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Abstract: Software Defined Networking (SDN) is an approach to the deployment of future network infrastructures. SDN 

allows deal with different configurations to a crescent amount of virtualized network devices. In this paper, we offer a 

framework to support a number of network configurations through computational modeling and deployment of data paths 

between physical hosts for SDN. Computational modeling is a feasible alternative to measure and analyze the most diverse 

computational problems before its prototyping. We develop the toolset called Mini-TE (Mini-Traffic Engineering) to perform 

traffic engineering over computational models of data center topologies, and to set data paths before submission of data 

streams. As a consequence, Mini-TE contributes to reduce the operating expense to discover routes among hosts of data 

centers. We want to evaluate the effectiveness of our methodology by using Mininet through a set of experiments. 

Keywords: SDN, OpenFlow, Network Management, Network Architecture, Scalability 

1. Introduction 

The goal of our paper is answer the question: how can we 

simulate large SDN topologies in a single host? In order to 

answer this question we conduct this current research. 

Software Defined Networking (SDN) is a networking 

technology, which allows use open protocols to use control 

software on network devices that typically would use 

proprietary firmware [1]. With SDN, control and data plane 

are separated to directly allows control and management in a 

centralized manner, and the data plane be abstracted more 

than used with specialized hardware. Despite the fact that 

management to become directly programmable, SDN 

architectures are challenges in terms of scalability and 

support for establishment of complex data paths [2]. Some 

works [3–6] deal with network scalability defining a logical 

data plane beyond its physical boundaries. Cloud data centers 

also benefits from link virtualization due its inherent support 

to on-demand network provisioning [7]. On the other hands, 

computational modeling is essential for network management 

[8] since it helps to evaluate strategies prior their execution, 

avoiding to spent resources with problematic situations, 

mainly for detecting bottlenecks before receiving the network 

data traffic [9]. Computational modeling is a mathematical 

researching area that presents solutions to analyze non-trivial 

problems in computers. Additionally, Operational Research is 

an area that the group’s techniques of resource optimization 

[10]. 

We argue that computational modeling is important to 

evaluate large network SDN data paths, although its 

implementation to be restricted due traditional networks, 

which are Commodity Off-The-Shelf (COTS) designed by 

vendors with limited configuration capabilities provided to 

web administrators. 

In fact, there are works [11–13] that deal with network 

modeling as a Multi-Commodity Flow (MCMF) problem. 

Much effort has been given to improving scalability and 

programmability of these networks in data centers [14–17] by 

using an OpenFlow protocol [18]. This open network 

protocol allows program the flow-table in different switches 

and routers. OpenFlow decouples control plane from the data 

plane, and allows an SDN controller to manage rules to 

forward traffic. Although be reasonable use well-defined 

network protocols to automatic discovery of network devices, 

also is important that these networks be more flexible to 

current need of network administrator, such as eventual 

bottlenecks, high demand peaks, fault tolerance, and/or load 

balance occurrences. Also, Multi Protocol Label Switching 

(MPLS) is suitable for OpenFlow programmable networks 
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with changeable data paths [19]. 

The most common alternative to offer a global view over 

many physical topology is using a centralized SDN controller 

[3–6, 20]. Global view is an alternative to turn feasible setups 

for very large network topologies. But Zerrik et al. [7] claims 

that these centralized SDN architectures are constructed in 

way very inflexible. In fact, SDN architectures should be 

highly flexible with minimal human intervention, and should 

be scalable and adaptable simultaneous. Even so, one of the 

major difficulties about implementing decentralized SDN 

architectures is due the inherent nature of Ethernet ARP 

broadcast messages to discover new nodes. The increasing of 

amount of network devices potentially will imply in ARP 

broadcast storms into network. Another issue is some 

nontrivial network topologies in reason of some SDN 

controllers have difficult to solve loops in its topologies [21]. 

In this paper, in order to deploy large SDN topologies, we 

set network data paths supported by computational modeling. 

