

Advances in Applied Sciences
2016; 1(2): 37-45

http://www.sciencepublishinggroup.com/j/aas

doi: 10.11648/j.aas.20160102.13

Framework for Traffic Engineering of SDN Data Paths

Lucio Agostinho Rocha

Department of Software Engineering, Federal University of Technology, UTFPR (Universidade Tecnológica Federal do Paraná), Dois

Vizinhos, Brazil

Email address:

luciorocha@utfpr.edu.br

To cite this article:
Lucio Agostinho Rocha. Framework for Traffic Engineering of SDN Data Paths. Advances in Applied Sciences.

Vol. 1, No. 2, 2016, pp. 37-45. doi: 10.11648/j.aas.20160102.13

Received: September 15, 2016; Accepted: September 26, 2016; Published: October 15, 2016

Abstract: Software Defined Networking (SDN) is an approach to the deployment of future network infrastructures. SDN

allows deal with different configurations to a crescent amount of virtualized network devices. In this paper, we offer a

framework to support a number of network configurations through computational modeling and deployment of data paths

between physical hosts for SDN. Computational modeling is a feasible alternative to measure and analyze the most diverse

computational problems before its prototyping. We develop the toolset called Mini-TE (Mini-Traffic Engineering) to perform

traffic engineering over computational models of data center topologies, and to set data paths before submission of data

streams. As a consequence, Mini-TE contributes to reduce the operating expense to discover routes among hosts of data

centers. We want to evaluate the effectiveness of our methodology by using Mininet through a set of experiments.

Keywords: SDN, OpenFlow, Network Management, Network Architecture, Scalability

1. Introduction

The goal of our paper is answer the question: how can we

simulate large SDN topologies in a single host? In order to

answer this question we conduct this current research.

Software Defined Networking (SDN) is a networking

technology, which allows use open protocols to use control

software on network devices that typically would use

proprietary firmware [1]. With SDN, control and data plane

are separated to directly allows control and management in a

centralized manner, and the data plane be abstracted more

than used with specialized hardware. Despite the fact that

management to become directly programmable, SDN

architectures are challenges in terms of scalability and

support for establishment of complex data paths [2]. Some

works [3–6] deal with network scalability defining a logical

data plane beyond its physical boundaries. Cloud data centers

also benefits from link virtualization due its inherent support

to on-demand network provisioning [7]. On the other hands,

computational modeling is essential for network management

[8] since it helps to evaluate strategies prior their execution,

avoiding to spent resources with problematic situations,

mainly for detecting bottlenecks before receiving the network

data traffic [9]. Computational modeling is a mathematical

researching area that presents solutions to analyze non-trivial

problems in computers. Additionally, Operational Research is

an area that the group’s techniques of resource optimization

[10].

We argue that computational modeling is important to

evaluate large network SDN data paths, although its

implementation to be restricted due traditional networks,

which are Commodity Off-The-Shelf (COTS) designed by

vendors with limited configuration capabilities provided to

web administrators.

In fact, there are works [11–13] that deal with network

modeling as a Multi-Commodity Flow (MCMF) problem.

Much effort has been given to improving scalability and

programmability of these networks in data centers [14–17] by

using an OpenFlow protocol [18]. This open network

protocol allows program the flow-table in different switches

and routers. OpenFlow decouples control plane from the data

plane, and allows an SDN controller to manage rules to

forward traffic. Although be reasonable use well-defined

network protocols to automatic discovery of network devices,

also is important that these networks be more flexible to

current need of network administrator, such as eventual

bottlenecks, high demand peaks, fault tolerance, and/or load

balance occurrences. Also, Multi Protocol Label Switching

(MPLS) is suitable for OpenFlow programmable networks

 Advances in Applied Sciences 2016; 1(2): 37-45 38

with changeable data paths [19].

The most common alternative to offer a global view over

many physical topology is using a centralized SDN controller

[3–6, 20]. Global view is an alternative to turn feasible setups

for very large network topologies. But Zerrik et al. [7] claims

that these centralized SDN architectures are constructed in

way very inflexible. In fact, SDN architectures should be

highly flexible with minimal human intervention, and should

be scalable and adaptable simultaneous. Even so, one of the

major difficulties about implementing decentralized SDN

architectures is due the inherent nature of Ethernet ARP

broadcast messages to discover new nodes. The increasing of

amount of network devices potentially will imply in ARP

broadcast storms into network. Another issue is some

nontrivial network topologies in reason of some SDN

controllers have difficult to solve loops in its topologies [21].

In this paper, in order to deploy large SDN topologies, we

set network data paths supported by computational modeling.

The main contribution is two-fold: offer an alternative of

routing without losses, and an methodology to deploy large

virtualized experiments with Mininet. Our approach is

directed to use a framework where each physical domain

maintains its own OpenFlow rules. This access is distributed

because divides the processing of routes through its

communicant parts that are in distinct hosts. Finally, our

framework combines partial network set-ups from each

domain in a single global logical plane. We adopt

computational modeling techniques from the Operational

Research to establish data paths for the traffic of SDN

networks, founded on our previous work [22] with the

computational modeling approach.

