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Abstract: A statement of the coupled thermomechanical problem on forced resonant vibrations and dissipative heating of 

hinged viscoelastic elastomeric plate is given with account of prestresses present in the plate. It is assumed the prestress is 

generated as a result of the manufacturing process or preliminary plate service. The problem statement is based on the standard 

Kirchhoff-Love hypotheses and concept of complex moduli that are used to describe the viscoelastic material response to 

harmonic loading. Under these circumstances, the prestress manifests itself as a membrane forces applied in the plane of the 

rectangular plate. Therefore, the problem of in-plane stress state and problem of forced transverse vibration of the plate can be 

solved separately. Both steady-state and transient thermal response is investigated. Influence of the prestress is studied in details. 

Dissipative heating temperature histories are calculated for the variety of the prestress and loading parameters. Temperature 

criterion is adopted to determine the critical state. The data obtained are used for the plate fatigue life prediction as well as for the 

investigation of prestress effect on the plate response. The reliability of the values of frequencies on the several lowest resonances 

was checked. For the most energy-intensive first mode of transverse vibrations, the influence of the preliminary tensile stress 

state, as well as the amplitude of the transverse distributed load on the amplitude–frequency characteristics and temperature 

evolution was studied. 
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1. Introduction 

Thermomechanical coupling problems are common 

phenomena in the field of Solid Mechanics. Mechanical 

engineering equipment [1], aerospace industry structures and 

energy generation machinery as well as transport 

engine/structure components can be subjected to severe 

mechanical and thermal cyclic loads. Assessment of 

component life depends on the behavior of materials used. 

Elastomers are widely used as materials for the structural 

components mentioned. Under intensive cyclic loading, the 

effect of dissipative heating can be particularly profound for 

the polymers. The dissipative heating is caused by an 

appearance of a mechanical hysteresis resulting from the 

viscoelastic nature of the most of industrial polymers. Part of 

the dissipated mechanical energy leads to generation of 

thermal energy [2–5], while the rest of the energy transferred 

to the structure is both partly stored in the material [6] and 

dissipated as a result of plastic deformation [7, 8], viscoplastic 

deformation, and variations of yield limit caused by isotropic 

and kinematic hardening [9]. 

It is generally adopted that dissipative heating is usually 

attributed to the internal friction of the material [10], which 

causes the hysteretic response. Energy dissipated as a heat 

leads to the increase of the temperature of the loaded structure. 

Small temperature advance over one separate cycle can result 

in high heating level for prolonged operational period [11, 12]. 

The effect of thermomechanical coupling described above 

should be taken account for when the adequate models for 

fatigue life predictions are developed. This implies a necessity 

for the deep investigation of dissipative heating, including its 

physical nature, the consequences, and the relations with 

degradation mechanisms in structural elements, as well as the 

estimation of safe temperature ranges. 

Additional factor that can significantly influence the fatigue 

life prediction of the polymeric structures is the residual stress 
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which can arise as a result of manufacturing processes. For the 

subsequent cyclic loading problem, these stresses should be 

considered as prestresses. The effect of the prestresses, as well, 

has to be taken into account to improve the reliability of the 

fatigue life prediction technique. 

To address the issue of fatigue life prediction with account 

of thermomechanical coupling, the theories based on the 

relations between the amplitudes of main field variables are 

usually used to describe the thermomechanical response of 

viscoelastic solids under cyclic loading. Application of 

complex amplitudes and complex moduli concept in the case 

of harmonic loading yields the complete system of amplitude 

equations for linearized coupled thermoviscoelasticity in 

terms of complex amplitudes. This system is complemented 

with the complex analogues of the equation of motion along 

with the stationary or non-stationary equation of heat transfer. 

In the former case, the temperature–frequency characteristics 

of vibration can be obtained and the critical loading 

parameters can be specified. To describe the over critical 

heating and, therefore, to build the fatigue S–N curves the 

latter equation should be used instead. The detailed reviews of 

the theories and approaches developed along with the 

numerous applications can be found in [13–18]. 

