An Examination of the in Vitro Effects on Fibroblasts of Periarticular Injection Solution Applied in Total Hip and Knee Arthroplasty

Muhammed Sadik Bilgen¹, Zeynep Kahveci², Ilkin Cavusoglu², Muren Mutlu³, Omer Faruk Bilgen³, Aysun Yilmazlar⁴

¹Uludag University, Faculty of Medicine, Orthopaedics and Traumatology Department, Bursa, Turkey
²Uludag University, Faculty of Medicine, Histology and Embryology Department, Bursa, Turkey
³Private Medicabil Hospital, Orthopaedics and Traumatology Department, Bursa, Turkey
⁴Private Medicabil Hospital, Anaesthesiology and Intensive Care Department, Bursa, Turkey

Email address:
msbilgen@superonline.com (M. S. Bilgen), zeynep2@uludag.edu.tr (Z. Kahveci), ilkin@uludag.edu.tr (I. Cavusoglu), muren.mutlu@medicabil.com (M. Mutlu), ofbilgen@gmail.com (O. F. Bilgen), aysun.yilmazlar@medicabil.com (A. Yilmazlar)

To cite this article:

Received: June 16, 2021; Accepted: June 29, 2021; Published: July 8, 2021

Abstract: The number of indications for total hip and knee surgery is increasing. The anesthesia and analgesia techniques are very important and effective on success of total hip and knee arthroplasty. Multimodal analgesia makes a great contribution to pain treatment after surgery. Periarticular injection of an analgesic solution is a component of multimodal analgesia. However, it has long been unclear whether such injections damage tissue. The fibroblasts were cultured in 5 mL of D-MEM/F-12 medium in each well of a 6-well culture dish. After 1 hour, we added 5 mL of prepared periarticular injection solution to each well of the study group. To determine the effects of the solution on the fibroblasts, we assessed viability rates at the end of 24, 48, and 72 hours. When we compared the control and the study group, we did not encounter any apoptotic or dying cells in either group, which we interpreted to mean that the periarticular injection solution did not show a lethal effect on fibroblasts. Therefore, we conducted an in vitro and electron microscope study to research this issue. We found that the number and viability of fibroblasts did not change significantly with periarticular injection and thus concluded does not cause cell damage and can safely be used.

Keywords: Periarticular Injection, Hip and Knee Arthroplasty, Analgesia, Fibroblast

1. Introduction

Multimodal analgesic regimens that target numerous pain pathways may provide the best pain management, rehabilitation, patient satisfaction, and reduce opioid use and related side effects. Periarticular injections of delayed-release local anesthetics may further enhance pain management [1].

Targeting specific sites of nociceptors may help to further decrease pain after knee and hip arthroplasties. Altering periarticular cocktail ingredients may aid in multimodal pain control with injections [2].

Periarticular injection of an analgesic solution is an important component of multimodal analgesia in total hip and knee arthroplasty. It is prepared by adding 200 to 400 mg of 0.5% bupivacaine, 4 to 10 mg of morphine, 300 µg of epinephrine, 40 mg of methylprednisolone, and 750 mg of cefuroxime axetil to saline to create a volume of 60 mL [1–3]. Bupivacain is used for nociceptor inhibition, morphine is used for peripheral opioid receptor inhibition, epinephrine is used for length the local anaesthetic’s duration, methylprednisolone, is used for antiinflammatory effectivity and cefuroxime axetil is used for infection prophylaxis. In hip arthroplasty, the solution is injected [3] before reduction of the implant components into the anterior capsule and the other structures [4]; after reduction, into the posterior
capsule, external rotators, soft tissues in the trochanteric area, and the tensor fascia lata. In knee arthroplasty, the solution is injected [3] before reduction of the implant components into the posterior capsule [4]; after reduction, into the extensor mechanism, synovia, capsule, pes anserinus, collateral ligaments, and iliotibial band [3].

However, there are no reports in the literature showing either positive or negative effects of this injection solution at the cellular level. Li et al, suggested that autophagosome formation was induced as a stress response mechanism after bupivacaine challenge; however, autophagosome clearance was impaired due to inadequate autophagosome-lysosome fusion [6]. Therefore, impairment of autophagosome clearance appears to be a novel mechanism underlying bupivacaine-induced myotoxicity.

Therefore, we conducted a cell culture and electron microscope study to examine in an in vitro environment the effects on fibroblasts, which are secreting and synthesizing connective-tissue fibers and ground substance and are most often found in connective tissue.

Table 1. Calculation of the Dosage of Periarticular Injection Solution

<table>
<thead>
<tr>
<th>Molecular Weight</th>
<th>Commercial Medication Concentration (mM)</th>
<th>Concentration in 60 mL</th>
<th>Volume/5 mL to Be Taken for Cell Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isobaric 0.5% bupivacaine, 200 mg</td>
<td>288.432</td>
<td>11.3 mM</td>
<td>3333 µL/5 mL</td>
</tr>
<tr>
<td>Morphine sulphate, 8 mg</td>
<td>668.75</td>
<td>158 µM</td>
<td>66 µL/5 mL</td>
</tr>
<tr>
<td>Adrenalin, 300 mg</td>
<td>183.21</td>
<td>8 µM</td>
<td>25 µL/5 mL</td>
</tr>
<tr>
<td>Cefuroxime (Cefax) 750 mg</td>
<td>424.06</td>
<td>29 mM</td>
<td>500 µL/5 mL</td>
</tr>
<tr>
<td>Methylprednisolone acetate (Depo-Medrol), 40 mg</td>
<td>374.48</td>
<td>1.78 mM</td>
<td>83 µL/5 mL</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
<td></td>
<td>4007 µL total medication + 993 µL saline</td>
</tr>
</tbody>
</table>

At the end of the defined time periods, we evaluated the ultrastructure of the fibroblasts by using routine electron microscope processing methods at Uludag University, Histology and Embriology Department. The ultrathin sections were evaluated and photographed with a transmission electron microscope (100SX TEM, Jeol, Peabody, MA, USA).

