Performance Evaluation of Desi Chickpea (*Cicer arietinum* L.) Varieties Through Participatory Variety Selection South Gonder Zone, North Western Ethiopia

Yasin Taye, Alamir Ayenew*

Ethiopian Institute of Agricultural Research (EIAR), Fogera National Rice Research and Training Center, Addis Ababa, Ethiopia

Email address: alamiray12@gmail.com (Alamir Ayenew), allahakiber@gmail.com (Yasin Taye)

*Corresponding author

Received: February 14, 2023; Accepted: May 12, 2023; Published: May 24, 2023

Abstract: Chickpea is a multi-functional crop, has an important role in the diet of Ethiopian small-scale farmers' households, and also serves as a protein source for the rural poor who cannot afford to buy animal products. Though many improved chickpea varieties were released by different research centers depending on breeding objectives. Participatory Variety Selection was conducted during 2019/2020 in both Simada and Libokemkem districts of south Gonder Zone, Ethiopia. To assess the performance of chickpea) varieties and to evaluate farmers' selection criteria for chickpeas. Seven desi-type chickpea varieties with one local check were laid out in a randomized complete block design with three replications. The combined Analysis of Variance for stand count at germination, stand count at harvest, days to flowering, days to maturity, plant height, number of pods per plant, number of seeds per pod, grain yield per hectare, and hundred seed weight showed high significant (P< 0.01) difference for genotypes and the combined analysis of variance for stand count at germination, stand count at harvest, days to flowering, plant height, number of seeds per pod, and grain yield revealed significant (P<0.01) difference for location. The study also revealed that in some cases the researchers' selection criteria were identical to farmers' preferences. These parameters include Disease reaction, Branch number, pod size, adaptability, and early maturity. Hence, including farmers' preferences in a variety selection process is paramount important. Therefore, based on attentively measured parameters, farmers' favorites, and the agro-ecologies of the site the varieties Minjar and Fetenech are selected for the area. The varieties Minjar and Fetenech should also be considered by farmers for their preference in the study area.

Keywords: Desi Type Chickpea, Grain Yield, Simada, Libokemkem

1. Introduction

Chickpea, a multi-functional crop, has an important role in the diet of Ethiopian small-scale farmers' households and

Cultivated chickpea, is a self-pollinated, diploid (2n= 2x =16) annual pulse crop with a relatively small genome size of 738Mb [21]. It belongs to Family=Fabaceae, Genus= Cicer and Species= *C. arietinum*. The crop is herbaceous, a small bush with diffused spreading branches from the base, which reach a height of 20 -150 cm depending on the cultivar and suitability of the growing environment.

Chickpea (*Cicer arietinum* L.) is the third most important pulse crop with a total annual global production of 9.7 million tons from 11.5 million ha. In Ethiopia, chickpea is mainly grown in the central, northern and eastern highland areas of the country at an altitude of 1400-2300 m.a.s.l., where annual rainfall ranges between 700 and 2000 mm [3]. It is the major cool season food legume ranked second next to the Faba bean, which occupies about 239,747.51 hectares of land annually with an estimated production of 4,586,822.55 quintals. The national average seed yield is 1.913 tons/ha [4].

Chickpea, a multi-functional crop, has an important role in the diet of Ethiopian small-scale farmers' households and
also serves as a protein source for the rural poor who cannot afford to buy animal products [5]. Chickpea seeds are eaten fresh as green vegetables, parched, fried, roasted, and boiled and it is valued for their nutritive seeds with high protein content, 25.3-28.9%, after dehulling [14]. Chickpea seed has 38.59% carbohydrate, 3% fiber, 4.8-5.5% oil, 3% ash, 0.2% calcium, and 0.3% phosphorus [14]. Despite its importance, the national (19.13 qt/ha) as well as regional average yields (16.58 qt/ha) of chickpeas are low due to various production constraints including Low yield potential of landraces, lack of superior varieties, their susceptibility to biotic and abiotic stresses and poor cultural practices are some the serious constraints in chickpea production in Ethiopia [7, 11]. Chickpea varieties were released by the various national and regional research centers of the country. Farmers have no ample information about the released desi type chickpea varieties because they were released with poor involvement of farmers and the released varieties had not yet been tested in the study area. In the country, efforts have been made through PVS to develop and popularize improved varieties of some crops. A participatory approach is being carried out in many crops like bread wheat [9], common bean [12] and maize [20]. According to [8] reported that farmers' preferences vary with environmental conditions, traits of interest, ease of cultural practice, processing, use and marketability of the product, and ceremonial and religious values. However, the farmers' selection criteria for improved chickpea varieties were not adequately assessed and well documented, especially in the Northeast parts of Ethiopia. Therefore, the objectives of this study were to evaluate the performance of the released desi chickpea varieties through PVS and to assess farmers' selection criteria for future chickpea improvement work with the participation of farmers in Northern Ethiopia.