In this paper, a fatigue model for prediction of a number of 

cycles to thermal failure is developed, taking into 

consideration stationary dissipative heating and structure 

prestress that can significantly affect the fatigue life 

characteristics of the viscous rectangular plate subjected to 

transverse harmonic loading. Special attention is paid to the 

influence of membrane prestress on the amplitude–frequency 

and temperature–frequency characteristics as well as on the 

non-stationary histories of dissipative heating for cyclically 

excited plate. 

2. Problem Statement 

2.1. Theoretical Concepts 

Let us consider a hingedly supported plate of thickness h 

with planform dimensions a and b. It is assumed that the plate 

is composed of the linear viscoelastic material which material 

properties are frequency, amplitude and temperature 

independent. The rectangular Cartesian coordinates (x, y, z) 

with the xy-plane coinciding with the geometric middle plane 

of the plate and the z-coordinate taken positive upward is 

introduced. The plate contour is formed by the edges x = 0, a;  

y = 0, b. It is also assumed that prestresses are generated in the 

plate as a result of manufacturing process. The prestresses are 

simulated by the presence of normal membrane forces 
xx

N , 

yyN  and, in general case, by shear membrane force xyN . The 

plate is subjected to transverse loading 

( ) ( )0 0
, cos , sin ,′ ′′= ω − ω

z
q q x y t q x y t                (1) 

that is distributed over the plate surface according to specific 

law and is harmonically varying in time t with amplitude 

( ) ( ) ( )( )1 22 2

0 0 0, , ,q x y q x y q x y′ ′′= +                         (2) 

and frequency ω which is close to one of the resonances. 

The plate edges are assumed to be thermally insulated while 

the convective heat transfer to the ambient medium of 

temperature TC is supposed to take place at the face surfaces of 

the plate. 

To simulate the mechanical response of the plate under 

consideration, the classical Kirchhoff–Love hypotheses are 

made use of [19, 20]. The integral operators of linear 

viscoelasticity are used to describe the viscoelastic properties 

of the plate material [13–15]. In the particular case of 

harmonic deformation, these operators are reduced to 

multiplication of complex quantities 

( )( ),′ ′′ ′ ′′∗ = + +ɶɶa b a ia b ib                            (3) 

where the operator and complex quantities are marked with 

asterisk and wave respectively. It is also assumed that 

temperature is constant through the plate thickness. 

2.2. Main Equations 

In general case, the equations of transverse vibration of the 

plate are obtained in the following form [19, 20] 

( )

2

0 2

2

0 2

2 22

2 2

2 2 2 2

0 22 2 2 2

,

,

2 , , ( , , )

,

∂∂ ∂+ = ∂ ∂ ∂
∂ ∂ ∂ + =

∂ ∂ ∂


∂ ∂∂ + + + − + = ∂ ∂ ∂ ∂

  ∂ ∂ ∂ ∂
 = − + ∂ ∂ ∂ ∂  

xyxx

xy yy

xy yyxx

NN u
J

x y t

N N v
J

x y t

M MM
N u v w kw q x y t

x x y y

w w w
J J

t t x y

     (4) 

where u, v and w are components of the displacement field 

along Ox, Oy and Oz axis respectively; ijN  and ijM , 

, ,i j x y=  are thickness-integrated forces and moments, 

known as the stress resultants [19, 20]; 

( ), , ,
   ∂ ∂ ∂ ∂ ∂ ∂= + + +   ∂ ∂ ∂ ∂ ∂ ∂   

xx xy xy yy

w w w w
N u v w N N N N

x x y y x y
  (5) 

k is the foundation modulus (for the cases where it has to be 

taken account for), ρ is the material density. 

