How to Deduce the Remaining 23 Valid Syllogisms from the Validity of the Syllogism EIO-1

Xiaojun Zhang¹, Hui Li¹, Yijiang Hao²

¹School of Philosophy, Anhui University, Hefei, China
²Institute of Philosophy, Chinese Academy of Social Sciences, Beijing, China

Email address:
591551032@qq.com (Xiaojun Zhang), 1975496490@qq.com (Hui Li), 2127848827@qq.com (Yijiang Hao)

To cite this article:

Received: October 9, 2022; Accepted: November 1, 2022; Published: November 11, 2022

Abstract: Syllogistic reasoning plays an important role in human reasoning, and has been widely studied from Aristotle onward. In previous studies, when deriving all the other valid syllogisms, at least two valid syllogisms were taken as the basic axioms. While this paper derives all other valid syllogisms only from one valid syllogism. On the basis of generalized quantifier theory and set theory, this paper shows that the remaining 23 valid syllogisms can be derived only from the syllogism EIO-1 by making the best of the definitions of three negative quantifiers of Aristotelian quantifiers, the symmetry of Aristotelian quantifiers no and some, and several propositional reasoning rules such as anti-syllogism rules and the subsequent weakening rule, and so on. This paper syntactically provides a simple and reasonable mathematical model for studying other kinds of syllogisms, such as generalized syllogistic, rational syllogistic, Aristotelian modal syllogistic and generalized modal syllogistic. And this research shows that formalized logic has the characteristics of structuralism, that is, it studies not only the forms and laws of thinking, but also the structure of thinking objects and the relationship between structures. It is hoped that this formal and innovative research is not only beneficial to the further development of various syllogistic logics, but also to natural language information processing in computer science, and also to knowledge representation and knowledge reasoning in Artificial Intelligence.

Keywords: Generalized Quantifier Theory, Aristotelian Syllogisms, Axioms, Aristotelian Quantifiers, Rules

1. Introduction

Syllogistic reasoning is a common form of reasoning in natural language [1-3], which has been widely studied and plays an important role in logic [4-10]. Aristotelian syllogistic logic mainly studies the semantic properties and reasoning properties of four Aristotelian quantifiers, that is, all, no, some and not all [11, 12]. The major premise, minor premise and conclusion of an Aristotelian syllogism can be composed of the four sorts of propositions A, E, I and O, and the middle term has four different positions in the major and minor premises, hence there are (4×4×4×4)=256 kinds of Aristotelian syllogisms, and only 24 syllogisms are valid among them [13, 14]. Łukasiewicz [15] formally derived the other 22 valid Aristotelian syllogisms from the two Aristotelian syllogisms AAA-I and AII-3 by using propositional reasoning rules. On the basis of Łukasiewicz’s work, and by means of the knowledge of first-order logic, Shushan Cai [16] axiomatized Aristotelian syllogistic logic from the two syllogisms AAA-I and AII-3 and the fact aEb→bEa (that is, the symmetry of Aristotelian quantifier no). By means of generalized quantifier theory, Xiaojun Zhang and Sheng Li [13] formally proved the remaining 22 valid Aristotelian syllogisms from the two Aristotelian syllogisms AAA-I and EAE-I. Mengyao Huang and Xiaojun Zhang [17] expounded the work of Łukasiewicz [15] by making use of generalized quantifier theory. Unless otherwise specified, all of syllogisms in the following are Aristotelian syllogisms.

There are many results of studying Aristotelian syllogistic logic by different methods, such as Westerståhl [12], Moss [3, 8], Endrullis and Moss [5], and so on. As far as we know, there are at least two syllogisms as the reasoning basis when one tries to deduce the remaining valid syllogisms [18]. While this paper takes only one
syllogism (that is, EIO-1) as the reasoning basis in order to
deduce the remaining 23 valid syllogisms. More
specifically, this paper syntactically proves that the
remaining 23 valid syllogisms can be derived only based on
the valid syllogism EIO-1 by making full use of generalized
quantifier theory and set theory.

2. The Structure of Syllogisms and Their
Formalization

A syllogism is composed of three categorical propositions.
Every categorical proposition has the form: \(Q(x, y) \), in which
\(Q \) represents any of the four Aristotelian quantifiers (that is,
all, no, some and not all), and \(x \) is the subject variable, \(y \) is the
predicate variable.