2. Material and Methods

2.1. Description of the Study Area

The trial was conducted in Libokemkem and Simada districts in the South Gondar Zone of Amhara Region of Ethiopia during the 2019/2020 main cropping season. The two locations are 167 km apart and are among the promising chickpeas growing areas in the zone. Simada is located at 11 290 59.9900 N latitude and 38 140 60.0000 E longitude (https://latitude.to/articles-by country/et/Ethiopia/229186/Simada) with elevations ranging from 1196 to 3525 m above sea level (6). The rainfall ranged from 73-372 mm from May to October of the growing season and annual rainfall and temperature distribution for the growing season is presented in Figure 1. The soil type of Libokemkem is 60% clay loam, 14% silt loam, and 26% clay soil [16]. Farmers in the district grow local bean varieties for double cropping, where chickpea is planted after beans are harvested to take advantage of the soil moisture reservoir.

2.2. Experimental Design

Seven desi-type chickpeas and one local check variety were evaluated in Simada and Libokemkem districts. Participatory varietal selection of chickpea trial was conducted in Simada and Libokemkem of South Gonder zone, Amhara region, Ethiopia, in the 2019/2020 Meher cropping season. A randomized complete block design using eight chickpea varieties with three replications was used for this research. Each variety was grown with a plot size of 5.4 m² represented by 6 rows of 3-meter length with an inter- and intra-row spacing of 30 cm and 10 cm, respectively. The eight chickpea varieties were scored (1=poor, 5=very good) based on overall ranks by consensus reached by representative farmers, and the mean values of the ranks for
each variety were calculated.

<table>
<thead>
<tr>
<th>Entry no</th>
<th>Variety Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dalota</td>
</tr>
<tr>
<td>2</td>
<td>Teketay</td>
</tr>
<tr>
<td>3</td>
<td>Minjar</td>
</tr>
<tr>
<td>4</td>
<td>Akaki</td>
</tr>
<tr>
<td>5</td>
<td>Natoli</td>
</tr>
<tr>
<td>6</td>
<td>Kutaye</td>
</tr>
<tr>
<td>7</td>
<td>Fetenech</td>
</tr>
<tr>
<td>8</td>
<td>Local check</td>
</tr>
</tbody>
</table>

2.3. Data Collected

Days to 50% flowering: Days to flower were recorded as the number of days required from planting to the time when 50% of plants in plots produced at least one flower.

Days to maturity: Days to maturity were recorded as the number of days required from planting to the time when 95% of plants showed a yellow colour in each plot before senescence.

Plant height: Plant height was recorded from ten randomly taken plants from four central rows at physiological maturity from the ground to the tip of the main stem and then the mean was recorded as height per plant (cm).

Number of pods per plant: The number of total pods in ten randomly taken plants from four central rows was counted at physiological maturity and the means were recorded as the number of pods per plant.

The number of seeds per pod: The number of total seeds from the above pods was counted and then the total number of seeds was divided by the total number of pods to get an average number of seeds per pod.

Hundred seed weight: Hundred seed weight was counted from the harvested bulk and their weight (g) was recorded and adjusted at 10% seed moisture.

Grain Yield: Plants harvested from the four central rows and for above-ground dry biomass were threshed to determine grain yield, and the grain yield was adjusted to the moisture content of 10%.