In system (4), 
0

J  and 
2

J  are the mass moments of inertia 

2 2
2

0 2
2 2

,
− −

= ρ = ρ∫ ∫
h h

h h
J dz J z dz                         (6) 

and the term with 
2

J  should be preserved if the rotary inertia 

effects are of particular interest. 

2.2.1. Equation of Motion and Boundary Conditions 

As the Kirchhoff-Love hypotheses are considered to be 

valid so the membrane and bending stresses are appeared to be 
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uncoupled. It is also assumed the prestresses induced are 

constant (
0 constxx xxN N= = ,

0
const

yy yy
N N= = , 

0
const

xy xy
N N= = ). Under these assumptions, the in-plane 

problem for the plate becomes statically determinate. Thus, 

the first and second equations from (4) are satisfied 

identically. 

Classical plate theory formalism for isotropic elastic 

material yields the 3
rd

 equation from (4) in the form 

( )
2 2 2 2

4 0 0 0

2 2 2
2 , , ,

∂ ∂ ∂ ∂∇ +ρ = + + +
∂ ∂ ∂ ∂ ∂xx xy yy

w w w w
D w h N N N q x y t

t x x y y
 (7) 

where ( )3 2
12 1= − νD Eh  is the plate bending stiffness 

coefficient, E and ν are the material Young’s modulus and 

Poisson ratio respectively; 

4 4 4
4

4 2 2 4
2

x x y y

∂ ∂ ∂∇ = + +
∂ ∂ ∂ ∂

                          (8) 

As a result, in the case of temperature independent material 

properties and assumption of a temperature constancy through 

the plate thickness, the mechanical problem is reduced to two 

uncoupled problems: (i) plane stress problem, (ii) pure 

bending problem. The former one defines the prestress while 

the latter problem describes the varying harmonically in time 

pure bending state which is superimposed over the prestressed 

state of the plate. 

Boundary conditions for the linear bending of a rectangular 

plate with edges parallel to the x and y coordinates for the 

particular case of hingedly supported have the form 

2 2

2 2
0, 0 at 0, ; 0, 0 at 0, .

w w
w x a w y b

x y

∂ ∂= = = = = =
∂ ∂

  (9) 

Under harmonic loading, investigation of steady-state 

vibration regime is usually performed with the use of complex 

moduli and complex amplitudes concept [13–16]. These 

yields the equation (7) as follows 

( )
2 2 2 2

4 2 0 0 0

2 2 2
2 , ,

∂ ∂ ∂ ∂∇ +ρ ω = + + +
∂ ∂ ∂ ∂ ∂
ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
xx xy yy

w w w w
D w h N N N q x y

t x x y y
  (10) 

where D D iD′ ′′= +ɶ , ( ) ( ) ( ), , ,w x y w x y iw x y′ ′′= +ɶ , and 

( ) ( ) ( ), , ,q x y q x y iq x y′ ′′= +ɶ  are complex bending stiffness 

coefficient, deflection of the plate and load; 1i = − . It is 

worth mentioning here that expressions for the boundary 

conditions should have the same form (9) with substitution of 

complex variable wɶ  instead of real one w . 

To obtain the time variation laws for the beam deflection 

and load, one should apply the formulas 

( ) ( ) ( )
( ) ( ) ( )

, , , cos , sin ,

, , , cos , sin .

′ ′′= ω − ω

′ ′′= ω + ω

w x y t w x y t w x y t

q x y t q x y t iq x y t
               (11) 

Here ( )′⋅  and ( )′′⋅ are the real and imaginary parts of the 

complex amplitude. 