The main contribution is two-fold: offer an alternative of 

routing without losses, and an methodology to deploy large 

virtualized experiments with Mininet. Our approach is 

directed to use a framework where each physical domain 

maintains its own OpenFlow rules. This access is distributed 

because divides the processing of routes through its 

communicant parts that are in distinct hosts. Finally, our 

framework combines partial network set-ups from each 

domain in a single global logical plane. We adopt 

computational modeling techniques from the Operational 

Research to establish data paths for the traffic of SDN 

networks, founded on our previous work [22] with the 

computational modeling approach. 

In this paper we introduce a set-up of data paths with 

Mininet through separated physical domains. The goal has 

defined a methodology to deploy scalable virtual links 

between these domains, in a proactive manner. Our 

framework, known as Mini-TE (Mini-Traffic Engineering) is 

used to provide a unified network logical plan to map and 

deploy large data paths, distributing the nodes and virtual 

switches in many virtualized hosts running Mininet emulator. 

Finally, our tests show serious results in concurrent 

communication for TCP and UDP protocols. 

This paper is structured as follows. Section 2 is about 

related works. Section 3 presents our methodology for 

integrating computational modeling with the management of 

OpenFlow rules. Section 4 presents the MiniTE architecture 

used in the experiments. Section 5 relates the experimental 

evaluation. Finally, conclusions and future works are done in 

Section 6. 

2. Background 

Multi-commodity flow (MCMF) problems are close to 

multiple demand flows (commodity demands) in network 

flows with different source and sink nodes [14–17]. These 

demands are commonly found in large scale networks, such 

as server farms. In these environments, the integral nature of 

its communications allows optimization of traffic by traffic 

engineering (TE) methods. Benson et al. [15] says that 

existent TE techniques perform 15% at 20% worse than the 

optimal resolution. Nevertheless, Al-Fares et al. [16] affirm 

that multirooted trees with many equal-cost paths are the 

common solution used by many ISPs (Internet Service 

Providers), but existent multipath protocols may cause 

substantial bandwidth losses due high collision rates. In fact, 

our previous work with MPTCP (Multipath TCP) [23] 

showed that is important includes multi-path TCP as na 

choice to distribute data traffic via alternative routes. MPTCP 

is a network protocol designed to forward subflows through 

disjoint paths. Even using ECMP (Equal Cost MultiPath) 

many flows may be forwarded by the same data path. 

MPTCP is not exclusive to OpenFlow networks, but is useful 

to automatically forward subflows two distinct routes. 

However, MPTCP will automatically redefine data-paths 

according specific network requirements, with minor human 

intervention. 

Dynamic traffic engineering techniques for SDN networks 

has been contemplated by many authors, and applied in data 

centers. Nevertheless, the applicability of these techniques 

generally is limited due restrictions of ISP domains in 

provide detailed information about its infrastructure. A 

possibility to bypass these restrictions is use 

emulation/virtualization for experimentation. In this sense, 

new alternatives TE techniques for large scale environments 

may be evaluated before prototyping, and provide detailed 

information about possible leaks, bottlenecks, alternatives 

routes, fault-tolerance, split/join of data traffic, and many 

others. SDN leverage these possibilities because a number of 

experiments may run in short time in controlled domain. 

Intensive network applications for distribute computing (e.g. 

MapReduce, peer-to-peer, SOA based applications, and many 

others) also may be assessed in a few emulated hosts. 

A lot of works deal with virtualized experiments using the 

OpenFlow protocol for SDN networks. Flowvisor [5] is an 

OpenFlow proxy to enable multiple SDN controllers in a net. 

The software separates the entire network into slices and one 

controller can be used to manage each network slice. 

Multiple controllers can manage the same set of switches for 

different uses. But Flowvisor is not a SDN controller: it only 

forwards packets between switches and controllers, and not 

allow any communication between different controllers what 

restrict the scalability of data paths setups. An improved 

distributed FlowVisor [6] address scalability issues to cloud 

computing environments. Scalable cloud experimentation 

may be used in OpenStack Neutron with virtual L2 networks 

[4] and OpenDayLight Virtual Tenant Network and 

OpenDayLight Virtual Tenant Network (VTN) [3]. VTN and 

OpenStack Neutron gives a logical abstraction plane of 

network that separate logical plane from the physical plane, 

and give possibility to deploy virtual networks without 

experiencing the entire physical topology. 