2.4. Statistical Analysis

The combined analysis of variance was done after the test of homogeneity of variance for each location using Levene's Test.

The linear mixed model was used in the analysis of variance combined over locations.

\[Y_{ijk} = \mu + g_i + e_j + b_k(j) + (ge)ij + \varepsilon_{ijk} \]

Where:
- \(Y_{ijk} \) = the response of Y trait from the \(i \)th genotype, grown in the \(k \)th block of \(j \)th location.
- \(\mu \) = Grand mean.
- \(g_i \) = The effect of the \(i \)th genotype.
- \(e_j \) = The effect of the \(j \)th location.
- \(b_k(j) \) = The effect of \(k \)th block/rep in \(j \)th location.
- \((ge)ij \) = The interaction between the \(i \)th genotype and \(j \)th location.
- \(\varepsilon_{ijk} \) = Pooled error.

All measured quantitative parameters were subjected to Analysis of Variance (ANOVA) by using R 4.0.3 software to assess the significance of the difference between the varieties. Mean separation was carried out using the Least Significance Difference test (LSD) at a 5% probability level.

3. Result and Discussion

Levene's test result implies the error variance was homogeneous for grain yield and yield-related traits for every two locations and allowed to proceed further for combined analysis of variance across locations.

The combined Analysis of Variance for stand count at germination, stand count at harvest, days to flowering, days to maturity, plant height, number of pods per plant, number of seeds per pod, grain yield per hectare and hundred seed weight showed high significant (P< 0.01) difference for varieties and the combined analysis of variance for stand count at germination, stand count at harvest, days to flowering, plant height, number of seeds per pod, and grain yield revealed significant (P<0.01) difference for locations and the genotype by location interaction was also highly-significant for stand count at germination, stand count at harvest, days to maturity, plant height and number of pods per plant (Table 2).

3.1. Grain Yield (kg/ha)

Combined analysis of variance revealed that Varieties and locations were significant in the grain yield of eight desi-type chickpea varieties. The presence of significant variations among the varieties indicates the differences in the inherent genetic potential of the varieties that make it easy for selection, while differences among the locations showed the variability in yield potential suitability of the test locations for chickpea production. The mean grain yield ranged from 1921.5 kg ha\(^{-1}\) for the variety Kutaye to 2606.3 kg ha\(^{-1}\) for the variety Minjar and 907.33 for the variety Local check to 2301.33 kg ha\(^{-1}\) at the variety Minjar at Simada and Libokemkem, respectively (Table 4 and Table 5).

Varieties Minjar (2453.79 kg ha\(^{-1}\)) and Fetenech (2199.39 kg ha\(^{-1}\)) were the top yielders across locations whereas; variety Local checks (844.64 kg ha\(^{-1}\)) had the lowest mean grain yield (Table 3). The local check was not performed for grain yield at both locations. Variety Minjar, Fetenech, Akaki, Teketay and Natoli were recorded as 1\(^{st}\), 2\(^{nd}\), 3\(^{rd}\), 4\(^{th}\) and 5\(^{th}\) highest grain yields respectively at Simada (Table 4) and Minjar was recorded the highest grain yield at Libokemkem district (Table 5). Accordingly, the highest grain yield at Simada was revealed by Minjar, Fetenech, Akaki, Teketay and Natoli consecutively while Minjar variety was the only highest yielder at Libokemkem. So from the two locations, Simada is the potential area for the production of desi type check pea variety while Libokemkem is relatively low. Similar results were obtained from Fetenech and Akaki (1).
3.2. Days to Flowering

Days to flowering ranged from Kutaye (72.33) to Natoli (79.00) and local check (64.67) to Natoli (76.33) days for Simada and Libokemkem Districts respectively (Tables 4 & 5). Varieties Natoli (77.67 days) was the longest days to flowering across locations whereas; Variety local check (68.83 days) had the shortest mean days to flowering (Table 3). Variety Natoli took the longest days to flower both at Simada and Libokemkem districts, whereas Variety local check scored the shortest days to flowering at Libokemkem and kutaye scored early days to flowering at Simada (Tables 4 & 5).

