the other sampling stations. The tax relative abundance is relatively evenly distributed at S2, therefore, diversity indices Shannon Weiner, Simpson and Evenness score of S2 were higher than the S1 and S3. It showed that sampling station S2 was more equitable in distribution of taxa as compared to S2 and S3.

Macro-invertebrates, number of individuals, relative abundance (values inside parenthesis) functional feeding groups and pollution tolerance values at Gahkuch Wetland Complex. (Very sensitive taxa are those taxa given HKHbios score of 10 & 9 extremely tolerant taxa are those taxa given a HKH bios score of 1 & 2)

Many species of benthic macro-invertebrates are diagnostic of certain kinds of habitats and their water quality, commonly known as indicator organisms. These organisms become numerically dominant only under a specific set of environmental conditions. The Ephemeroptera (mayflies),

Table 5. Benthic.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Taxa (Family/ Class)</th>
<th>Genus</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Functional feeding groups</th>
<th>Pollution Tolerance (Based on HKH bios scoring list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nemouriidae</td>
<td>Mesonemoura sp.</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>Shredders</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Heptageniidae</td>
<td>Rhithrogena sp.</td>
<td>14</td>
<td>23</td>
<td>8</td>
<td>Scrapers</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Epeorus sp.</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>Scrapers</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Baetidae</td>
<td>Baetissp.</td>
<td>158</td>
<td>36</td>
<td>84</td>
<td>Collector gatherers</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Hydropsychidae</td>
<td>Hydropsych sp.</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>Collector filterers</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Psychomyiidae</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>Collector gatherers/ Scrapers</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Gomphidae</td>
<td>Omphioomphasp.</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>Predators</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Lepidostomatidae</td>
<td>Lepidostoma sp.</td>
<td>5</td>
<td>-</td>
<td>8</td>
<td>Shredders</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Chironomidae</td>
<td>-</td>
<td>123</td>
<td>52</td>
<td>147</td>
<td>Unknown</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Tanytopinae</td>
<td>-</td>
<td>210</td>
<td>31</td>
<td>94</td>
<td>Predators</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Ceratopogonidae</td>
<td>Bezzia sp.</td>
<td>16</td>
<td>5</td>
<td>10</td>
<td>Predators</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Probezziasp.</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>Predators</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Simuliiidae</td>
<td>-</td>
<td>27</td>
<td>-</td>
<td>15</td>
<td>Collector filterers</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>Tabanidae</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>Collector gatherers / Predators</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>Culicidae</td>
<td>Culex sp.</td>
<td>8</td>
<td>-</td>
<td>3</td>
<td>Collector filterers</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Elmidae</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Scrapers / Collector gatherers</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>Hydrophilidae</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>Unknown</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>Naididae</td>
<td>-</td>
<td>25</td>
<td>10</td>
<td>-</td>
<td>Collector gatherers</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>Tubificidae</td>
<td>-</td>
<td>16</td>
<td>9</td>
<td>-</td>
<td>Collector gatherers</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Hydracarina (Arachnida)</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>5</td>
<td>Predators</td>
<td>-</td>
</tr>
<tr>
<td>No. of Individuals</td>
<td>-</td>
<td>585</td>
<td>208</td>
<td>405</td>
<td>-</td>
<td>Total No. of Individuals= 1198</td>
<td></td>
</tr>
<tr>
<td>Number of taxa</td>
<td>-</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Nemouridae (stoneflies), Trichoptera (caddisflies) and Diptera (true flies) are commonly, or perhaps always, the four orders used as indicator organisms in environmental impact assessments. For this reason, more emphasis is placed on these orders than on others of insects. The highly pollution sensitive taxa Mesonemoura sp. and Rhithrogena sp. were found at S1. Therefore, above mentioned organisms would respond by first disappearing after further environmental degradation or perturbation at sampling station S2.

The overall conclusions revealed that
* Among benthic macro-invertebrates Tanypodinae (35.9% of total count) was dominant at sampling station S1. Chironomidae were dominant at S2 and S3, while share 25% and 36.3% of total count respectively
* Organism’s pollution tolerance was taken from HKHbios (Hindukush Himalayan score Bioassessment)

3.8.2. Chemical Parameters

The values of all chemical properties were found to be normal as suggested by USEPA, WHO and Pak EPA. Difference in values of physical properties due to distance, geographic location, biological and chemical activities in and around marshland.

Table 6. Physical parameters of water at Gahkuch Marsh Land Lake.