(1) \(\text{all}(x, y) \) means “all \(x \) are \(y \)”, which is an universal
affirmative proposition, and called the proposition \(A \).
(2) \(\text{no}(x, y) \) means “no \(x \) are \(y \)”, that is, “all \(x \) are not \(y \)”;
which is an universal negative proposition, and called
the proposition \(E \).
(3) \(\text{some}(x, y) \) means “some \(x \) are \(y \)” , which is a particular
affirmative proposition, and called the proposition \(I \).
(4) \(\text{not all}(x, y) \) means “not all \(x \) are \(y \)”, that is, “some \(x \) are
not \(y \)”, which is a particular negative proposition, and
called the proposition \(O \).

The figures of syllogisms are determined by the position of
the middle term, and its definition is as usual. For example, “no
\(y \) are \(z \), and some \(x \) are \(y \), then not all \(x \) are \(z \)”, in which \(x \), \(y \)
and \(z \) represent the lexical variables in the syllogism. This
syllogism is the first figure and is composed of the categorical
proposition \(E, I \) and \(O \), respectively. Therefore, it is the first
figures syllogism EIO, which can be denoted as EIO-1. The
syllogism can be formalized as \(\text{no}(x, y) \rightarrow (\text{some}(x, y) \rightarrow \text{not all}(x, y)) \). The formalization of other syllogisms is similar to this.

3. Syntax and Semantics of Aristotelian
Syllogism Logic

The initial symbols, formation rules and related definitions
of Aristotelian syllogistic logic are given respectively in the
following.

3.1. Primitive Symbols

(1) lexical variables: \(x, y, z \)
(2) unary negative operator: \(\neg \)
(3) binary implication operator: \(\rightarrow \)
(4) quantifier: \(\text{all} \)
(5) brackets: (,)

3.2. Formation Rules

(1) If \(Q \) is a quantifier, \(x \) and \(y \) are lexical variables, then
\(Q(x, y) \) is a well-formed formula.
(2) If \(p \) and \(q \) are well-formed formulas, then \(p \rightarrow q \) are
well-formed formulas.
(3) Only the formulas obtained through (1) and (2) are
well-formed formulas.

For example, \(\text{all}(x, y) \), and \(\text{all}(x, y) \rightarrow \text{all}(y, z) \) are
well-formed formulas, which read respectively as ‘all \(x \) are \(y \)”
and ‘if all \(x \) are \(y \), then that all \(y \) are \(z \) is false’. Others are
similar.

Let \(D \) be the domain of lexical variables, and \(Q \) be a
quantifier, then the outer quantifier of \(Q \) is denoted as \(\neg Q \),
the inner quantifier of \(Q \) is denoted as \(Q \), and the dual quantifier
of \(Q \) is denoted as \(\neg Q \). For example: not all=\(\neg \text{all} \), no=all=\(\neg \text{all} \),
some=\(\neg \text{all} \), so the quantifier used as the initial symbol in
this paper is only the Aristotelian quantifier \(\text{all} \), and the other
three Aristotelian quantifiers can be obtained by the
definition of negative quantifiers.

3.3. Related Definitions

(1) Definition of connective \(\land \):
\((p \land q) =_{\text{def}} \neg(p \rightarrow \neg q); \)
(2) Definition of connective \(\leftrightarrow \):
\((p \leftrightarrow q) =_{\text{def}} ((p \rightarrow q) \land (q \rightarrow p)); \)
(3) Definition of inner negative quantifier:
\(\neg Q(x, y) =_{\text{def}} Q(x, D-y); \)
(4) Definition of outer negative quantifier:
\(\neg Q(x, y) =_{\text{def}} \neg Q(x, y); \)
(5) Definition of the quantifier \(\text{not all}\):
\(\text{not all}(x, y) =_{\text{def}} \neg \text{all}(x, y); \)
(6) Definition of the quantifier \(\text{no}\):
\(\text{no}(x, y) =_{\text{def}} \text{all}(x, y); \)
(7) Definition of the quantifier \(\text{some}\):
\(\text{some}(x, y) =_{\text{def}} \neg \text{all}(x, y); \)

This paper only studies the propositions containing \(\text{all}(x, y)\),
\(\text{no}(x, y)\), \(\text{some}(x, y) \) and \(\text{not all}(x, y)\), so there is no recursion of
any kind.

4. Axiom System of Aristotelian
Syllogism Logic

In the following, \(\vdash \) represents a proposition or syllogism
that can be proved. For example, the syllogism EIO-1 can be
proved, and denoted as \(\vdash \text{no}(x, y) \rightarrow (\text{some}(x, y) \rightarrow \text{not all}(x, y)) \).
The other notations are similar. The verifiable Aristotelian
syllogisms in the system can be derived from the following
basic axioms and reasoning rules.