3.3. Days to Maturity

Variety Dalota took the longest days to maturity, whereas Variety Fetenech scored the early days to maturity at (46.33cm) while the shortest was observed in the Fetenech variety (36.67cm) at Libokemkem. The past research work reported in Dalota (56.70) while the shortest in the local check variety scored the smallest hundred seed weight.

3.4. Plant Height

The highest plant was observed in Minjar variety (46.33cm) while the shortest was observed in the Fetenech variety (37.27) at Simada and the highest plant was observed in Dalota (56.70) while the shortest in the local check variety (36.67cm) at Libokemkem. The past research work reported plant height in chickpeas similarly to the present finding [23].

3.5. The Number of Seeds Per Pod

The highest number of seeds per pod was recorded for the variety Fetenech (1.4) followed by Natoli (1.2) at Simada and variety local check scored (1.6) at Libokemkem (Tables 5 & 6). Variety Dalota (1.00) scored the lowest number of seeds per pod at Libokemkem.

3.6. Number of Pod Per Plant

The highest number of pods per plant was recorded for the variety Natoli (84.33) followed by a local check (85.0) at Simada and variety Minjar (87.0) followed by Kutaye (73.33) at Libokemkem (Tables 5 & 6). Variety Teketay (45) scored the lowest number of pods per plant at Simada and Natoli variety scored the lowest number of pods per plant at Libokemkem.

3.7. Hundred Seed Weight

Variety Akaki (33.33gm) recorded the most significant hundred seed weight, while variety Natoli and local check scored the smallest hundred seed weight at Simada. At Libokemkem, variety Minjar (33.0gm) scored the biggest hundred seed weight and variety local check (15.0gm) scored the smallest hundred seed weight.

Table 2. Mean squares from combined analysis of variance for yield and other traits of Desi chickpea varieties evaluated Over two locations in the 2019 Cropping Season.

<table>
<thead>
<tr>
<th>SOV</th>
<th>SG</th>
<th>SH</th>
<th>DF</th>
<th>DM</th>
<th>PH</th>
<th>NPP</th>
<th>SPP</th>
<th>GY (kg/ha)</th>
<th>HSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td>1299.36**</td>
<td>967.35**</td>
<td>41.1**</td>
<td>117.83**</td>
<td>147.55**</td>
<td>636.33*</td>
<td>0.13**</td>
<td>143197**</td>
<td>314.45**</td>
</tr>
<tr>
<td>LOC</td>
<td>1484.19**</td>
<td>2310.10**</td>
<td>172.55**</td>
<td>22.69**</td>
<td>111.32**</td>
<td>0.33**</td>
<td>0.22**</td>
<td>739532**</td>
<td>0.52**</td>
</tr>
<tr>
<td>VAR:LOC</td>
<td>342.24**</td>
<td>592.95**</td>
<td>11.22**</td>
<td>148.88**</td>
<td>81.96**</td>
<td>542.57**</td>
<td>0.025**</td>
<td>67096**</td>
<td>2.38**</td>
</tr>
<tr>
<td>LOC:REP</td>
<td>131.56**</td>
<td>105.9**</td>
<td>8.89**</td>
<td>5.17**</td>
<td>3.35</td>
<td>49.21**</td>
<td>0.023**</td>
<td>3506**</td>
<td>14.1ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>62.47</td>
<td>124.05</td>
<td>7.77</td>
<td>6.5</td>
<td>6.48</td>
<td>199.33</td>
<td>0.014</td>
<td>75513</td>
<td>6.23</td>
</tr>
<tr>
<td>GM</td>
<td>98.43</td>
<td>78.47</td>
<td>72.81</td>
<td>106.52</td>
<td>43.17</td>
<td>66.66</td>
<td>1.24</td>
<td>1782.12</td>
<td>26.02</td>
</tr>
<tr>
<td>CV</td>
<td>8.02</td>
<td>14.19</td>
<td>3.82</td>
<td>2.39</td>
<td>5.89</td>
<td>21.17</td>
<td>9.49</td>
<td>15.41</td>
<td>9.58</td>
</tr>
<tr>
<td>LSD</td>
<td>4.67</td>
<td>6.58</td>
<td>1.64</td>
<td>1.5</td>
<td>1.5</td>
<td>8.45</td>
<td>0.069</td>
<td>162.49</td>
<td>1.47</td>
</tr>
</tbody>
</table>

