Genetic Evaluation and Phenotypic Trend for Some Lactation Traits of Dromedary Camels

Mohamed Ibrahim Shehab El-Din¹, Ahmed Mousa Amer², Amal Abdel-Kareem Othman², Mona Mohamed Sobhy³, *, Mohammed Atef Kamal El-den⁴

¹Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
²Animal Production Research Institute, Agriculture Research Center (ARC), Giza, Egypt
³Animal Reproduction Research Institute, Agriculture Research Center (ARC), Giza, Egypt
⁴Animal Production Department, Faculty of Agriculture, Al-Azhar University, Assuit Branch, Assuit, Egypt

Email address: monagabr17@yahoo.com (Mona Mohamed Sobhy)
*Corresponding author

Abstract: There is a paucity of published work on genetic evaluation of lactation traits in camels using modern methodologies such as MTDFREML (Maximum Likelihood Restricted by Multiple Trait Derivatives Free of Maximum). The current study aimed to estimate the genetic parameters (direct heritability, repeatability and breeding values), and to estimate the phenotypic trend. The studies were including to tal milk yield (TMY/kg), day milk yield (DMY/kg) and length of lactation period (LP). Actual means of TMY, DMY and LP were 1464.90 kg, 4.00 and 418.84, respectively. LP was significantly (P≤0.05) affected by the year and season of calving. Additive heritability (h²a) estimates for TMY, DMY and LP was 0.25, 0.30 and 0.17, respectively. These are promising values for the potential of genetic improvement. Repeatability (t) values recorded a medium value for LP (0.19), while the values were high for both TMY (0.36) and DMY (0.43). The range of predicted breeding values (PBVs) of animals for TMY, DMY and LP were 143.07 kg, 1.5 kg and 113.9 days, respectively. Regression coefficients for she-camels showed a negative annual phenotypic trend (PT) of about -3.58 kg and -0.012 kg per year for TMY and DMY, respectively. A genetic improvement program should be followed to allow exploiting the higher estimates of genetic parameters by relying on animals with positive breeding values.

Keywords: Genetic, Phenotypic Trend, Lactation, Dromedary Camels

1. Introduction

The dromedary camel (Camelus dromedarius) is a valuable species that has evolved and adapted uniquely to hot and arid environments [1]. They are low-cost in terms of nutrition but high-yield in terms of milk, meat, wool, and assistance in transport in a variety of situations, especially for the life of a nomadic inhabitant of the Egyptian desert. Thus, the camel plays a vital role in both the food and social security of nomadic herding families [2].

In developing countries, the contribution of camels to human wellbeing is often obscured by several factors that tend to underestimate their true value, such as inaccurate population estimates due to irregular surveys and the fact that their products rarely enter an official marketing system. As a result, their influence on livelihoods and the national economy is often underestimated. So, for many years, the improvement of camels has received less attention [3].

In the same context, the total number of camels was estimated in Egypt to be 159.000 heads in 2017, while in 2020 it was 110.669 heads [4] with a decreasing percentage of approximately 30.4%.

Moreover, milk does not play a significant role in the economic importance of Egyptian camels. So far, the record for the total production of camel milk in Egypt is not available and is still underestimated [2].
In this respect, there is a paucity of published work on genetic evaluation of lactation traits in camels using modern methods, since most of these estimates were based on a small number of records and applying old methodology [5].

So, the best way to raise the productivity of camels is through reliable and accurate genetic evaluation [6, 7], along with a study of non-genetic factors of economic traits, that allow camel breeders to determine the efficiency of selection for these traits and the best selection method to follow [8].

The present work aims to: 1) evaluate non-genetic effects (year and season of calving) on lactation performance in terms of total milk yield, average daily milk yield, and length of the lactation period. 2) To estimate the phenotypic trend that was realized for these traits across years of calving. 3) Using an animal model to estimate their variance components and genetic parameters (Herdability, permanent maternal environment, and error effects for these lactation traits of this herd. 4) To predict the breeding values for animals of this herd.