In this paper we introduce a set-up of data paths with

Mininet through separated physical domains. The goal has

defined a methodology to deploy scalable virtual links

between these domains, in a proactive manner. Our

framework, known as Mini-TE (Mini-Traffic Engineering) is

used to provide a unified network logical plan to map and

deploy large data paths, distributing the nodes and virtual

switches in many virtualized hosts running Mininet emulator.

Finally, our tests show serious results in concurrent

communication for TCP and UDP protocols.

This paper is structured as follows. Section 2 is about

related works. Section 3 presents our methodology for

integrating computational modeling with the management of

OpenFlow rules. Section 4 presents the MiniTE architecture

used in the experiments. Section 5 relates the experimental

evaluation. Finally, conclusions and future works are done in

Section 6.

2. Background

Multi-commodity flow (MCMF) problems are close to

multiple demand flows (commodity demands) in network

flows with different source and sink nodes [14–17]. These

demands are commonly found in large scale networks, such

as server farms. In these environments, the integral nature of

its communications allows optimization of traffic by traffic

engineering (TE) methods. Benson et al. [15] says that

existent TE techniques perform 15% at 20% worse than the

optimal resolution. Nevertheless, Al-Fares et al. [16] affirm

that multirooted trees with many equal-cost paths are the

common solution used by many ISPs (Internet Service

Providers), but existent multipath protocols may cause

substantial bandwidth losses due high collision rates. In fact,

our previous work with MPTCP (Multipath TCP) [23]

showed that is important includes multi-path TCP as na

choice to distribute data traffic via alternative routes. MPTCP

is a network protocol designed to forward subflows through

disjoint paths. Even using ECMP (Equal Cost MultiPath)

many flows may be forwarded by the same data path.

MPTCP is not exclusive to OpenFlow networks, but is useful

to automatically forward subflows two distinct routes.

However, MPTCP will automatically redefine data-paths

according specific network requirements, with minor human

intervention.

Dynamic traffic engineering techniques for SDN networks

has been contemplated by many authors, and applied in data

centers. Nevertheless, the applicability of these techniques

generally is limited due restrictions of ISP domains in

provide detailed information about its infrastructure. A

possibility to bypass these restrictions is use

emulation/virtualization for experimentation. In this sense,

new alternatives TE techniques for large scale environments

may be evaluated before prototyping, and provide detailed

information about possible leaks, bottlenecks, alternatives

routes, fault-tolerance, split/join of data traffic, and many

others. SDN leverage these possibilities because a number of

experiments may run in short time in controlled domain.

Intensive network applications for distribute computing (e.g.

MapReduce, peer-to-peer, SOA based applications, and many

others) also may be assessed in a few emulated hosts.

A lot of works deal with virtualized experiments using the

OpenFlow protocol for SDN networks. Flowvisor [5] is an

OpenFlow proxy to enable multiple SDN controllers in a net.

The software separates the entire network into slices and one

controller can be used to manage each network slice.

Multiple controllers can manage the same set of switches for

different uses. But Flowvisor is not a SDN controller: it only

forwards packets between switches and controllers, and not

allow any communication between different controllers what

restrict the scalability of data paths setups. An improved

distributed FlowVisor [6] address scalability issues to cloud

computing environments. Scalable cloud experimentation

may be used in OpenStack Neutron with virtual L2 networks

[4] and OpenDayLight Virtual Tenant Network and

OpenDayLight Virtual Tenant Network (VTN) [3]. VTN and

OpenStack Neutron gives a logical abstraction plane of

network that separate logical plane from the physical plane,

and give possibility to deploy virtual networks without

experiencing the entire physical topology.

Although Mininet results are not well accurate for large

topologies [24], it is still an affordable free choice to run

OpenFlow experiments in a single server. Mininet cluster

edition [25] is a working-in-progress prototype to distribute

39 Lucio Agostinho Rocha: Framework for Traffic Engineering of SDN Data Paths

nodes and connections over a cluster of servers, using

resources of each machine to scale the large network. There

are some matters about this solution: only one Mininet

instance run across the cluster, remote nodes depend of ssh

connections to remote Mininet servers, and there is no

control about where virtual hosts and virtual switches are

physically allocated. On other side, many cloud providers use

multi-tenancy packet isolation with virtual switches and

conventional packet isolation mechanisms, such as GRE

tunnels, MPLS and VLAN. Ahmed et al. [26] proposes the

Open virtual Network Management (Open vNMS) to large

scale experimentation in clouds. The work is based on elastic

L2 isolation. Related at SDN controller, Onix [27] and

Hyperflow [28] distribute the control plane but maintain a

centralized distributed file system. Kandoo [29] distribute the

control plane and act as coordinator between local

controllers. Kandoo proposes a hierarquical distribution of

controllers in two layers. The bottom layer groups controllers

without connection between them. The top layer provides a

centralized controller with global network state. However,

Zerrik et al. [7] consider that this approach causes some

issues: local controllers need that the root controller

subscribes itself to each OpenFlow event. This is need to

allow the propagation of these events to specific local

controllers, i.e., it is necessary to subscribe all OpenFlow

events in all local controllers what implies in high amount of

information in the current tables of OpenFlow switches. But

Kandoos authors not explain how the datapaths are

configured.