GM=grand mean, CV=coefficient of variation, LSD=Least Significant Difference, **, * highly Significant at P < 0.01, significant at P < 0.05 and non-significant respectively, VAR=Variety, LOC=location, VAR:LOC= Variety combined by location, LOC:REP=location combined by block or replication, SG=Stand count at germination, SH=Stand count at harvest, DF= days to flowering, DM=days to maturity, PPP= number of pods per plant, SPP= number of seeds per pod, HSW=hundred seed weight, GY=grain yield

Table 3. Mean separation from combined analysis of variance for yield and other traits of Desi chickpea Varieties evaluated over two locations in the 2019 Cropping Season.

<table>
<thead>
<tr>
<th>VAR</th>
<th>SG</th>
<th>SH</th>
<th>DF</th>
<th>DM</th>
<th>PH</th>
<th>NPP</th>
<th>SPP</th>
<th>GY (kg/ha)</th>
<th>HSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalota</td>
<td>67.5</td>
<td>53.17bc</td>
<td>72bc</td>
<td>110.83c</td>
<td>49.02a</td>
<td>58.67ed</td>
<td>1.03d</td>
<td>1508.89g</td>
<td>28.3a</td>
</tr>
<tr>
<td>Teketay</td>
<td>102.83bc</td>
<td>80.83bc</td>
<td>70.83ed</td>
<td>102.67d</td>
<td>42.82a</td>
<td>47.67d</td>
<td>1.32b</td>
<td>1808.61d</td>
<td>31.8a</td>
</tr>
<tr>
<td>Minjar</td>
<td>114.17**</td>
<td>89.17**</td>
<td>73bc</td>
<td>106.5**</td>
<td>47.17**</td>
<td>73.09bc</td>
<td>1.27bc</td>
<td>2453.79g</td>
<td>31.8a</td>
</tr>
<tr>
<td>Akaki</td>
<td>98.5d</td>
<td>83.17**</td>
<td>74bc</td>
<td>111.67**</td>
<td>40.83b</td>
<td>61.17bd</td>
<td>1.13bc</td>
<td>2053.71bc</td>
<td>32.17c</td>
</tr>
<tr>
<td>Naloli</td>
<td>110g</td>
<td>91.5</td>
<td>77.67c</td>
<td>112**</td>
<td>49.67b</td>
<td>68be</td>
<td>1.25c</td>
<td>1724.99f</td>
<td>14.83c</td>
</tr>
<tr>
<td>Kuitaye</td>
<td>91.83d</td>
<td>74bc</td>
<td>72bc</td>
<td>104.67**</td>
<td>40.43c</td>
<td>69.83be</td>
<td>1.17ed</td>
<td>1663.01k</td>
<td>27.83c</td>
</tr>
<tr>
<td>Fetenech</td>
<td>108.33e</td>
<td>86.83b</td>
<td>74.17b</td>
<td>101**</td>
<td>35.80</td>
<td>78s</td>
<td>1.25c</td>
<td>2199.39eb</td>
<td>26a</td>
</tr>
<tr>
<td>Local check</td>
<td>94.33d</td>
<td>69.17c</td>
<td>68.83**</td>
<td>102.83d</td>
<td>39.65</td>
<td>77sb</td>
<td>1.53a</td>
<td>844.64e</td>
<td>14.83c</td>
</tr>
<tr>
<td>GM</td>
<td>98.43</td>
<td>78.47</td>
<td>72.81</td>
<td>106.52</td>
<td>43.17</td>
<td>66.66</td>
<td>1.24</td>
<td>1782.12</td>
<td>26.02</td>
</tr>
<tr>
<td>CV</td>
<td>8.02</td>
<td>14.19</td>
<td>3.82</td>
<td>2.39</td>
<td>5.89</td>
<td>21.17</td>
<td>9.49</td>
<td>15.41</td>
<td>9.58</td>
</tr>
<tr>
<td>LSD</td>
<td>4.67</td>
<td>6.58</td>
<td>1.64</td>
<td>1.5</td>
<td>1.5</td>
<td>8.45</td>
<td>0.069</td>
<td>162.49</td>
<td>1.47</td>
</tr>
</tbody>
</table>