2. Materials and Methods

2.1. Experimental Animals and Experimental Design

During the period from December 2012 to April 2021, records of dromedary she-camels were collected from Matrouh Camel Studies and Production Development Center, Animal Production Research Institute (APRI), Egypt, which is located in Marsa Matrouh Governorate (Northwest of Egypt, distance 500 Km from Cairo).

2.2. Management and Feeding

All the animals were treated and medicated similarly, and they were raised under the same managerial and climatic conditions.

According to Banerjee, G. [9], the ration of the camels was determined. During the mating season, the average daily amounts given per head were 35 kg of Egyptian clover (Trifolium alexandrinum) besides 7kg rice straw.

During the dry season, each camel received around 2 kg of commercial concentrate combination, 2 kg of Egyptian clover hay and 9 kg of rice straw each day. Clean, fresh, and communally sheltered water was provided to all camels. The camels were housed in a yard with a shared feeding area and a concrete floor. In an enclosed space, the camels were free to move around.

In most cases, camels are sexually active from October to March. Natural mating has been applied for all she-camels and the calving season continues from November to April. She-camel were mated for the first parity at suitable weight and age (48 months of age or 350-400 kg live body weight), then the following parities She-camels were mated 60 days after parturition. Rectal palpation was used to determine pregnancy 60 days after the last mating.

2.3. Milking Procedure

Born calves were allowed to suckle colostrum from their dams for the first seven days then, milk yield was measured. Hand milking was performed for lactating she-camels twice/day at 8 a.m. and 8 p.m., and the amount of milk yield was calculated individually for each animal and recorded to the nearest 0.1 kg.

2.4. Data and Studied Traits

A total of 302 complete lactations for 33 she-camels (the total number of females annually according to the carrying capacity of the Matrouh Camel Studies and Production Development Center), fathered by five sires and mothered by 11 dams were used). The study included the following traits: Total milk yield: the amount of milk (kg) produced during the normal lactation period. Daily milk yield: Total milk yield (kg)/ Lactation period (day).

2.5. Statistical Analysis

2.5.1. Non-genetic Effects

The following statistical model was used to analyze the data using the general linear model (GLM) procedure [10]:

\[Y_{ijkl} = \mu + Y_i + SE_j + e_{ijk} \]

where:

- \(Y_{ijkl} \): either TMY, DMY and LP.
- \(\mu \): Overall mean for the studied traits,
- \(Y_i \): Fixed effect of \(i^{th} \) year of calving, \(i = 2012\ldots, 2021 \),
- \(SE_j \): Fixed effect of \(j^{th} \) season of calving, \(j = 1, 2\ldots 4 \),
- \(e_{ijk} \): random residual assumed to be independent and normally distributed with mean zero and variance \(\sigma^2_e \).

Significant differences between means were done according to Duncan’s multiple range test [11] at \(P \leq 0.05 \). The interaction was not considered due to the absence of some of them through fixed effects.

2.5.2. Genetic Parameters

For estimation of variance components, repeatability single-trait animal model of traits using MTDFREML programs of Boldman et al. [12] were used depending on variances obtained by REML (Restricted maximum likelihood) method of VARCOMP procedure [10] as starting values. The following general model was used to conduct the analyses:

\[y = Xb + Z_a + W_{pe} + e \]

Where \(y \) is the vector of phenotypic observations; \(b \) is the vector of fixed effects; \(a \) is the vector of random additive genetic effects of the she-camel; \(pe \) is the vector of random permanent environmental effects of the dam; \(e \) is the vector of residual effects; and \(X, Z, W \) are incidence matrices relating the phenotypic observations to fixed, random additive genetic, and permanent environmental effects, respectively. It was assumed that random effects are independent and normally distributed:

- \(a \sim N(0, A \sigma^2_a) \), \(pe \sim N(0, I \sigma^2_{pe}) \) and \(e \sim N(0, I \sigma^2_e) \),

Where \(A \) is the numerator relationship matrix, \(I \) is the identity matrix, \(\sigma^2_a \) is the direct additive genetic variance, \(\sigma^2_{pe} \) is the random permanent environmental variance, and \(\sigma^2_e \) is the residual variance.
Phenotypic variance was calculated as $\sigma^2_p = \sigma^2_a + \sigma^2_{pe} + \sigma^2_c$. Direct heritability ($h^2_a$) was calculated as $h^2_a = \frac{\sigma^2_a}{\sigma^2_p}$.