Although Mininet results are not well accurate for large 

topologies [24], it is still an affordable free choice to run 

OpenFlow experiments in a single server. Mininet cluster 

edition [25] is a working-in-progress prototype to distribute 



39 Lucio Agostinho Rocha:  Framework for Traffic Engineering of SDN Data Paths  

 

nodes and connections over a cluster of servers, using 

resources of each machine to scale the large network. There 

are some matters about this solution: only one Mininet 

instance run across the cluster, remote nodes depend of ssh 

connections to remote Mininet servers, and there is no 

control about where virtual hosts and virtual switches are 

physically allocated. On other side, many cloud providers use 

multi-tenancy packet isolation with virtual switches and 

conventional packet isolation mechanisms, such as GRE 

tunnels, MPLS and VLAN. Ahmed et al. [26] proposes the 

Open virtual Network Management (Open vNMS) to large 

scale experimentation in clouds. The work is based on elastic 

L2 isolation. Related at SDN controller, Onix [27] and 

Hyperflow [28] distribute the control plane but maintain a 

centralized distributed file system. Kandoo [29] distribute the 

control plane and act as coordinator between local 

controllers. Kandoo proposes a hierarquical distribution of 

controllers in two layers. The bottom layer groups controllers 

without connection between them. The top layer provides a 

centralized controller with global network state. However, 

Zerrik et al. [7] consider that this approach causes some 

issues: local controllers need that the root controller 

subscribes itself to each OpenFlow event. This is need to 

allow the propagation of these events to specific local 

controllers, i.e., it is necessary to subscribe all OpenFlow 

events in all local controllers what implies in high amount of 

information in the current tables of OpenFlow switches. But 

Kandoos authors not explain how the datapaths are 

configured. 

On other hands, DIFANE [30] is a distributed management 

architecture that distribute rules to authority switches, and 

handles wildcards rules according to network dynamics. 

Many works use frameworks over Mininet as base for SDN 

experiments. Barford et al. [31] presents a simulation tool 

known as fs-sdn, but experiments were performed for a little 

sum of nodes (until 100 nodes). Recent works use 

frameworks built over Mininet. Murthy et al. [32] use a 

framework to deploy customs topologies for lesser than 100 

clients in a single host running Mininet. Darabseh et al. [33] 

propose SDStorage as an experimental framework propose 

SDStorage as an experimental framework built over Mininet 

to abstract data storage control operations from the storage 

devices from a centralized controller in the software layer. 

Minievents [34] is a framework over Mininet that introduces 

an event generator for the topology, such as TCP and UDP 

traffic, delay, and bandwidth changes. 

 

Fig. 1. Mini-TE Approach to Deploy Data-Paths. 

Other popular software for SDN experiments is Estinet 

[24]. EstiNet is an OpenFlow network simulator and 

emulator, and it combines the advantages of both these 

approaches to run tests with very large number of OpenFlow 

switches and hosts. It uses a real OpenFlow controller, 

network applications and the real TCP/IP protocol stack in 

the Linux kernel. The authors say that EstiNet is more 

scalable than Mininet, and its performance with an 

OpenFlow controller are also more accurate than Mininet. 

Nevertheless, this software tool is not freely available as an 

open source project. The most popular network simulator in 

the literature is the ns-3 (network-simulator 3). This network 

simulator uses its own OpenFlow module written in C++. To 

run simulations with this module, it is necessary to compile it 

and link it jointly with the network simulation engine. 

Currently, ns-3 no offer a spanning tree protocol or 

interaction with real OpenFlow controllers, and its OpenFlow 

support it is in early stage of development. Wang [35] uses 

Floodlight controller to compare EstiNet simulator, EstiNet 

emulator, and Mininet emulator over a set of grid networks of 

reduced amount of nodes (until 31 nodes). Performance 

measurement was done with ping of packets to acquire the 

average RTT among the simulated nodes. EstiNet emulator 

showed better results about data correctness, RTT 

performance and scalability. 