GM=grand mean, CV=coefficient of variation, LSD=Least Significant Difference, SG=Stand count at germination, SH=Stand count at harvest, PH=plant height, DF= days to flowering, DM=days to maturity, PPP= number of pods per plant, SPP= number of seeds per pod, HSW=hundred seed weight, GY=grain yield.
3.8. Farmers’ Variety Evaluation Criteria

Chickpea variety selection was carried out at flowering and maturity stages by organizing a field day. Farmers’ selection criteria were Disease reaction, Branch number, pod size, adaptability and early maturity. Out of the eight different traits, farmers chose traits that they often use when evaluating chickpea varieties for implementation. Therefore, while farmers consider many traits, there are a few traits that they often use and these need to be identified. Previous studies by working on cowpea [17] and [23] working on faba beans reported. There were 30 participants in Simada districts and Libokemkem during the chickpea variety selection. The 30 participants were contained of 20 Males and 10 Females for participatory variety selection (PVS) evaluation at...
Simada and Libokemkem districts. Finally, the selection of chickpea varieties was done by the farmers based on their preference criteria. Farmers' varietal assessment showed that variety Minjar was ranked highest (143) followed by Fetenech, Akaki and Kutaye with total values of 138, 128 and 126 respectively at Simada while Minjar was ranked highest (146), followed by Feteneche (141) and Kutaye (134) at Libokemkem for Disease reaction, Branch number, pod size, adaptability and early maturity (Table 6). For this purpose farmers rank the varieties as very good, good, average, poor and very poor using a 1-5 scale. Where "5" = very good,"4" =good, "3"= average, "2"= bad and "1" = worst. Finally, the farmers should select the varieties to use as planting material as the first, second, third and fourth preferred varieties. Accordingly, chickpea varieties Minjar, Fetenech, Akaki and kutaye were selected by the farmers.

Finally, the participant farmers selected and accepted Minjar and Fetenech as best varieties in Simada and Libokemkem districts in their preferences (Table 6). Farmers and corresponding woreda of the Agriculture development office were experts who request the seed of selected varieties to be promoted or multiplied in the future. Therefore, the participant farmers and districts manager decided to distribute the selected improved chickpea varieties on their farms.

4. Conclusion and Recommendations

Participatory varietal selection is the selection by which farmers evaluate released varieties on their farms. The present study at Simada and Libokemkem districts necessitates the presence of significant variations among desi chickpea varieties. The variety Minjar and Fetenech had the highest grain yield in the research selection criteria similarly Minjar and Fetenech were selected by the farmers' selection criteria. In this trial varieties selected by farmers based on their selection criteria and researcher analysis had the same result. Minjar and Fetenech desi type chickpea varieties are found to be well adapted and promising to the target districts in both the researcher's and farmer's will be demonstrated and popularized to the small-scale holder farmers. Therefore researcher data analysis and farmers' varietal selection criteria consider for proper varietal endorsement.

Training

A training program was prepared to improve the concentration of farmers on chickpea varieties available technology in which 41 farmers (36 males, 5 females at simada and Libokemkem districts), and 8 extension personnel (7 males, 1 female) also participated. Of the 49 individuals involved in chickpea training, 12% were women. An information package or manual was prepared on improved chickpea technologies in Simada and Libokemkem districts for development agents.

Acknowledgements

We are grateful Amhara agricultural research institute and Adet Agricultural Research Center for providing funds for this study. Debrezeit Agricultural Research Centre and Sirinka Agricultural Research Center are highly acknowledged for providing the chickpea varieties seeds used for the experiment and are active collaborators of our center.

References