Repeatability (t) was calculated as the ratio of variances by summing additive genetic and permanent environmental (σ^2_{pe}) to total phenotypic variance according to: $t = \frac{\sigma^2_a + \sigma^2_{pe}}{\sigma^2_p}$.

Estimation of phenotypic trend (PT) was calculated for each trait by regressing the least square mean on the calving year.

3. Results

3.1. Descriptive Statistics for Lactation Traits

Means, standard deviation (S.D), minimum, maximum, and coefficients of variation (CV %) for lactation traits of dromedary she-camels are given in Table 1.

Means of TMY, LP, and DMY were 1464.90 kg, 418.84 days, and 4.00 kg, respectively. Moreover, the magnitudes of CV% of TMY, LP, and DMY in the current study were medium to high, ranging from 15.01 (TMY) to 43.87 (DMY)% (Table 1).

3.2. Non-genetic Effects

Table 2 represents the least-squares mean (LSM) and standard errors (SE) for fixed effects of year and season of calving affecting TMY, DMY, and LP.

Concerning the effect of the year of calving on lactation performance, data presented in Table 2 revealed that only LP was significantly (P≤0.05) affected by the year of calving. Moreover, the highest values for TMY were 1527.6 and 1514.30 kg, these values were reached during 2014 and 2017, respectively. On the other hand, the lowest TMY (1350.7 kg) was noticed during 2019.

This trend was accompanied by LP, where, the longest LP (510.6 days) was in 2017. Whilst, the highest value for DMY was recorded during the year 2015. Also, table 2 revealed that the values of all traits were inconsistent and fluctuated from one year to another.

Regarding the calving season, the season of calving followed in its influence the same trend as that of the year of calving, affecting only LP (p≤0.05) and did not have significant effects either on TMY or DMY.

Although there was no significant statistical effect, the highest values were recorded during the winter season for all traits under study. Moreover, the lowest values were recorded in the summer.

3.3. Estimates of Genetic Parameters

Table 3 presents estimates of variance components, direct heritability (h^2_a) and repeatability (t) for TMY, DMY, and LP.

Direct heritabilities and permanent environmental effects (pe^2) for the majority of milk traits were moderate (Table 2), ranging from 0.17 to 0.30 for h^2_a and from 0.02 to 0.13 for pe^2. The smallest value was for LP either for h^2_a (0.17) or pe^2 (0.02). The t values recorded a medium value LP (0.19), while the values were high for both TMY and DMY (0.36 and 0.43, respectively).

3.4. Predicted Breeding Value (PBV) of Animals for Lactation Traits

Table 4 presents the predicted breeding values (PBVs) of animals for TMY, DMY, and LP. The best animals of dam and sire, respectively, were chosen to calculate the breeding value of animals (she-camels, sire, and dam) PBV for TMY, DMY, and LP are presented in Table 4. The present results showed that the ranges of PBVs for animals (she-camels, sire, and dam) were 143.07 kg for TMY, 1.5 kg for DMY, and 113.9 days for LP. Moreover, the percentages of animals that have positive estimates of PBV were 52.33, 64.03, and 45.67% (an average of 54.1%), for TMY, DMY, and LP, respectively.
3.5. The Phenotypic Trend for Lactation Traits (PT)

The annual phenotypic trend is the sum of the changes in both additive genetic merit and environmental change per year [13]. In other species, such as cattle, there is a continuous requirement for estimation of the genetic and phenotypic parameters and trends in dairy cattle, to monitor whether the parameters and trends are desirable for each trait or not [14].

PT, of the studied traits, are graphically displayed in figures from 1 to 3. In this respect, regression coefficients (b) for she-camels showed unfortunately a negative annual PT of about -3.58 kg, -0.012 kg per year for TMY and DMY. While PT was a low positive about 0.94 days per year for LP. Considerable fluctuations were observed in the PT trends over the study period for all traits.