As an alternative, the toolkit DOT [36] distributes the 

emulated SDN network using multiple physical machines to 

provide resources for its network elements. The toolkit uses 

an embedded algorithm that minimizes the physical 

bandwidth load and the routine of physical machines need to 

support the specified network topology. Also, is possible to 

perform the emulation using DOT inside VMs with Qemu. 
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Another alternative is use the toolkit Maxinet [37] that span 

the emulation of larger topologies across physical machines. 

All switches are checked by one central OpenFlow controller 

that regulates in a transparent way the routing between its 

worker nodes, that are the physical machines that instantiate 

the Mininet switches. 

However, it is not a trivial task to map where these 

switches are deployed, what difficulties the direct 

deployment of OpenFlow rules. 

3. Methodology 

In this section we briefly explain our strategy to deploy 

data paths by set up flow entries in the switches. 

3.1. Mesh Layered Topology 

On that point are many network topologies which may be 

evaluated for large scale virtualized environments from 

simple linear or balanced trees, or even more complex 

topologies, such as Hypercube [38], Fat-tree [39], VL2 [40], 

BCube [41], Portland [42], and many other complex models 

[43]. These latter topologies have interesting properties 

which makes them suitable for large scale experiments, such 

as number of links per node (degree of a node), a small 

internode distance (diameter), and many alternative paths 

between pairs for fault tolerance [38]. However, our aim is to 

evaluate a topology which is bandwidth-intensive and 

support many alternative data paths inside and outside its 

layer domain. Although there are various different topologies, 

we are interested in evaluating the OpenFlow potential to 

redistribute traffic, independent of the chosen topology. 

 

Fig. 2. Mesh Layered Topology. 

In this sense, we use a mesh layered topology model, as 

illustrated in Figure 2. Mesh layered topology is a 3-

dimensional graph where the nodes are the switches and the 

edges are the connections between them. Each node keeps 

links with its neighbor nodes. This scheme is a paradigm 

where commodity switches are utilized to establish direct 

links between them. As a result, each switch is able to 

forward data to/from its direct neighborhood, as illustrated in 

Figure 2. Our topology model defines: 

� Li: is the layer index i; 

� si, j: is the virtual switch node j in layer i | i, j ∈ N. 

A layer Li is the physical host i with many virtual switch 

nodes. Each switch node si,j keeps connection with its 

neighbour switch node, i.e., exist a link between si,j with 

si+1,j and si−1,j. As a result, we preserve the clear 

characteristics of mesh topologies whilst extend its model in 

a well-defined scalable structure. So, our computational 

modeling will define the routing data path through virtual 

switches in different layers, although each Mininet domain 

may specify its own routing protocol. 

In our solution, we have control about where virtual hosts 

and virtual switches are physically instantiated because each 

domain has full control of its own Mininet instance. Other 

Works as Maxinet [37], DOT [36], Flowvisor [5], [6], 

Mininet cluster edition [25] and OpenDayLight VTN [3] not 

currently give possibility to keep different Mininet instances 

separated, routing between worker nodes is performed in a 

transparent way, and distribution of virtual switches is done 

automatically. 

We utilize a lightweight solution by set GRE (Generic 

Routing Encapsulation) tunnels across physical domains with 

Open switch (OVS). This permits that each virtual switch 

communicates itself with its neighbors. OVS is an 

implementation of emulated switch in the Linux kernel with 

OpenFlow support, and it is able to create emulated virtual 

switches, connect them at other virtual and/or physical 

interface, and use SDN controller to configure its switches. 

Our deployment of OpenFlow rules is managed entirely via 

dpctl commands without an SDN controller. Figure 1 

illustrates our methodology. Mini-TE Manager component 

will receive partial topology configuration and pass out over 

its managed Mini-TE Local components. We explain this 

process as follows. 

3.2. Flow Set-up 

Our evaluation depends on set up of flows provided by our 

linear programming example. Flow entries act to match flows 

and specify the action for incoming and outcome packets. 