The complex equation (10) is equivalent to system of two 

real equations with respect to the complex amplitudes in the 

form 

2 2 2
4 4 2 0 0 0

2 2

2 2 2
4 4 2 0 0 0

2 2

2 ,

2 ,

′ ′ ′ ∂ ∂ ∂′ ′ ′′ ′′ ′ ′∇ − ∇ −ρ ω = + + + ∂ ∂ ∂ ∂


′′ ′′ ′′∂ ∂ ∂ ′ ′′ ′′ ′ ′′ ′′∇ + ∇ −ρ ω = + + + ∂ ∂ ∂ ∂

xx xy yy

xx xy yy

w w w
D w D w h w N N N q

x x y y

w w w
D w D w h w N N N q

x x y y

  (12) 

with the boundary conditions (9) rewritten in terms of the 

complex amplitudes as well 

2 2

2 2

2 2

2 2

0, 0 at 0, ;

0, 0 at 0, .

w w
w w x a

x x

w w
w w y b

y y

′ ′′∂ ∂′ ′′= = = = =
∂ ∂

′ ′′∂ ∂′ ′′= = = = =
∂ ∂

               (13) 

2.2.2. The Dissipative Function 

Evolution of the temperature field is described by the heat 

conduction equation averaged over the plate thickness and 

vibration period 

2 2

2 2
2 ;

 ∂θ ∂ θ ∂ θρ = λ + − α θ + ∂ ∂ ∂ 
S Dch h W

t x y
              (14)  

complemented with thermal initial and boundary conditions  

0 at 0; 0 at 0, ; 0 at 0, .
∂θ ∂θθ = = = = = =
∂ ∂

t x a y b
x y

    (15) 

In the equations (14) and (15), θ is the dissipative heating 

temperature, θ = T − TC; c, λ and αS are the specific heat, heat 

conductivity coefficient and heat transfer coefficient at the 

face surfaces of the plate respectively; TC is the ambient 

temperature; DW  is the dissipative function averaged over 

the period of vibrations and over the plate thickness 

1 1 1 1

1 1

[( ) ( )
2

( )];

ω ′ ′′ ′ ′′′′ ′ ′′ ′= ε − ε + ε − ε +

′ ′′′′ ′+ γ − γ

D xx xx xx xx yy yy yy yy

xy xy xy xy

W M M M M

M M

     (16) 

where 

2 2
1 1 1 1 1 1

2 2
, ,

∂ ∂′ ′′ ′ ′′ε = ε + ε = − ε = ε + ε = −
∂ ∂
ɶ ɶ

ɶ ɶ
xx xx xx yy yy yy

w w
i i

x y
 

2
1 1 1 2 ;

∂′ ′′γ = γ + γ = −
∂ ∂
ɶ

ɶ
xy xy xy

w
i

x y
 

2 2

2 2
;

 ∂ ∂′ ′′= + = − + ν ∂ ∂ 

ɶ ɶ
ɶ ɶ ɶ

xx xx xx

w w
M M iM D

x y
          (17) 

2 2

2 2
;

 ∂ ∂′ ′′= + = − ν + ∂ ∂ 

ɶ ɶ
ɶ ɶ ɶ

yy yy yy

w w
M M iM D

x y
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( )
2

1 .
∂′ ′′= + = − − ν
∂ ∂
ɶ

ɶ ɶ ɶ
xy xy xy

w
M M iM D

x y
 

In the expressions (17), the quantities 
ijMɶ , 

1εɶ
ij

, and 
1γɶ
xy

,

, ,i j x y= are complex-value analogues of moments from 

equations (4) and bending strains (curvatures and twisting); νɶ  
is the complex Poisson ratio, ′ ′′ν = ν − νɶ i . Let us emphasize 

here that version of the cyclic viscoelasticity with real Poisson 

ratio and complex bulk modulus is chosen for the materials 

under consideration in this problem. Thus, relations ′ν = ν , 

0′′ν =  are assumed to be valid further on. 

As a result, a statement of the coupled thermomechanical 

problem on forced vibrations and dissipative heating of hinged 

viscoelastic plate with account of prestresses applied is given 

by the equations (12) and (14) with the expression (16) for the 

dissipative function complemented with correspondent 

mechanical boundary conditions (13) along with thermal 

initial and boundary conditions (15). 