4. Discussion

In the present study, the means for lactation traits of dromedary camels generally fall within the range of those estimates obtained in most Egyptian studies [15-19], whose estimates for TMY ranged between 1207 and 1500 kg. While it was lower than that reported by Khalil et al. [20] for Saudi camels under intensive production conditions (2373 kg, 5.23 kg, and 449 days for TMY, DMY, and LP, respectively), 1559 kg for TMY, and 4.6 kg for DMY, reported by Zaky et al. [21] and 1907 kg for TMY, reported by Musaad et al. [22]. In addition, the magnitudes of CV% of TMY, LP, and DMY in the current study were medium to high (Table 1). The literature indicates that phenotypic differences between breeds in milk traits are of great importance [6, 23, 24]. However, these estimates show that improving these traits through phenotypic selection is quite possible.

In this regard, there is a substantial range in the averages of lactation traits such as yield or LP, this is accompanied by
a large CV% in various nations or even within the same geographical area, which may be attributable to the approaches employed to determine yield, high genetic variation between individuals, breeds, feeding, management conditions, nature of work, milking regularity, age of the animal, persistency of lactation, lactation number and phase of lactation [1, 25-27].

Also, Ayadi et al. [28] noted that the rate of secretion of the milk is affected by the practice of milking using a machine or by hand, milking frequencies per day, and milking intervals between milking operations.

Concerning the effect of non-genetic effects on lactation performance, our results (Table 2) revealed that only LP was significantly (P≤0.05) affected by the year and season of calving. The same trend was observed for the significant effect (p ≤ 0.05) for the year of calving by Aslam et al. [29].

On the contrary, Farrag et al. [30] reported that the year of calving had a non-significant effect on TMY and LP. The same authors added that the fluctuations in milk production from year to year were partly related to the genetic makeup of the animals kept under varying environmental, nutritional, and management conditions as well as the number of animals during the period under study.

Concerning the calving season, the season did not have significant effects either on TMY or DMY. Although there was no significant statistical effect, the highest values were recorded during the winter season for all traits under study. Moreover, the lowest values were recorded in the summer.

With a similar result, Almutairi et al. [8] reported that the calving season had no significant effects on milk production. They attributed the absence of the season's effect to the stability of managerial procedures (intensive system) and keeping the animals inside the sheds throughout the year and providing them with the necessary feeding.

In this respect, Bekele et al. [31] reported that camels calved during winter had a longer LP (409 days), while camels that calved in the short rainy season (March -April) or the short dry season (May -June) had a shorter LP (292 and 287 days, respectively).

Moreover, Musaad et al. [22] reported that the shorter LP in camels born in the hot season could be linked to the gestational status because the interval between calving and the re-mating was shorter, resulting in a new pregnancy early in the lactation period.

Concerning genetic parameters, current estimates are consistent with previous research, although, heritability estimates for lactation traits in camels are very scarce. Working on Saudi camels, Khalil et al. [7, 20] reported h²a ranged from 0.08 to 0.25 for annual milk yield, LP, and DMY, and estimates of pe² ranged from 0.16 to 0.23. The same authors stated that Saudi camels are subject to high variabilities due to permanent environmental influences. Also, camels were not exposed to a comprehensive selection process.

Almutairi et al. [8] noted that h²a estimates were 0.24 for milk yield at 305 days indicating that these traits are moderately heritable, and t estimates were 0.28. Depending on moderate t in their study, they supposed that a small number of recordings would be enough for an appropriate judgment of camels. Furthermore, the same authors noted that t estimate for test-day yield was 0.66, attributing high magnitude to the higher impact of the permanent environment, which may be explained by intensive herd management, high persistence of lactation, or the small data set.

Mehta et al. [32] applying sire valuation on Indian camels, reported t estimates of 0.40 for DMY. The moderate estimates of h²a obtained in the current study with regarding the previous studies mentioned above demonstrated that improvement of milk traits of dromedary she-camels could be possible.