On other hands, DIFANE [30] is a distributed management

architecture that distribute rules to authority switches, and

handles wildcards rules according to network dynamics.

Many works use frameworks over Mininet as base for SDN

experiments. Barford et al. [31] presents a simulation tool

known as fs-sdn, but experiments were performed for a little

sum of nodes (until 100 nodes). Recent works use

frameworks built over Mininet. Murthy et al. [32] use a

framework to deploy customs topologies for lesser than 100

clients in a single host running Mininet. Darabseh et al. [33]

propose SDStorage as an experimental framework propose

SDStorage as an experimental framework built over Mininet

to abstract data storage control operations from the storage

devices from a centralized controller in the software layer.

Minievents [34] is a framework over Mininet that introduces

an event generator for the topology, such as TCP and UDP

traffic, delay, and bandwidth changes.

Fig. 1. Mini-TE Approach to Deploy Data-Paths.

Other popular software for SDN experiments is Estinet

[24]. EstiNet is an OpenFlow network simulator and

emulator, and it combines the advantages of both these

approaches to run tests with very large number of OpenFlow

switches and hosts. It uses a real OpenFlow controller,

network applications and the real TCP/IP protocol stack in

the Linux kernel. The authors say that EstiNet is more

scalable than Mininet, and its performance with an

OpenFlow controller are also more accurate than Mininet.

Nevertheless, this software tool is not freely available as an

open source project. The most popular network simulator in

the literature is the ns-3 (network-simulator 3). This network

simulator uses its own OpenFlow module written in C++. To

run simulations with this module, it is necessary to compile it

and link it jointly with the network simulation engine.

Currently, ns-3 no offer a spanning tree protocol or

interaction with real OpenFlow controllers, and its OpenFlow

support it is in early stage of development. Wang [35] uses

Floodlight controller to compare EstiNet simulator, EstiNet

emulator, and Mininet emulator over a set of grid networks of

reduced amount of nodes (until 31 nodes). Performance

measurement was done with ping of packets to acquire the

average RTT among the simulated nodes. EstiNet emulator

showed better results about data correctness, RTT

performance and scalability.

As an alternative, the toolkit DOT [36] distributes the

emulated SDN network using multiple physical machines to

provide resources for its network elements. The toolkit uses

an embedded algorithm that minimizes the physical

bandwidth load and the routine of physical machines need to

support the specified network topology. Also, is possible to

perform the emulation using DOT inside VMs with Qemu.

 Advances in Applied Sciences 2016; 1(2): 37-45 40

Another alternative is use the toolkit Maxinet [37] that span

the emulation of larger topologies across physical machines.

All switches are checked by one central OpenFlow controller

that regulates in a transparent way the routing between its

worker nodes, that are the physical machines that instantiate

the Mininet switches.

However, it is not a trivial task to map where these

switches are deployed, what difficulties the direct

deployment of OpenFlow rules.

3. Methodology

In this section we briefly explain our strategy to deploy

data paths by set up flow entries in the switches.

3.1. Mesh Layered Topology

On that point are many network topologies which may be

evaluated for large scale virtualized environments from

simple linear or balanced trees, or even more complex

topologies, such as Hypercube [38], Fat-tree [39], VL2 [40],

BCube [41], Portland [42], and many other complex models

[43]. These latter topologies have interesting properties

which makes them suitable for large scale experiments, such

as number of links per node (degree of a node), a small

internode distance (diameter), and many alternative paths

between pairs for fault tolerance [38]. However, our aim is to

evaluate a topology which is bandwidth-intensive and

support many alternative data paths inside and outside its

layer domain. Although there are various different topologies,

we are interested in evaluating the OpenFlow potential to

redistribute traffic, independent of the chosen topology.

Fig. 2. Mesh Layered Topology.

In this sense, we use a mesh layered topology model, as

illustrated in Figure 2. Mesh layered topology is a 3-

dimensional graph where the nodes are the switches and the

edges are the connections between them. Each node keeps

links with its neighbor nodes. This scheme is a paradigm

where commodity switches are utilized to establish direct

links between them. As a result, each switch is able to

forward data to/from its direct neighborhood, as illustrated in

Figure 2. Our topology model defines:

� Li: is the layer index i;

� si, j: is the virtual switch node j in layer i | i, j ∈ N.

A layer Li is the physical host i with many virtual switch

nodes. Each switch node si,j keeps connection with its

neighbour switch node, i.e., exist a link between si,j with

si+1,j and si−1,j. As a result, we preserve the clear

characteristics of mesh topologies whilst extend its model in

a well-defined scalable structure. So, our computational

modeling will define the routing data path through virtual

switches in different layers, although each Mininet domain

may specify its own routing protocol.

