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Abstract: In this paper we study the uniform approximation of the cut function by smooth sigmoid functions such as Nelder 

and Turner–Blumenstein–Sebaugh growth functions. To illustrate the use of one of the models we have fitted the model to the 

“classical Verhulst data”. Several numerical examples are presented throughout the paper using the contemporary computer 

algebra system MATHEMATICA. 
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1. Introduction 

We study the uniform approximation of the cut function by 

Nelder and Turner–Blumenstein–Sebaugh growth functions. 

We find an expression for the error of the best uniform 

approximation. 

The estimates obtained give more insight on the lag phase, 

growth phase and plateau phase in the growth process [1–4]. 

2. Preliminaries 

2.1. Sigmoid Functions 

In this work we consider sigmoidal functions of a single 

variable defined on the real line, that is functions of the form 

→R R . Sigmoid functions can be defined as bounded 

monotone non-decreasing functions on R . One usually 

makes use of normalized sigmoidal functions defined as 

monotone non-decreasing functions ( ),s t t ∈R , such that 

lim ( ) = 0
t

s t →−∞  and lim ( ) = 1
t

s t →∞  (in some applications 

the left asymptote is assumed to be 1− : lim ( ) = 1
t

s t →−∞ − ). 

2.2. The Cut and the Nelder and  

Turner–Blumenstein–Sebaugh Growth Functions 

The cut (ramp) function is the simplest piece-wise linear 

sigmoidal function. Let = [ , ]γ δ γ δ∆ − +  be an interval on 

the real line R  with centre γ ∈R  and radius δ ∈R . A 

cut function is defined as follows: 

Definition. The cut function ,cγ δ  is defined for t ∈R  by 

,

0, if < ,

( ) = , if | |< ,
2
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Note that the slope of function , ( )c tγ δ  on the interval ∆  

is 1/ (2 )δ  (the slope is constant in the whole interval ∆ ). 

Two special cases are of interest for present discussion in 

the sequel. 

Special case 1. For = 0γ  we obtain the special cut 

function on the interval = [ , ]δ δ∆ − : 

0,

0, if < ,

( ) = , if ,
2

1, if < .

t

t
c t t

t

δ

δ
δ δ δ

δ
δ

−
 + − ≤ ≤



 

Special case 2. For =γ δ  we obtain the special cut 

function on the interval = [0, 2 ]δ∆ : 
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In 1961 Nelder [6] consider the differential equation 

= ( )m m mx k x k xβ −′ − −  

with the solution 

( )( )
1

0

( ) = .

1 1m m mt m

k
x t

k x e β− −+ −
        (2) 

When = 1m  the ordinary logistic equation is obtained. 

An attractive choice for = ( )k k t  is given by Turner–

Blumenstein–Sebaugh in [5]: 

( )
1

( ) =

1 Bmt m

K
k t

eα −+
 

The generalization (the generic logistic equation) of the 

Verhulst logistic equation has the form [5]: 

1

0

( ) =

,

1 1
m

m m mt Bmt

T t
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K x e e
B B

βαβ αβ
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   (3) 

where , , , ,m K Bα β  are growth parameters. If =1m  and 

either = 0α  or B → ∞  then (3) reduces to the ordinary 

logistic equation. 

Definition. Define the following shifted modification of (3) 

with jump at point γ  as: 

1

0
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for which 1
( ) =

2
Tγ γ . 

 

Figure 1. The cut and the function ( )T tγ  with = 1K , = 3m , = 10β , = 2α , = 4B , 0 = / 2x K , 
1

= = 0.16
2l

γ , uniform distance 

= 0.128684ρ . 

 

Figure 2. The cut and the function ( )T tγ  with = 1K , = 4.5m , = 20β , =1.05α , = 2B , 0 = / 2x K , 
1

= = 0.0549812
2l

γ , uniform distance 

= 0.170226ρ . 
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3. Approximation of the Cut Function by 

Shifted Turner–Blumenstein–Sebaugh 

Function (4) 

We next focus on the approximation of the cut function (1) 

by shifted Turner–Blumenstein–Sebaugh (STBS) growth 

function ( )T tγ  defined by (4). 

Note that the slope of ( )T tγ  at =t γ  is 

0
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and the slope of , ( )c tδ δ  at =t γ  is ,

1
( ) = .

2
cδ δ γ

δ
′  

Let choose 
1

=
2

l
δ

. The function defined by (4) has an 

inflection at point 
1

( , )
2

γ  (see Fig. 1 and Fig. 2). 

Consider functions (1) and (4) with same centres =γ δ , 

that is functions ,cδ δ  and Tδ . 

In addition chose c  and T  to have same slopes at their 

coinciding centres. 