3. Solution Technique 

Let us study the case when the prestress state can be a result 

of presence of the normal preliminary traction only: 
0 const 0xxN = ≠ , 

0
0=

yy
N , 

0
0

xy
N = . 

It is worth mentioning here that for cyclically stable materials, 

mechanical processes stabilize much faster than the thermal ones 

[13]. It enables us to consider mechanical part of the problem as 

the steady-state process in contrast to the thermal part which is 

studied in the frame of transient analysis at the aforementioned 

assumptions with respect to the material constants. Thus, solution 

of the steady state vibration problem for the hingedly supported 

plate can be written in the form [13, 20] 

( )

( )

, 1

, 1

, sin sin ,

, sin sin ,

∞

=

∞

=

π π′ ′=

π π′′ ′′=

∑

∑

mn

m n

mn

m n

m x n y
w x y w

a b

m x n y
w x y w

a b

               (18) 

where
mn

w′  and 
mn

w′′  are unknown complex amplitudes of the 

eigenmode mn corresponding to the natural frequency ωmn. 

This frequency is determined by the well-known formula 

taking account for the prestresses [13, 20] 

2
2 2 2

0

0

1
,

  π π π      ω = + +       ρ          
mn xx

m n m
D N

h a b a
       (19) 

where
0

D is the plate bending stiffness coefficient calculated 

for elastic response of the plate material. In the case of 

viscoelastic material, it should be calculated as
2 2 2

0D D D′ ′′= + . 

Vibration of a plate in the vicinity of the resonance 

frequency ω = ωmn is under consideration in the present study. 

It is also assumed that the loading is distributed over the plate 

surface according to the law corresponding to this particular 

mode of vibration to facilitate the resonant vibration 

( ) 0

0

, , sin sin cos

sin sin sin .

π π′= ω −

π π′′− ω

mn

mn

m x n y
q x y t q t

a b

m x n y
q t

a b

               (20) 

If the transverse loading varies according to sine or cosine 

law over the time then this relation can be modified in the 

obvious way. 

In this case, the plate response will be formed by the 

resonating mode mn, and the sums in the expression (18) can 

be discarded. Substitution of the resultant into (17) with 

accounting for 
0

0
xy

N = yields the system of two linear 

algebraic equations with respect to 
mn

w′  and 
mn

w′′  of the 

following form 

2

2

,

,

 ′ ′ ′′ ′′ ′ −ρ ω + − = 


′ ′′ ′′ ′ ′′ + −ρ ω + =  

mn mn mn

mn mn mn

w D A h B w D A q

w D A w D A h B q
             (21) 

where
4 2 2 4

2
x x y y

A k k k k= + + , 
0 2 0 2

xx x yy y
B N k N k= + ; = π

x
k m x a , 

= πyk n x b . 

Solution of the system of equations (21) is determined by 

the expression 

1 2, ;′ ′′= ∆ ∆ = ∆ ∆mn mnw w                       (22) 

where 

( ) ( )
( )

4 2 2 4 2 0 2 0 2

1

4 2 2 4

2

2 ,

 ′ ′∆ = + + − ρ ω + + + 

′′ ′′+ + +

mn x x y y xx x yy y

mn x x y y

q D k k k k h N k N k

q D k k k k
 

( ) ( )
( )

4 2 2 4 2 0 2 0 2

2

4 2 2 4

2

2 ,

 ′′ ′∆ = + + −ρ ω + + − 

′ ′′− + +

mn x x y y xx x yy y

mn x x y y

q D k k k k h N k N k

q D k k k k
           (23) 

( ) ( )

( )

2
4 2 2 4 2 0 2 0 2

2
4 2 2 4

2

2 .