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameters</th>
<th>Units</th>
<th>Site-I</th>
<th>Site-II</th>
<th>Site-III</th>
<th>Site IV</th>
<th>Site V</th>
<th>Standard Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temp Air</td>
<td>°C</td>
<td>17.5</td>
<td>16.8</td>
<td>17.2</td>
<td>16.6</td>
<td>16.5</td>
<td>40.0</td>
</tr>
<tr>
<td>2</td>
<td>Temp Water</td>
<td>°C</td>
<td>12.0</td>
<td>11.4</td>
<td>12.3</td>
<td>12.9</td>
<td>10.0</td>
<td>35.0</td>
</tr>
<tr>
<td>3</td>
<td>pH</td>
<td></td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>6.2-7.5</td>
</tr>
<tr>
<td>4</td>
<td>Color</td>
<td>TCU</td>
<td>36</td>
<td>22</td>
<td>32</td>
<td>28</td>
<td>35</td>
<td>50.0</td>
</tr>
<tr>
<td>5</td>
<td>Odor</td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Un-objectionable</td>
</tr>
<tr>
<td>6</td>
<td>Turbidity</td>
<td>NTU</td>
<td>14.0</td>
<td>13.2</td>
<td>14.3</td>
<td>13.2</td>
<td>14.2</td>
<td>25.0</td>
</tr>
</tbody>
</table>

3.8.3. Biological Parameters

The value of biological parameters has been shown in Table 8. The higher value of ammonia was found at site IV i.e. 0.007mg/l followed by site III i.e. 0.005mg/l. The lower value was found at site V i.e. 0.002mg/l. The higher value of BOD was found at site III i.e. 3.231mg/l followed by site I i.e. 3.213mg/l. The higher value of COD were found at sites V i.e. 3.413mg/l followed by site III i.e. 3.321mg/l. The significantly lower value was found at site II i.e. 2.213mg/l. The values were found to be in normal range as suggested by US EPA, WHO and Pak EPA. According to Pakistan NEQS, the maximum limit of COD for municipal and industrial effluents is 150mg/l for inland waters.

Table 8. Biological parameters of water at Gahkuch Marsh Land.

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameters</th>
<th>Units</th>
<th>Site-I</th>
<th>Site-II</th>
<th>Site-III</th>
<th>Site IV</th>
<th>Site V</th>
<th>Standard Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ammonia</td>
<td>mg/l</td>
<td>0.004</td>
<td>0.003</td>
<td>0.005</td>
<td>0.007</td>
<td>0.002</td>
<td>0.500</td>
</tr>
<tr>
<td>2</td>
<td>BOD</td>
<td>mg/l</td>
<td>3.213</td>
<td>3.141</td>
<td>3.231</td>
<td>3.221</td>
<td>2.132</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>COD</td>
<td>mg/l</td>
<td>2.654</td>
<td>2.213</td>
<td>3.312</td>
<td>3.221</td>
<td>3.413</td>
<td>10.0</td>
</tr>
</tbody>
</table>

3.8.4. Socio Economic

There are total 600 households in Gahkuch Bala with a population of 5400 individuals, while in Gahkuch Paeen is comprised of 500 households with population of 4500 individuals. Natural forest of Gahkuch Nallah is government protected, but some concession on fuel wood collection and grazing right are granted to local community to fulfill their domestic requirement.

Major land use in the area is subsistence farming and
livestock rearing. It is clear that farming is major form of local land use. But still traditional agriculture is being techniques practiced in upper Gahkuch and adjust areas. The alluvium traces and fans mostly used growing for fruits trees and fodder cultivation, but during study it was revealed that average crop production per household wheat is 456 kg, maize 36 kg and 804 kg potatoes respectively. Gahkuch Paeen falls under double cropping zone while Gahkuch Bala is single cropping zone. Mostly the villager’s prefer potatoes and wheat than maize and barley.

Livestock is integral part of the livelihoods in the study area, livestock contributing inputs such as farm and manure. In Gahkuch valley 65% people have livestock, of whom 35% sale livestock products in markets and rest utilized for domestic purposes. Average livestock population per household was 11.4 including cows, goats and sheep respectively. Livestock population in upper Gahkuch is higher than lower Gahkuch. Goats and sheep mostly grazed in Gahkuch Nullah without a proper grazing system.

Socio-economic study in the area revealed that community is dependent on natural resources e.g. forest, wildlife, agriculture, water, wetlands and pastures because lack of opportunities for jobs, and alternate source of energy.

4. Conclusion

The baseline socio ecological studies revealed that Gahkuch Marshland is one of the significant wetland providing habitats for small and large mammals, migratory birds, fish species and other aquatic life and flor al species. Providing habitats for small and large mammals, migratory birds at Uchalli Wetlands Complex, Punjab, Pakistan. A thesis submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of Doctor of philosophy in Zoology (unpublished).

Acknowledgement

Socio ecological studies conducted under World Wide for Natural Pakistan and its Saving Wetlands Sky High Programme and Pakistan Wetlands Programme. The authors wish to thank World Wide Fund for Nature Pakistan for supporting the field studies.

References