In our solution, we have control about where virtual hosts

and virtual switches are physically instantiated because each

domain has full control of its own Mininet instance. Other

Works as Maxinet [37], DOT [36], Flowvisor [5], [6],

Mininet cluster edition [25] and OpenDayLight VTN [3] not

currently give possibility to keep different Mininet instances

separated, routing between worker nodes is performed in a

transparent way, and distribution of virtual switches is done

automatically.

We utilize a lightweight solution by set GRE (Generic

Routing Encapsulation) tunnels across physical domains with

Open switch (OVS). This permits that each virtual switch

communicates itself with its neighbors. OVS is an

implementation of emulated switch in the Linux kernel with

OpenFlow support, and it is able to create emulated virtual

switches, connect them at other virtual and/or physical

interface, and use SDN controller to configure its switches.

Our deployment of OpenFlow rules is managed entirely via

dpctl commands without an SDN controller. Figure 1

illustrates our methodology. Mini-TE Manager component

will receive partial topology configuration and pass out over

its managed Mini-TE Local components. We explain this

process as follows.

3.2. Flow Set-up

Our evaluation depends on set up of flows provided by our

linear programming example. Flow entries act to match flows

and specify the action for incoming and outcome packets.

The action specified by flow entries can be mapped to a

group action. The purpose of a group action is define more

specific forwarding action to process these incoming packets.

A group action contains a bucket, and this latter contains a

list of actions. There are four types of groups that are all,

select, indirect and fast-failover. We use select group from

OF13SoftSwitch to stochastic switching of data traffic. We

set a weight to entry data traffic in a round robin model to

split incoming traffic for each bucket, e.g., an entry data flow

of 1000 units splited in 200 and 800 units will be splited to

buckets with weight=2 and weight=8, respectively. The

precision by which a packet distribution will be done is

undefined. Also, the bucket sharing is determined by the

individual bucket’s weight divided by the sum of the bucket

weights in the group. As a result, we can generate splits

and/or join of data traffic. Group tables are available since

OpenFlow 1.1 specification, we use group table from

OpenFlow 1.5 supported by OVS 2.5.0 specification.

41 Lucio Agostinho Rocha: Framework for Traffic Engineering of SDN Data Paths

� Packet in: it is the message from switch when a packet

arrives, and no matching flow entry is found. This

message contains the headers and payload of the

received packet, and is transmitted to the controller.

The Packet in message contains the buffer id where

packet is buffered in the switch to aim the controller to

sent proper message response to forward the packet in

its specific buffer located in the switch.

� Packet out: it is the message from controller to

forward the received packet to a specific switch port.

� Flow mod: it is the message from the controller to a

switch in order to create flow entries inside the

OpenFlow switch. This message informs how deal

with new received packets, rules and actions to be

performed.

� Tunneling: when a packet need to be forwarded to

outside from local Mininet emulated domain, a tunnel

is created to bypass its current area via bridges.

Tunneling is supported by current Mininet version, but

is setup outside its emulated network via MiniTE

Local service. An option key id is used to specify

many concurrent tunnels in a same virtual ovs switch.

When a package is received, the OpenFlow switch tries to

match the header of this packet in its flow table. If no

information about this packet is found, the switch sends the

headers to its OpenFlow controller. This will make a packet

in event in the controller. Then, the controller will require

some actions considering the headers of the L2, L3, and L4

so that this packet and further ones belonging to the same

flow are sent throughout the network. When a route is

obtained by the controller, flow mod messages are

transported back to the switches to set their flow tables. We

illustrate this process in Figure 3. The establishment of these

data paths is made out with proactive or reactive methods.

Proactive routing methods in SDN networks, assure that

paths are set before packets are sent on the mesh. The

advantage is that they do not generate extra network

overhead and do not affect the network performance to

discover its endhosts. When packets arrive on the network,

the forwarding rules are already there and no packets are sent

to the controller. However, proactive methods depend on

previous mapping of the whole interconnections on these

topology, which is not always feasible for all networks.

Reactive routing methods occur when new a packet hits a

switch without a matching in the flow entry. Then, such

packet must go to the controller, which in turn uses control

messages to automatically discover its end-hosts and obtain

the active links before the data traffic to be forwarded in the

net. The advantage is that there is no need of previous

knowledge of the whole network topology. However, for

large networks, the amount of control messages will

potentially determine the network performance since all the

first packets of every new flow will go to the controller

before traversing the network.

Both proactive and reactive methods are useful to bring in

dynamic traffic engineering the paths in SDN networks.

Proactive methods require syncronization between the

controller device that deploy paths. But reactive methods

introduce additional overhead in large networks and

influence the network functioning. So, we adopt a proactive

method to establish large data paths between physical hosts.

Fig. 3. OpenFlow Packet Forwarding.

3.3. Processing of the MILP Model

The processing is done with Mini-TE Local component

which have MILP solvers, such as CPLEX or Lingo. The

result obtained from solving this MILP model is a set of

paths to forward data between virtual hosts, without over-

utilization of the network links. Each Mini-TE Local

component of our architecture use our previous work

MILPFlow [22] to generate data-paths to its own domain.