Then, noticing that the largest uniform distance ρ  between 

the cut and (STBS) functions is achieved at the endpoints of 

the underlying interval [0, 2 ]δ  we have: 
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The above can be summarized in the following 

Theorem 1. The function ( )T tγ  defined by (4): i) is the 

(STBS) function of best uniform one-sided approximation to 

function ,cγ δ  in the interval [ , )γ ∞  (as well as in the interval 

( , ]γ−∞ ); ii) approximates the cut function , ( )c tγ δ  in 

uniform metric with an error 
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4. Approximation of the Cut Function by 

Nelder Function [6] 

Definition. Define the special shifted Nelder growth 

function ( )N tγ  with jump at point γ  as: 

( )( )
1

0 ( )
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1
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2
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K
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    (6) 

Then 
1

( ) =
2

Nγ γ . 

We next focus on the approximation of the cut function (1) 

by shifted Nelder growth function defined by (6). 

Note that the slope of ( )N tγ  at =t γ  is 

( )0 1

0

1
( ) = 1 =
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m m

m m
N K x l

K x
γ γ β −

−
′ −  and the slope of 

, ( )c tδ δ  at =t γ  is ,

1
( ) = .

2
cδ δ γ

δ
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Let choose 1

1
=

2
l

δ
. The function defined by (5) has an 

inflection at point 
1

( , )
2

γ  (see Fig. 3 and Fig. 4). 

Consider functions (1) and (6) with same centres =γ δ , 

that is functions ,cδ δ  and Nδ . 

In addition chose c  and N  to have same slopes at their 

coinciding centres. 

Then, noticing that the largest uniform distance 1ρ  

between the cut and Nelder functions is achieved at the 

endpoints of the underlying interval [0, 2 ]δ : 
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The above can be summarized in the following 

Theorem 2. The function ( )N tγ  defined by (6): i) is the 

Nelder function of best uniform one-sided approximation to 

function ,cγ δ  in the interval [ , )γ ∞  (as well as in the 

interval ( , ]γ−∞ ); ii) approximates the cut function , ( )c tγ δ  

in uniform metric with an error 
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Figure 3. The cut and the function (6) with = 1K , = 3m , =10β , 

0
= / 2x K , = 0.114286γ , uniform distance 

1
= 0.166454ρ . 

 

Figure 4. The cut and the function (6) with = 1K , = 4.5m , = 20β , 

0 = / 2x K , = 0.0523119γ , uniform distance 
1

= 0.177385ρ . 

Remark. Let us point out that estimate (7) does not make 

use of the parameter β . 

5. Computational Issues and Fitting the 

Model (3) (with Jump at γ) Against 

Verhulst Data 

To illustrate the use of the model (3) we have fitted the 

model to the Verhulst data by use of software module in 

programming environment CAS Mathematica. 

In his famous work [7] Verhulst applies the logistic model 

to fit census data for the population in France. The given data 

in column 3 (Fig. 5) will be briefly called Verhulst data. 

The appropriate fitting of Verhulst data by the function (3) 

with = 81K , = 59β , = 0.054α , = 0.166m , = 1.817γ , 

= 57B , 0 = 29,981x  is visualized on Fig. 6. 

The following scales are appropriate: on the abscissa 1000 

units correspond to one division; on the ordinate 1000000 

units correspond to one division. 

We may expect somewhat more accuracy in predicting the 

population of metropolitan France for 1841, 1851 and 2010 

(see Table 1). 

Table 1. Average of population. 
 

Year Population by TBS model 
Population — National Inst. of 

Statistics 

1841 34559900 34912000 

1851 36489500 36472000 

2010 62850000 62765000 

Let us note that the results are unexpectedly reliable, 

especially in relation to extrapolation for the year 2010. In this 

case the relative error is on the order of 0.135%. 

The experts from the National Institute of Statistics - France, 

when studying in detail the population of metropolitan France 

pay special attention to existing two centuries of population 

growth: First World War 1914–1918 and Second World War 

1939–1945, (see Fig. 7; 

https://en.wikipedia.org/wiki/Demographics of France). 

It can be concluded from Fig. 7 that knowledge of the 

lag-time is very substantial for choosing the correct empirical 

growth model. 

We hope that the results on the approximation of the cut 

function by smooth sigmoidal functions can be useful for 

choosing the correct population model. 

For some approximation, computational and modelling 

aspects, see [8–25]. 

 

Figure 5. Verhulst data [7]. 
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Figure 6. Software tools in CAS Mathematica. 

 

Figure 7. Two centuries of population growth (First World War 1914–1918; 

Second World War 1939–1945); https://en.wikipedia.org/wiki/Demographics 

of France. 
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