4.1. Basic Axioms

(1) A0: if \(\alpha \) is a valid formula in propositional logic, then
\(\vdash \alpha \)
(2) A1: \(\vdash \text{all}(x, x) \).
(3) A2: \(\vdash \text{some}(x, x) \).
(4) A3 (that is, the syllogism EIO-1):
\(\vdash \text{no}(y, z) \rightarrow (\text{some}(x, y) \rightarrow \text{not all}(x, z)); \)

The following reasoning rules in propositional logic will be
used later.

4.2. Reasoning Rules

Aristotelian syllogistic logic is an extension of classical
propositional logic, so the following reasoning rules in the latter are also applicable in the former. In the following rules, α, β, γ, and δ are well-formed formulas.

1. Rule 1 (Replacement rule): if the formula α is obtained from the formula β by means of “replacing one variable with another”, then $\vdash \alpha$ can be derived from $\vdash \beta$.

2. Rule 2 (Modus Ponens): $\vdash \beta$ can be derived from $\vdash (\alpha \rightarrow \beta)$ and $\vdash \alpha$.

3. Rule 3 (Definiens and definiendum interchange): $\vdash (\ldots \alpha \ldots)$ can be obtained from $\vdash (\ldots \beta \ldots)$ and $\alpha \equiv_{df} \beta$, and vice versa.

4. Rule 4 (Substitution of equivalents): $\vdash (\ldots \beta \ldots)$ can be derived from $\vdash (\ldots \alpha \ldots)$ and $\alpha \equiv \beta$, and vice versa.

5. Rule 5 (Double negative): $\vdash \alpha$ can be derived from $\vdash (\ldots \alpha \ldots)$ and $\alpha \equiv \beta$, and vice versa.

6. Rule 6 (Antecedent interchange): $\vdash (\alpha \rightarrow \beta)$ can be obtained from $\vdash (\alpha \rightarrow \beta)$.

7. Rule 7 (Subsequent weakening): $\vdash (\alpha \rightarrow (\beta \rightarrow \gamma))$ can be derived from $\vdash (\alpha \rightarrow (\beta \rightarrow \gamma))$.

8. Rule 8 (Reverse rule): From $\vdash (\alpha \rightarrow \beta)$ infer $\vdash (\beta \rightarrow \alpha)$.

9. Rule 9 (Rule A of anti-syllogism): From $\vdash (\alpha \rightarrow (\beta \rightarrow \gamma))$ infer $\vdash (\alpha \rightarrow (\gamma \rightarrow \beta))$.

10. Rule 10 (Rule B of anti-Syllogism): From $\vdash (\alpha \rightarrow (\beta \rightarrow \gamma))$ infer $\vdash (\beta \rightarrow (\gamma \rightarrow \alpha))$.

4.3. Relevant Facts

According to generalized quantifier theory [13, 19], among the four Aristotelian quantifiers (that is, all, no, some and not all), any three Aristotelian quantifiers are one of the three kinds of negative (that is, inner negative, outer negative and dual negative) quantifiers of the other Aristotelian quantifier. Specifically, (1) all and no, some and not all are inner negations each other, that is, $\forall \equiv \neg \exists$, $\exists \equiv \exists \neg \forall$, $\exists \equiv \exists \neg \forall$; (2) all and not all, some and no are outer negative each other, that is, $\forall \equiv \neg \exists$, $\exists \equiv \exists \neg \forall$; (3) some and not some (i.e. the following fact 2).

On the basis of the above definitions, reasoning rules, and axioms, the following facts can be easily proved by means of the above basic axioms and reasoning rules. And these facts are the definitions or facts in generalized quantifier theory [13, 19], thus their detailed proofs are omitted here.

Fact 1 (inner negation):

1. $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$;
2. $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$;
3. $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$;
4. $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$;
5. $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$;
6. $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$.

Proof:

[1] $\vdash \neg (x, z) \rightarrow \neg (x, y) \rightarrow \neg \neg (x, z)$ (i.e. EIO-1, that is basic axiom A3)

(by Fact 3 and Rule 1)

[2] $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$ (i.e. EIO-2, by [1, 2] and Rule 4)

(by Fact 3 and Rule 1)

[3] $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$ (i.e. EIO-3, by [1, 4] and Rule 4)

(by Fact 3 and Rule 1)

[4] $\vdash \neg (x, y) \rightarrow \neg \neg (x, y)$ (i.e. EIO-4, by [2, 5] and Rule 4)

(by Fact 3 and Rule 1)

4.4. Reducible Relations Between / Among Syllogisms

In the following theorem, EIO-1 \Rightarrow EIO-2 means that the validity of syllogism EIO-2 can be obtained from the validity of syllogism EIO-1. In other words, there is a reducible relationship between the two Aristotelian syllogisms. Others are similar. In fact, the syllogism EIO-1 is the basic axiom A3.