Then, Mini-TE Manager receives these results to get an

abstract network’s global view.

We present an example in Figure 4 and its corresponding

mapping results in Table I. The data structure F1 keeps the

whole information about the links with aggregated-flows F1.

So, F1 [1] [1] [2] = 1000 indicates that Layer1 has 1000

units of the flow F1 goes through the link between the nodes

H1 and s2;

Also, F1 [2] [8] [10] = 1000 is Layer2 who has 1000 units

of the flow F1 that goes through the link between the nodes

s8 and h10.

Table 1. Mapping of ports with Milpflow.

MILPFlow results Mininet Topology in Layer Mapping of Ports

F1 [1] [1] [2]=1000 (h1,s2) (h1,0,s2,1)

F1 [1] [2] [3]=0 (s2,s3) (s2,2,s3,1)

F1 [1] [2] [5]=0 (s2,s5) (s2,3,s5,1)

F1 [1] [4] [5]=0 (s4,s5) (s4,2,s5,2)

F1 [2] [6] [7]=800 (s6,s7) (s6,2,s7,1)

F1 [2] [7] [8]=800 (s7,s8) (s7,2,s8,1)

F1 [2] [6] [9]=200 (s6,s9) (s6,3,s9,1)

F1 [2] [9] [8]=200 (s9,s8) (s9,2,s8,2)

F1 [2] [8] [10]=1000 (s8,h10) (s8,3,h10,0)

3.4. Compose Data Paths

Extra effort is necessary to compose the data paths. As

shows the Table I, the flow F1 occurs on many links.

However, it is necessary to compose the path in the

properly sequence, i.e., the sequence of nodes to forward data

from source virtual host to reaches its destination virtual host.

For this we use an algorithm similar at the depth-first search

 Advances in Applied Sciences 2016; 1(2): 37-45 42

algorithm in order to explore as far as possible each branch in

the path of F1. Figure 4 illustrates this example.

Fig. 4. Mapping of Layered Paths with Mini-TE Manager.

In this example, the sequence F1 [2] [6] [7] and F1 [2] [6]

[9] are the links of the node s6 to reach the nodes s7 and s9,

respectively. So, we have a split condition in this way.

Similarly, the sequence F 1 [2] [7] [8] and F 1 [2] [9] [8] are

a join condition near at the destination.

3.5. Generation of Data Path Rules

Our approach considers aggregation of many micro-flows

in end-to-end data path before submission. We describe this

step with an example of a flow generated from host H1 to

host H10, as exemplified in Figure 4. We create switches si in

crescent order to communicate with each other via

communication ports. We combine MILP results with

Mininet to create a mapping of MILP ports, as depicted in

Table I. The first column in Table I shows the route created

by MILPFlow to go from host H1 to host H6. The second

column indicates the hosts and switches in the Mininet

topology in each layer and ultimately in the last column, we

see each host-port and switch-port connection.

Emulators as Mininet read topology files to create its

virtual connections with Open vSwitch (OVS) kernel

switches. Mapping the input and output ports of each

connection that connects switches is necessary to establish

connectivity hop by-hop, and this task is generally performed

by OpenFlow controller. However, we acquire this data

directly from Mininet (parsed from net command). As a

consequence, it is not necessary to transmit control messages

to discover the connection between the ports of these

switches. However, it is necessary to define ARP and IP flow

mod rules for the switches of each data path. When splits of

traffic occur we employ the group tables of the OpenFlow

1.1.0 specification. This feature allows developers to create

custom functions to split flows in the network as easily as

their subsequent joins. For each group table, the value of the

variable weight indicates the quantity of traffic that should be

forwarded through its sub-paths, as occurs in the switches s2

and s5 in Figure 4. We set the normalized weight value of the

MILP result. As an example, we map the resultant flow of

800 units in the linkup between the switches s6 and s7: F1 [2]

[6] [7] = 800, and between the switches s6 and s9: F 1 [2] [6]

[9] = 200. Then, we set weight1=8, weight2=2, respectively.

Finally, on each switch with split the group mod rule is set as

follows:

Fig. 5. Mini-TE Distribute Architecture for Deployment of Data Paths.

43 Lucio Agostinho Rocha: Framework for Traffic Engineering of SDN Data Paths

dpctl tcp:<HOST_IP>:<HOST_PORT> group-mod\

cmd=add,type=<TYPE>,group=<GROUP_ID>\

weight=<WEIGTH_1>,port=<PORT_1>,\

group=all output=<OUT_PORT_1> \

weight=<WEIGTH_2>,port=<PORT_2>,\

group=all output=<OUT_PORT_2>

3.6. Deployment of Data Paths

Mini-TE Local service generates the set of flow mod and

group mod rules in an executable batch file. The network

administrator uses these rules to deploy its data paths. Two

output formats are generated: dpctl commands and HTTP

REST commands for using with our REST API. This API

maps dpctl commands to set input and output ports in each

switch of the data path. Mini-TE Local service creates for

each instantiated virtual switch a GRE tunnel with your

correspondence vicinity in order to permit forward traffic

data.