The action specified by flow entries can be mapped to a 

group action. The purpose of a group action is define more 

specific forwarding action to process these incoming packets. 

A group action contains a bucket, and this latter contains a 

list of actions. There are four types of groups that are all, 

select, indirect and fast-failover. We use select group from 

OF13SoftSwitch to stochastic switching of data traffic. We 

set a weight to entry data traffic in a round robin model to 

split incoming traffic for each bucket, e.g., an entry data flow 

of 1000 units splited in 200 and 800 units will be splited to 

buckets with weight=2 and weight=8, respectively. The 

precision by which a packet distribution will be done is 

undefined. Also, the bucket sharing is determined by the 

individual bucket’s weight divided by the sum of the bucket 

weights in the group. As a result, we can generate splits 

and/or join of data traffic. Group tables are available since 

OpenFlow 1.1 specification, we use group table from 

OpenFlow 1.5 supported by OVS 2.5.0 specification. 
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� Packet in: it is the message from switch when a packet 

arrives, and no matching flow entry is found. This 

message contains the headers and payload of the 

received packet, and is transmitted to the controller. 

The Packet in message contains the buffer id where 

packet is buffered in the switch to aim the controller to 

sent proper message response to forward the packet in 

its specific buffer located in the switch. 

� Packet out: it is the message from controller to 

forward the received packet to a specific switch port. 

� Flow mod: it is the message from the controller to a 

switch in order to create flow entries inside the 

OpenFlow switch. This message informs how deal 

with new received packets, rules and actions to be 

performed. 

� Tunneling: when a packet need to be forwarded to 

outside from local Mininet emulated domain, a tunnel 

is created to bypass its current area via bridges. 

Tunneling is supported by current Mininet version, but 

is setup outside its emulated network via MiniTE 

Local service. An option key id is used to specify 

many concurrent tunnels in a same virtual ovs switch. 

When a package is received, the OpenFlow switch tries to 

match the header of this packet in its flow table. If no 

information about this packet is found, the switch sends the 

headers to its OpenFlow controller. This will make a packet 

in event in the controller. Then, the controller will require 

some actions considering the headers of the L2, L3, and L4 

so that this packet and further ones belonging to the same 

flow are sent throughout the network. When a route is 

obtained by the controller, flow mod messages are 

transported back to the switches to set their flow tables. We 

illustrate this process in Figure 3. The establishment of these 

data paths is made out with proactive or reactive methods. 

Proactive routing methods in SDN networks, assure that 

paths are set before packets are sent on the mesh. The 

advantage is that they do not generate extra network 

overhead and do not affect the network performance to 

discover its endhosts. When packets arrive on the network, 

the forwarding rules are already there and no packets are sent 

to the controller. However, proactive methods depend on 

previous mapping of the whole interconnections on these 

topology, which is not always feasible for all networks. 

Reactive routing methods occur when new a packet hits a 

switch without a matching in the flow entry. Then, such 

packet must go to the controller, which in turn uses control 

messages to automatically discover its end-hosts and obtain 

the active links before the data traffic to be forwarded in the 

net. The advantage is that there is no need of previous 

knowledge of the whole network topology. However, for 

large networks, the amount of control messages will 

potentially determine the network performance since all the 

first packets of every new flow will go to the controller 

before traversing the network. 

Both proactive and reactive methods are useful to bring in 

dynamic traffic engineering the paths in SDN networks. 

Proactive methods require syncronization between the 

controller device that deploy paths. But reactive methods 

introduce additional overhead in large networks and 

influence the network functioning. So, we adopt a proactive 

method to establish large data paths between physical hosts. 

 

Fig. 3. OpenFlow Packet Forwarding. 

3.3. Processing of the MILP Model 

The processing is done with Mini-TE Local component 

which have MILP solvers, such as CPLEX or Lingo. The 

result obtained from solving this MILP model is a set of 

paths to forward data between virtual hosts, without over-

utilization of the network links. Each Mini-TE Local 

component of our architecture use our previous work 

MILPFlow [22] to generate data-paths to its own domain. 