2. Methods

We used 3T3 rat fibroblast cells, supplied by the cell bank of Istanbul University’s Faculty of Medicine Cell Culture Laboratory. The fibroblasts were kept in 25-cm² and 75-cm² flasks containing Dulbecco’s Modified Eagle Medium: Nutrient Mixture Ham’s F-12 medium (Gibco Life Technologies, Grand Island, NY, USA) in an incubator (Sanyo, City Name, US State Name, Country Name) with 5% CO₂ set at 95% humidity and at 37°C and passaged twice a week.

At the first stage of the study, we cultured 2.5 × 10⁶ 3T3 fibroblasts in 5 mL of Dulbecco’s Modified Eagle Medium at each well of a 6-well culture dish. After 1 hour, we added 5 mL of prepared periarticular injection solution (dosage calculation is shown in Table 1) to each well of the study group. To determine the effects of the solution on the fibroblasts, we assessed viability rates using the trypan blue staining method at the end of 24, 48, and 72 hours.

3. Results

In the group to which the periarticular injection solution was applied, the numbers of fibroblasts obtained at the end of 48 and 72 hours were approximately the same as in the first 24 hours. In the control group, the number of fibroblasts at 48 hours was 47% larger than the number obtained in the first 24 hours, and at 72 hours, the number was 7% larger than the number obtained at 48 hours.

In the group in which solution had been applied, the rates of viable fibroblasts determined with the trypan blue staining method were 96% at 24 hours, 98.2% at 48 hours, and 96.7% at 72 hours. In the control group, these rates were 95.1% at 24 hours, 98.7% at 48 hours, and 97.9% at 72 hours (Table 2).

Table 2. Numbers of live fibroblasts and the live rates determined with the Trypan Blue staining method

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial cell count</td>
<td>2 500 000</td>
<td>2 500 000</td>
</tr>
<tr>
<td>Cell count/live rates at 24 hours</td>
<td>3 680 000 / 95.1%</td>
<td>3 380 000 / 96%</td>
</tr>
<tr>
<td>Cell count/live rates at 48 hours</td>
<td>7 120 000 / 98.7%</td>
<td>3 030 000 / 98.2%</td>
</tr>
<tr>
<td>Cell count/live rates at 72 hours</td>
<td>7 733 000 / 97.9%</td>
<td>3 003 000 / 96.7%</td>
</tr>
</tbody>
</table>

In the transmission electron microscopic examination, fibroblasts in the control group generally had a normal morphologic appearance. The nuclei were ovoid and large, containing fine chromatin and a discernible nucleolus. In the cytoplasm, we observed rough endoplasmic reticulum, Golgi complex, and mitochondria. We did not encounter any apoptotic fibroblasts in the examined sections, and we did not find any with a pathologic appearance (Figure 1).

In the study group to which the periarticular solution had been applied, the general appearance of the fibroblasts was healthy. The nuclei looked normal and had a discernable nucleolus. As the time periods extended, there was a noticeable increase in vacuoles and phagosomes, but the organelles such as rough endoplasmic reticulum, mitochondria, and Golgi complex differed and were still present in the fibroblast cytoplasm. In addition, cytoplasmic...
protrusions were observed, similar to pseudopods on fibroblast membranes (Figures 2 through 4). We considered these findings as evidence of an increase in phagocytic activity in the cells. When we compared the control group and the study group, we did not encounter any apoptotic or dying cells in either group, which we interpreted to mean that the periarticular injection solution did not show a lethal effect on fibroblasts.

4. Discussion

In current practice, multimodal analgesia makes a great contribution to pain treatment after total hip and knee arthroplasty and thereby to the early ambulation of the patient [7-15]. The combination of epidural analgesia and a periarticular injection decreases the postoperative need for epidural analgesia, and thus the adverse effects of epidural analgesia, such as hypotension, bradycardia, and respiratory depression are avoided, as are effects that increase patients’ discomfort, such as sleepiness and itching.

However, it has long been unclear whether periarticular injection is harmful to fibroblasts and the surrounding tissues. Our findings show that periarticular injection of an analgesic solution does not cause cell damage or death. Our findings of vacuolization and phagosome structures in the fibroblast cytoplasm can be interpreted as evidence that the cells remain alive and that the solution added to the environment is phagocytosed. The insignificant difference in viability rates between our control and study groups can be interpreted as evidence that the added injected solution had no effect on cell vitality.

5. Conclusion

Because there was no negative effect on the ultrastructure and number of live fibroblasts in the in vitro environment, it can be concluded that periarticular injection of an analgesic solution can be considered a safe component of multimodal analgesia. Future experimental studies under in vivo conditions are required to support our findings.

Author Contributions

Design of the protocol: OFB, MSB and AY.
Data collection and analysis: ZK and IC.
All the authors contributed to writing of the manuscript.

Conflict of Interest Statement

The authors declare that they have no competing interests.
References