4. Mini-TE Architecture

Mini-TE Architecture is showed in Figure 5. Mini-TE

Local components send its virtual switches and virtual hosts

description to Mini-TE Manager. Inside each physical host

are instantiated the Mini-TE Local, Mini-TE Authoritative,

and Mini-TE TLD components. We use GRE tunnels

between physical hosts and between virtual machines

because we are in a controlled field. A possible improvement

would be using ssh for secure connection between physical

servers. A description about each part of our architecture is

given as follows:

Mini-TE Manager: it is the daemon which works in the

root domain, and receives/sends messages in REST API to

forward packets to other physical hosts. Mini-TE manager

communicates via REST API with many Mini-TE TLD, or

directly with Mini-TE Local if there is a single physical host.

Nevertheless, many Mini-TE Managers may communicate

each other to expand the scale of virtualized experiments.

Mini-TE TLD: This component is necessary only if we

want to communicate with virtual hosts from another

physical host. Mini-TE TLD is the daemon which

receives/send messages in REST API from Mini-TE

Authoritative and send to its registered Mini-TE Manager.

Mini-TE Authoritative: it is the daemon which join many

local context in a single global view of topology. This

daemon receives/send messages in REST API about the

entire global topology view which is operating on a single

physical host.

Mini-TE Local: it is the daemon which receives/send

messages in REST API to deploy OpenFlow rules to Mininet

local context. A same physical host may run many virtual

machines, each one running its own Mininet context. So,

MiniTE Local daemon must be given on each virtual

machine. This component is responsible to make tunnels for

each virtual switch with its correspondence in upper and

lower layers.

5. Experimental Evaluation

We define a set of methods to reduce the reconfiguration

time of network services and minimize the network

configuration errors. Our Linux environment was configured

with ulimit 65535, VirtualBox NIC virtualized Intel

PRO/1000 MT Server, ovsvsctl (Open vSwitch) 2.5.0, DB

Schema 7.12.1, dpctl 1.3 from CPqD, and Mininet.

Preliminary evaluations showed that instantiated GRE

tunnels in Mininet didn’t make significative impact on

execution.

The required time to compute data path rules will depend

on topology, size, but we don’t consider this matter as a

limiting factor because each physical domain will be able to

process its own MILP model. Also, the required time to setup

data path rules is not a restriction because will be dependent

of the physical machine resources. We want measure a set of

scenarios on an Intel Pentium 4 with 3 GHz, 1GB of RAM

for Mini-TE Local, and MiniTE Manager on a Core 2 Duo

with 2.4GHz, 2GB of RAM. Our experiments run inside

VMs of VirtualBox with XUbuntu 14.04.2 LTS with 1 Gbps

NICs, and Open vSwitch compatible OpenFlow switches. We

use two layers of the Mesh Layered topology with 10 hosts

for each one of 10 switches (100 hosts in each layer). Our

experiments will be done with Iperf software, and streaming

of video using the VLC application with Real-time Streaming

Protocol (RTSP).

The purpose of this evaluation is to show the feasibility of

the tool in terms of mathematical modeling and the

deployment of flows. We use MILPflow to generate the data

paths, following the steps of the methodology. For this

experiment we set aggregated flows of 1000 units each to

transverse our reference topology. We define the bandwidth

of the links in 10000 units to have a value near at 10Mbps of

our Mininet bandwidth.

The next steps of our methodology are automatically done

with MIPLFlow. The evaluation will be done taking into

account UDP and TCP traffic. In both experiments we want to

run Iperf measurements 30 times for each pair of virtual hosts,

i.e., h1 from Layer1 with h11 of Layer2, h2 from Layer1 to

h12 of Layer2, and so on. Also, we want to collect data every 5

seconds for each measurement. For UDP traffic we want to use

Iperf to submit 5Mbps between the virtual hosts. For TCP

traffic we want to run similarly, but without restriction about

the amount of data to be forwarded among the virtual hosts.

Our preliminaries results show that mesh topologies are

useful alternatives to evaluate large scale deployment of data

paths. However, our current infrastructure is not able to

perform the current tests of Mini-TE architecture. The reason

is that our physical hosts not support more than 50 virtualized

hosts. So, we are considering the evaluating as a work-in-

progress while we can’t run these tests in our own physical

infrastructure. Whole software developed until this moment

is available on-line at https://github.com/mini-te/mini-te.

We expect that the results with TCP traffic be similar to the

 Advances in Applied Sciences 2016; 1(2): 37-45 44

UDP traffic since the MILP generates data paths without

losses. Also, MILPFlow modeling is important because it

accommodates the flows taking into account the capacity of

each link and the shortest path is not always obtained for all

the flows.

6. Conclusions and Future Works

Our article presents a methodology to integrate

computational modeling with management of SDN networks

in order to deploy very large SD topologies.