Theorem 1: The remaining 23 valid syllogisms can be derived only from the syllogism EIO-1. According to the order of proof, we find the following reducible relations between/among syllogisms:

1. EIO-1 \Rightarrow EIO-2
2. EIO-1 \Rightarrow EIO-3
3. EIO-1 \Rightarrow EIO-4
4. EIO-1 \Rightarrow EAE-2
5. EIO-1 \Rightarrow EAE-2 \Rightarrow AEE-1
6. EIO-1 \Rightarrow EAE-2 \Rightarrow AEE-1 \Rightarrow AEE-4
7. EIO-1 \Rightarrow AEE-2 \Rightarrow AEE-4
8. EIO-1 \Rightarrow AII-3
9. EIO-1 \Rightarrow AII-3 \Rightarrow AII-1
10. EIO-1 \Rightarrow AII-3 \Rightarrow AII-1 \Rightarrow AII-4
11. EIO-1 \Rightarrow AII-3 \Rightarrow AII-3
12. EIO-1 \Rightarrow EAE-2 \Rightarrow EAO-2
13. EIO-1 \Rightarrow EAE-2 \Rightarrow EAO-2 \Rightarrow EAO-1
14. EIO-1 \Rightarrow EAE-2 \Rightarrow EAO-2 \Rightarrow AEO-4
15. EIO-1 \Rightarrow AEO-2 \Rightarrow AEO-2
16. EIO-1 \Rightarrow AEO-2 \Rightarrow AEO-2
17. EIO-1 \Rightarrow AEO-2 \Rightarrow AEO-2
18. EIO-1 \Rightarrow EAO-2 \Rightarrow EAO-2
19. EIO-1 \Rightarrow EAO-2 \Rightarrow EAO-2
20. EIO-1 \Rightarrow EAO-2 \Rightarrow EAO-2
21. EIO-1 \Rightarrow EAO-2 \Rightarrow EAO-2
22. EIO-1 \Rightarrow EAO-2 \Rightarrow EAO-2
23. EIO-1 \Rightarrow EAO-2 \Rightarrow EAO-2

...
It can be seen from theorem 1 that the remaining 23 valid syllogisms can be derived only from the valid syllogism $EIO-I$ through 48 steps by making full of generalized quantifier theory and the reasoning rules in propositional logic.

Moss [8], Beihai Zhou et al. [20], and Xiaojun Zhang [21] have studied the soundness and completeness of Aristotelian syllogistic logic, however, these studies need to be refined and perfected. For example, Beihai Zhou et al. [20], took four axioms (that is, all(x, x), all(x, \overline{x}), all(\overline{x}, x), and no(x, \overline{x})) as the basic axioms, and took the two syllogisms $AAA-I$ and $EAE-I$ as the initial rules. Using the method of canonical model, they proved the soundness and completeness of Aristotelian syllogistic logic. But this proof was complex and lengthy.

While this paper only takes all(x, x), some(x, x) and the syllogism $EIO-I$ as basic axioms, and uses the reasoning rules in propositional logic and generalized quantifier theory to establish a minimalist formal axiom system for Aristotelian syllogism logic. Then can we simplify the proof of the soundness and completeness of Aristotelian syllogism logic by using generalized quantifier theory? This problem needs further study.

5. Conclusion

This paper shows that the remaining 23 valid syllogisms can be derived only from the syllogisms $EIO-I$ by making the best of the definitions of three negative quantifiers of Aristotelian quantifiers in generalized quantifier theory, the symmetry of Aristotelian quantifiers no and some, and...
reasoning rules in propositional logic. And the proof of reduction between/among different figures and forms of syllogisms is simple and clear.

This innovative research shows that formalized logic has the characteristics of structuralism, that is, it studies not only the forms and laws of thinking, but also the structure of thinking objects and the relationship between structures. And this paper provides a research paradigm for other kinds of syllogistic, such as generalized syllogistic, rational syllogistic, Aristotelian modal syllogistic and generalized modal syllogistic. Therefore, this study is not only beneficial to the further development of various syllogistic logics, but also to natural language information processing in computer science, and also to knowledge representation and knowledge reasoning in Artificial Intelligence.

Acknowledgements

This work was supported by the Key Scientific Research Project of Colleges and Universities in Anhui Province under Grant No. SK2021A0023 and the National Social Science Foundation of China under Grant No. 18ZDA032.

References