Then, Mini-TE Manager receives these results to get an 

abstract network’s global view. 

We present an example in Figure 4 and its corresponding 

mapping results in Table I. The data structure F1 keeps the 

whole information about the links with aggregated-flows F1.  

So, F1 [1] [1] [2] = 1000 indicates that Layer1 has 1000 

units of the flow F1 goes through the link between the nodes 

H1 and s2;  

Also, F1 [2] [8] [10] = 1000 is Layer2 who has 1000 units 

of the flow F1 that goes through the link between the nodes 

s8 and h10.  

Table 1. Mapping of ports with Milpflow. 

MILPFlow results Mininet Topology in Layer Mapping of Ports 

F1 [1] [1] [2]=1000 (h1,s2) (h1,0,s2,1) 

F1 [1] [2] [3]=0 (s2,s3) (s2,2,s3,1) 

F1 [1] [2] [5]=0 (s2,s5) (s2,3,s5,1) 

F1 [1] [4] [5]=0 (s4,s5) (s4,2,s5,2) 

F1 [2] [6] [7]=800 (s6,s7) (s6,2,s7,1) 

F1 [2] [7] [8]=800 (s7,s8) (s7,2,s8,1) 

F1 [2] [6] [9]=200 (s6,s9) (s6,3,s9,1) 

F1 [2] [9] [8]=200 (s9,s8) (s9,2,s8,2) 

F1 [2] [8] [10]=1000 (s8,h10) (s8,3,h10,0) 

3.4. Compose Data Paths 

Extra effort is necessary to compose the data paths. As 

shows the Table I, the flow F1 occurs on many links.  

However, it is necessary to compose the path in the 

properly sequence, i.e., the sequence of nodes to forward data 

from source virtual host to reaches its destination virtual host. 

For this we use an algorithm similar at the depth-first search 
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algorithm in order to explore as far as possible each branch in 

the path of F1. Figure 4 illustrates this example. 

 

Fig. 4. Mapping of Layered Paths with Mini-TE Manager. 

In this example, the sequence F1 [2] [6] [7] and F1 [2] [6] 

[9] are the links of the node s6 to reach the nodes s7 and s9, 

respectively. So, we have a split condition in this way. 

Similarly, the sequence F 1 [2] [7] [8] and F 1 [2] [9] [8] are 

a join condition near at the destination. 

3.5. Generation of Data Path Rules 

Our approach considers aggregation of many micro-flows 

in end-to-end data path before submission. We describe this 

step with an example of a flow generated from host H1 to 

host H10, as exemplified in Figure 4. We create switches si in 

crescent order to communicate with each other via 

communication ports. We combine MILP results with 

Mininet to create a mapping of MILP ports, as depicted in 

Table I. The first column in Table I shows the route created 

by MILPFlow to go from host H1 to host H6. The second 

column indicates the hosts and switches in the Mininet 

topology in each layer and ultimately in the last column, we 

see each host-port and switch-port connection.  

Emulators as Mininet read topology files to create its 

virtual connections with Open vSwitch (OVS) kernel 

switches. Mapping the input and output ports of each 

connection that connects switches is necessary to establish 

connectivity hop by-hop, and this task is generally performed 

by OpenFlow controller. However, we acquire this data 

directly from Mininet (parsed from net command). As a 

consequence, it is not necessary to transmit control messages 

to discover the connection between the ports of these 

switches. However, it is necessary to define ARP and IP flow 

mod rules for the switches of each data path. When splits of 

traffic occur we employ the group tables of the OpenFlow 

1.1.0 specification. This feature allows developers to create 

custom functions to split flows in the network as easily as 

their subsequent joins. For each group table, the value of the 

variable weight indicates the quantity of traffic that should be 

forwarded through its sub-paths, as occurs in the switches s2 

and s5 in Figure 4. We set the normalized weight value of the 

MILP result. As an example, we map the resultant flow of 

800 units in the linkup between the switches s6 and s7: F1 [2] 

[6] [7] = 800, and between the switches s6 and s9: F 1 [2] [6] 

[9] = 200. Then, we set weight1=8, weight2=2, respectively. 