Our approach aims to promote proactive routing. In order to

validate our methodology, we implement the MILPFlow

framework, and conduct a set of experiments to evaluate our

approach. The main advantage of using MILPFlow is the

possibility of doing mathematical modeling together with the

deployment of SDN/OpenFlow rules as well as the capability

of reconfiguring routes in a finer granularity according to the

network administrator needs. Our work is innovative in the

sense that we aim at contributing to the state of the art in

affordable yet rich SDN experimentation using computational

modeling jointly with the deployment of rules in the network.

Our approach not obligate that vendors modify its current

network hardware, and no kernel modification is need to run

changeable data paths, as must be done with MPTCP. We

consider in this paper that control programs installing an end-

to-end path on a per-flow basis is not scalable due limited

switch memory. However, data-paths can be established for

aggregate rules matching a large number of micro-flows. As a

consequence, the information propagation delay in SDN would

be similar at traditional networks. Our experiments with

Mininet and OpenFlow demonstrate that proactivelly deploy

rules on switches is an affordable alternative for aggregation of

data paths, eliminating major of control requests in the control

plane. However, the cost is loss of precision and reactivity in

the controller in fault events, bottlenecks, high peaks of

demand, and others. These problems are not caused

fundamentally by SDN, but can be addressed without losing

the benefits of SDN. The level of flexibility to accommodate

network programming and management at scale are

challenges, even for traditional networks.

We note that SDN/OpenFlow experiments with

computational modeling are still few present in the literature.

Our work is innovative in the sense that we aim at

contributing to the state of the art in affordable yet rich SDN

experimentation using computational modeling jointly with

the deployment of rules in the network. As future work, we

would like to extend our approach to mobile SDN networks,

and simplify the setup with automated packages.

Acknowledgment

The author gratefully acknowledges the contribution of the

Grupo de Pesquisa em Engenharia de Software e Informática

(GPESI) -

(http://dgp.cnpq.br/dgp/espelhogrupo/6364090264037055) a

Brazilian research group.

References

[1] M. K. Shin, K. H. Nam, and H. J. Kim, “Software-defined
networking (SDN): A reference architecture and open APIs,”
in 2012 International Conference on ICT Convergence
(ICTC), 2012.

[2] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On
scalability of software-defined networking,” IEEE
Communications Magazine, 2013.

[3] “OpenDayLight User Guide: Virtual Tenant Network,” 2016,
p. 62. [Online]. Available:
https://www.opendaylight.org/sites/opendaylight/files/bk-user-
guide.pdf

[4] “Neutron - OpenStack,” 2016. [Online]. Available:
https://wiki.openstack.org/wiki/Neutron

[5] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N.
McKeown, and G. Parulkar, “FlowVisor: A Network
Virtualization Layer,” in Deutsche Telekom Inc. R&D Lab,
Stanford University, Nicira Networks, Technical Report, 2009.

[6] L. Liao, A. Shami, and V. C. M. Leung, “Distributed
FlowVisor: a distributed FlowVisor platform for quality of
service aware cloud network virtualisation,” IET Networks,
vol. 4, no. 5, pp. 270–277, 2015.

[7] S. Zerrik, A. E. ouadghiri, D. E. ouadghiri, R. Atay, M.
Bakhouya, and J. Gaber, “Towards a decentralized and
adaptive software-defined networking architecture,” in Next
Generation Networks and Services (NGNS), 2014 Fifth
International Conference on, May 2014.

[8] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “PayLess:
A low cost network monitoring framework for Software
Defined Networks,” in Network Operations and Management
Symposium (NOMS), 2014.

[9] A. Schaeffer-Filho, A. Mauthe, D. Hutchison, P. Smith, Y. Yu,
and M. Fry, “PReSET: A toolset for the evaluation of network
resilience strategies,” in Integrated Network Management (IM
2013), 2013 IFIP/IEEE International Symposium on, May
2013, pp. 202–209.

[10] J. W. Chinnecke, Practical Optimization: A Gentle
Introduction, 2012. [Online]. Available:
http://www.sce.carleton.ca/faculty;chinneck/po.html

[11] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “vcrib:
Virtualized rule management in the cloud,” in USENIX
HotCloud, USA, 2012.

[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P.
Sharma, and S. Banerjee, “DevoFlow: scaling flow
management for highperformance networks,” in SIGCOMM
CCR, 2011.

[13] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the
One Big Switch Abstraction in Software Defined Networks,”
in CoNEXT, ACM, 2013.

[14] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P.
Sharma, S. Banerjee, and N. McKeown, “ElasticTree: Saving
Energy in Data Center Networks,” in Proc. 7th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 10), San Jose, USA, 2010.

45 Lucio Agostinho Rocha: Framework for Traffic Engineering of SDN Data Paths

[15] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE:
Fine grained traffic engineering for data centers,” in Proc. 7th
International Conference on emerging Networking
EXperiments and Technologies, CoNEXT 11, Tokyo, Japan,
2011.

[16] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic Flow scheduling for data center
networks,” in 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 10, San Jose,
USA, 2010.