Moreover, due to the high estimates of t, there is a possibility of depending on a single production record to conduct the selection procedure for the females of the herd under study. About PBVs, the range in the current study is lower than the 1436 kg, 3.044 kg, and 282 days for TMY, DMY, and LP, respectively, obtained by Khalil et al. [7, 20] for Saudi camels.

Almutairi et al. [8] reported that the ranges of PBVs were from −431 to 621 kg for milk yield during 305-day lactation, or the range from -1.64 to 1.61 kg, for test-day yield. The same authors clarified the low genetic gains of milk traits in camels to the absence of any genetic selection. In addition, replacement animals intended for milk production were selected on their body weight, conformation, not on their dairy ability or the productivity data of their female relatives.

Despite the lower range of PBV compared to what was recorded in the previous studies mentioned above (rare studies), the percentages of animals that had positive estimates of PBV were 52.33, 64.03, and 45.67%(averaged 54.1%), for TMY, DMY and LP, respectively.

The result of this herd indicates that the top 54% of the animals had positive PBVs values, and therefore, an early selection of camels according to positive PBV could be an effective way to improve such traits in future generations while being careful to increase the amount of genetic variance.

Khalil et al. [7, 20] reported that the proportions of animals with favourable breeding value estimations for TMY, DMY, and LP in Saudi camels were 54.3, 56.3, and 53.3%, respectively, with an average of 56.1%. For PT, regression coefficients (b) for she-camels showed, unfortunately, negative annual PT, with considerable fluctuations were observed over the study period for all traits.

Estimates of the phenotypic trend of lactation traits in camels are extremely rare. Therefore, and based on similar studies in dairy cattle under Egyptian conditions and other regional areas, Shehab El-Din [33] working on Friesian cattle, showed a negative annual PT of about −48.14 kg, −48.01 kg, and −1.58 days, per year for TMY, 305-DMY, and LP, respectively.

In parallel, Abou-Bakr [34] represented a negative phenotypic trend of 305-DMY with an overall rate of -91.6 ± 35.16 kg/year. Also, Katok and Yanar [35] on Friesian cattle,
came to the same result of the negative trend of 305-DMY and the rate of decline was -17.73±9.64 kg/year.

Moreover, Hossein-Zadeh [36] in Iranian Holsteins cows reported that there were decreasing phenotypic trends for LP, and this could result in lower milk yields compared to the populations with the positive phenotypic trends for LP.

Javed et al. [37] denoted, phenotypic decrease in milk yield may mainly be attributable to environmental factors as different diseases like foot and mouth and other threats arise during different years.

In this regard, several studies working in dairy cattle have presented several interpretations of changes from one year to the next [14, 34] reported that this is due to, changes in the age of animals, attacks on various diseases such as FMD, mastitis, inadequate animal feed, severe climatic, geographical conditions and changes in management practices implemented from one year to another, such as changes in feed availability, quality, and prices.

5. Conclusion

In conclusion, based on the obtained results, the herd of camels under study has promising genetic abilities. This is demonstrated by some observations, such as moderate estimates of heritability and higher estimates of repeatability, which allow for improved lactation traits. Genetic improvement through a well-organized structure of usage of animals of higher breeding value and facilitation of the quick spread of superior genotypes in future generations are required to attain optimal performance efficiency of such a herd. To avoid bias in the results due to insufficient data or pedigree structure, further research on the same trait using a large data set is required to reveal a more accurate and reliable genetic and environmental assessment.

Author Contribution

Mohamed Ibrahim Shehab El-Din, Statistical genetic analysis, all authors shared in writing, reviewing and approving the final manuscript.

Data Availability

All data generated or analyzed during this study are included in this published article.

Ethics Approval

The study’s ethical approval was granted by the Research Committee of the Animal Production Department, Faculty of Agriculture, Al-Azhar University, and Animal Production Research Institute, Dokki, Giza, Egypt.

Conflict of Interest

The authors declare no competing interests.

Acknowledgements

The authors would like to thank the staff members of Matrouh Camel Studies and Production Development Center, Animal Production Research Institute, Egypt.

References