Finally, on each switch with split the group mod rule is set as 

follows: 

 

Fig. 5. Mini-TE Distribute Architecture for Deployment of Data Paths. 
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dpctl tcp:<HOST_IP>:<HOST_PORT> group-mod\ 

cmd=add,type=<TYPE>,group=<GROUP_ID>\ 

weight=<WEIGTH_1>,port=<PORT_1>,\ 

group=all output=<OUT_PORT_1> \ 

weight=<WEIGTH_2>,port=<PORT_2>,\ 

group=all output=<OUT_PORT_2> 

3.6. Deployment of Data Paths 

Mini-TE Local service generates the set of flow mod and 

group mod rules in an executable batch file. The network 

administrator uses these rules to deploy its data paths. Two 

output formats are generated: dpctl commands and HTTP 

REST commands for using with our REST API. This API 

maps dpctl commands to set input and output ports in each 

switch of the data path. Mini-TE Local service creates for 

each instantiated virtual switch a GRE tunnel with your 

correspondence vicinity in order to permit forward traffic 

data. 

4. Mini-TE Architecture 

Mini-TE Architecture is showed in Figure 5. Mini-TE 

Local components send its virtual switches and virtual hosts 

description to Mini-TE Manager. Inside each physical host 

are instantiated the Mini-TE Local, Mini-TE Authoritative, 

and Mini-TE TLD components. We use GRE tunnels 

between physical hosts and between virtual machines 

because we are in a controlled field. A possible improvement 

would be using ssh for secure connection between physical 

servers. A description about each part of our architecture is 

given as follows: 

Mini-TE Manager: it is the daemon which works in the 

root domain, and receives/sends messages in REST API to 

forward packets to other physical hosts. Mini-TE manager 

communicates via REST API with many Mini-TE TLD, or 

directly with Mini-TE Local if there is a single physical host. 

Nevertheless, many Mini-TE Managers may communicate 

each other to expand the scale of virtualized experiments.  

Mini-TE TLD: This component is necessary only if we 

want to communicate with virtual hosts from another 

physical host. Mini-TE TLD is the daemon which 

receives/send messages in REST API from Mini-TE 

Authoritative and send to its registered Mini-TE Manager. 

Mini-TE Authoritative: it is the daemon which join many 

local context in a single global view of topology. This 

daemon receives/send messages in REST API about the 

entire global topology view which is operating on a single 

physical host. 

Mini-TE Local: it is the daemon which receives/send 

messages in REST API to deploy OpenFlow rules to Mininet 

local context. A same physical host may run many virtual 

machines, each one running its own Mininet context. So, 

MiniTE Local daemon must be given on each virtual 

machine. This component is responsible to make tunnels for 

each virtual switch with its correspondence in upper and 

lower layers. 

5. Experimental Evaluation 

We define a set of methods to reduce the reconfiguration 

time of network services and minimize the network 

configuration errors. Our Linux environment was configured 

with ulimit 65535, VirtualBox NIC virtualized Intel 

PRO/1000 MT Server, ovsvsctl (Open vSwitch) 2.5.0, DB 

Schema 7.12.1, dpctl 1.3 from CPqD, and Mininet. 

Preliminary evaluations showed that instantiated GRE 

tunnels in Mininet didn’t make significative impact on 

execution. 

The required time to compute data path rules will depend 

on topology, size, but we don’t consider this matter as a 

limiting factor because each physical domain will be able to 

process its own MILP model. Also, the required time to setup 

data path rules is not a restriction because will be dependent 

of the physical machine resources. We want measure a set of 

scenarios on an Intel Pentium 4 with 3 GHz, 1GB of RAM 

for Mini-TE Local, and MiniTE Manager on a Core 2 Duo 

with 2.4GHz, 2GB of RAM. Our experiments run inside 

VMs of VirtualBox with XUbuntu 14.04.2 LTS with 1 Gbps 

NICs, and Open vSwitch compatible OpenFlow switches. We 

use two layers of the Mesh Layered topology with 10 hosts 

for each one of 10 switches (100 hosts in each layer). Our 

experiments will be done with Iperf software, and streaming 

of video using the VLC application with Real-time Streaming 

Protocol (RTSP). 