[17] Y. Li and D. Pan, “OpenFlow based load balancing for Fat-
Tree networks with multipath support,” in 12th International
Conference on Communications (ICC 13), Budapest,
Hungary.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” in ACM
SIGCOMM, 2008.

[19] A. R. Sharafat., S. Das, G. Parulkar, and N. Mckeown.,
“MPLS-TE and MPLS VPNs with OpenFlow,” in ACM
SIGCOMM, 2011.

[20] M. Erel, E. Teoman, Y. Ozcevik, G. Secinti, and B. Canberk,
“Scalability analysis and flow admission control in mininet-
based SDN environment,” in Network Function Virtualization
and Software Defined Network (NFV-SDN), 2015 IEEE
Conference on, Nov 2015, pp. 18–19.

[21] POX Wiki, 2015. [Online]. Available:
https://openflow.stanford.edu/display/ONL/Pox+Wiki

[22] L. A. Rocha and F. L. Verdi, “MILPFlow: A toolset for
integration of computational modeling and deployment of data
paths for SDN,” in 2015 IFIP/IEEE International Symposium
on Integrated Network Management, 2015.

[23] M. Sandri, A. Silva, L. A. Rocha, and F. L. Verdi, “On the
Benefits of Using Multipath TCP and OpenFlow in Shared
Bottlenecks,” in 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, 2015.

[24] S. Y. Wang, C. L. Chou, and C. M. Yang, “Estinet openflow
network simulator and emulator,” IEEE Communications
Magazine, vol. 51, no. 9, pp. 110–117, September 2013.

[25] C. Burkard, “Mininet Cluster Edition,” 2014. [Online].
Available: https://github.com/mininet/mininet/wiki/Cluster-
Edition-Prototype

[26] M. F. Ahmed, C. Talhi, M. Pourzandi, and M. Cheriet, “A
SoftwareDefined Scalable and Autonomous Architecture for
Multi-tenancy,” in Cloud Engineering (IC2E), 2014 IEEE
International Conference on, March 2014, pp. 568–573.

[27] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S.
Shenker, “Onix: A distributed control platform for large-scale
production networks,” in In Proc. OSDI, 2010.

[28] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed
control plane for openflow,” in Proceedings of the 2010
Internet Network Management Conference on Research on
Enterprise Networking, ser. INM/WREN’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 3–3. [Online].
Available: http://dl.acm.org/citation.cfm?id=1863133.1863136

[29] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for

efficient and scalable offloading of control applications,” in
Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN ’12. New York, NY, USA:
ACM, 2012, pp. 19–24. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342446

[30] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
Flow-Based Networking with DIFANE,” SIGCOMM’10,
2010.

[31] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate
simulation for sdn prototyping,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN’13. New York, NY, USA:
ACM, 2013, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/2491185.2491202

[32] C. Pal, S. Veena, R. P. Rustagi, and K. N. B. Murthy,
“Implementation of simplified custom topology framework in
mininet,” in Computer Aided System Engineering (APCASE),
2014 Asia-Pacific Conference on, Feb 2014, pp. 48–53.

[33] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M.
Vouk, and A. Rindos, “Sdstorage: A software defined storage
experimental framework,” in Cloud Engineering (IC2E), 2015
IEEE International Conference on, March 2015, pp. 341–346.

[34] C. Giraldo, “Minievents: A mininet Framework to define
events in mininet networks,” 2015. [Online].

[35] S. Y. Wang, “Comparison of sdn openflow network simulator
and emulators: Estinet vs. mininet,” in 2014 IEEE Symposium
on Computers and Communications (ISCC), June 2014, pp. 1–
6.

[36] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R.
Boutaba, “DOT: Distributed OpenFlow Testbed,” in
Proceedings of the ACM SIGCOMM 2014 Conference on
SIGCOMM, August 2014.

[37] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. H.
Zahraee, ¨ and H. Karl, “MaxiNet: Distributed Emulation of
Software-Defined Networks,” in IFIP Networking 2014
Conference, 2014.

[38] L. N. Bhuyan and D. P. Agrawal, “Generalized Hypercube and
Hyperbus Structures for a Computer Network,” in IEEE
Transactions on Computers, vol. c-33, no. 4, April 1984.

[39] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in SIGCOMM
Comput. Commun. Rev., vol. 38, Aug. 2008.

[40] A. Greenberg, J. R. Hamilton, N. Jain, and et al., “VL2: a
scalable and flexible data center network,” in Commun. ACM,
vol. 54, March 2011.

[41] C. Guo, G. Lu, D. Li, and et al., “Bcube: a high performance,
servercentric network architecture for modular data center,” in
Proceedings of the ACM SIGCOMM 2009 Conference on
Data communication, SIGCOMM’09, New York, 2009.

[42] R. N. Mysore, A. Pamboris, N. Farrington, and et al.,
“PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric,” in ACM SIGCOMM.

[43] P. J. Mucha, T. Richardson, K. Macon, and et al., “Community
Structure in Time-Dependent, Multiscale, and Multiplex
Networks,” in Science AAAS - American Association for the
Advancement of Science, vol. 328, no. 5980.