The purpose of this evaluation is to show the feasibility of 

the tool in terms of mathematical modeling and the 

deployment of flows. We use MILPflow to generate the data 

paths, following the steps of the methodology. For this 

experiment we set aggregated flows of 1000 units each to 

transverse our reference topology. We define the bandwidth 

of the links in 10000 units to have a value near at 10Mbps of 

our Mininet bandwidth.  

The next steps of our methodology are automatically done 

with MIPLFlow. The evaluation will be done taking into 

account UDP and TCP traffic. In both experiments we want to 

run Iperf measurements 30 times for each pair of virtual hosts, 

i.e., h1 from Layer1 with h11 of Layer2, h2 from Layer1 to 

h12 of Layer2, and so on. Also, we want to collect data every 5 

seconds for each measurement. For UDP traffic we want to use 

Iperf to submit 5Mbps between the virtual hosts. For TCP 

traffic we want to run similarly, but without restriction about 

the amount of data to be forwarded among the virtual hosts. 

Our preliminaries results show that mesh topologies are 

useful alternatives to evaluate large scale deployment of data 

paths. However, our current infrastructure is not able to 

perform the current tests of Mini-TE architecture. The reason 

is that our physical hosts not support more than 50 virtualized 

hosts. So, we are considering the evaluating as a work-in- 

progress while we can’t run these tests in our own physical 

infrastructure. Whole software developed until this moment 

is available on-line at https://github.com/mini-te/mini-te.  

We expect that the results with TCP traffic be similar to the 



 Advances in Applied Sciences 2016; 1(2): 37-45  44 

 

UDP traffic since the MILP generates data paths without 

losses. Also, MILPFlow modeling is important because it 

accommodates the flows taking into account the capacity of 

each link and the shortest path is not always obtained for all 

the flows. 

6. Conclusions and Future Works 

Our article presents a methodology to integrate 

computational modeling with management of SDN networks 

in order to deploy very large SD topologies. 

Our approach aims to promote proactive routing. In order to 

validate our methodology, we implement the MILPFlow 

framework, and conduct a set of experiments to evaluate our 

approach. The main advantage of using MILPFlow is the 

possibility of doing mathematical modeling together with the 

deployment of SDN/OpenFlow rules as well as the capability 

of reconfiguring routes in a finer granularity according to the 

network administrator needs. Our work is innovative in the 

sense that we aim at contributing to the state of the art in 

affordable yet rich SDN experimentation using computational 

modeling jointly with the deployment of rules in the network. 

Our approach not obligate that vendors modify its current 

network hardware, and no kernel modification is need to run 

changeable data paths, as must be done with MPTCP. We 

consider in this paper that control programs installing an end-

to-end path on a per-flow basis is not scalable due limited 

switch memory. However, data-paths can be established for 

aggregate rules matching a large number of micro-flows. As a 

consequence, the information propagation delay in SDN would 

be similar at traditional networks. Our experiments with 

Mininet and OpenFlow demonstrate that proactivelly deploy 

rules on switches is an affordable alternative for aggregation of 

data paths, eliminating major of control requests in the control 

plane. However, the cost is loss of precision and reactivity in 

the controller in fault events, bottlenecks, high peaks of 

demand, and others. These problems are not caused 

fundamentally by SDN, but can be addressed without losing 

the benefits of SDN. The level of flexibility to accommodate 

network programming and management at scale are 

challenges, even for traditional networks. 

We note that SDN/OpenFlow experiments with 

computational modeling are still few present in the literature. 

Our work is innovative in the sense that we aim at 

contributing to the state of the art in affordable yet rich SDN 

experimentation using computational modeling jointly with 

the deployment of rules in the network. As future work, we 

would like to extend our approach to mobile SDN networks, 

and simplify the setup with automated packages. 
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