 ′∆ = + + −ρ ω + + + 

 ′′+ + + 

x x y y xx x yy y

x x y y

D k k k k h N k N k

D k k k k

 

To address the transient heat conductivity equation, one 

should define the expression for dissipative function DW

from (14) as a function of the complex amplitudes of 

deflection. With making use of the expressions (17), the 

relations between moment and deflection amplitudes can be 

derived as follows 

2 2 2 2

2 2 2 2
;

′ ′ ′′ ′′   ∂ ∂ ∂ ∂′ ′ ′′= − + ν + + ν   ∂ ∂ ∂ ∂   

mn mn mn mn
xx

w w w w
M D D

x y x y

2 2 2 2

2 2 2 2
;

′ ′ ′′ ′′   ∂ ∂ ∂ ∂′′ ′′ ′= − + ν − + ν   ∂ ∂ ∂ ∂   

mn mn mn mn
xx

w w w w
M D D

x y x y
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2 2 2 2

2 2 2 2
;

′ ′ ′′ ′′   ∂ ∂ ∂ ∂′ ′ ′′= − + ν + + ν   ∂ ∂ ∂ ∂   

mn mn mn mn
yy

w w w w
M D D

y x y x
   (24) 

2 2 2 2

2 2 2 2
;

′ ′ ′′ ′′   ∂ ∂ ∂ ∂′′ ′′ ′= − + ν − + ν   ∂ ∂ ∂ ∂   

mn mn mn mn
xx

w w w w
M D D

y x y x

( )

( )

2 2

2 2

1 ;

1 .

′ ′′ ∂ ∂′ ′ ′′= − − ν − ∂ ∂ ∂ ∂ 

′ ′′ ∂ ∂′′ ′′ ′= − − ν + ∂ ∂ ∂ ∂ 

mn mn
xy

mn mn
xy

w w
M D D

x y x y

w w
M D D

x y x y

 

Substitution of (24) into (16) with accounting for the first 

line from (17) yields the expression for the dissipative 

function 

( )

2 2 2
2 2 2

2 2 2

2
2 2 2 2 2

2 2 2 2 2

2 2
2 2

2

2

1 .

 ′ ′′ ′     ∂ ∂ ∂ω ′′= + + +     ∂ ∂ ∂     

′′ ′ ′ ′′ ′′   ∂ ∂ ∂ ∂ ∂+ + ν + +   ∂ ∂ ∂ ∂ ∂   

 ′ ′′   ∂ ∂ + − ν +    ∂ ∂ ∂ ∂      

mn mn mn
D

mn mn mn mn mn

mn mn

w w w
W D

x x y

w w w w w

y x y x y

w w

x y x y

(25) 

The transient heat conductivity problem formed by the 

equation (14) complemented by the expression for the 

dissipative function (25) along with the thermal initial and 

boundary conditions (15) can be solved numerically. 

4. Numerical Results and Analysis 

Calculations were performed for rectangular plate with the 

geometric parameters a = 0.15 m, b = 0.1 m, and h = 0.005 m. 

Polyethylene was chosen as the plate material. Complex 

moduli for the material were taken from [21]: 88.0 10′ = ×E Pa; 
66.3 10′′ = ×E Pa; tgθ = / 0.0079′′ ′ =E E . Polyethylene 

Poisson ratio and density are chosen to be equal to 0.46ν =  

and 953ρ = kg/m
3
 respectively. Thermal parameters for the 

problem were defined as follows: specific heat 

癈2300 W (kg )= ⋅c , heat conductivity coefficient 

癈0.36 W (m )λ = ⋅  and heat transfer coefficient at the face 

surfaces of the plate
2 癈4 W (m )α = ⋅S . 

Harmonic loading of the plate with 0=yyN  and different 

preliminary normal membrane forces 
xx

N  was investigated. 

4.1. Stationary Problem 

The stationary problem was first solved. 

A natural-vibration frequency in the first eigenmode (m = 1, 

n = 1) of the square plate with =
xx

N 45 kN/m under a 

transverse loading with amplitude ′ =q 400 Pa (with ′′ =q 0) is 

f11 = 468.1 Hz. Since the investigation was carried out in the 

near-resonance region, the distribution of the deflection and 

temperature were based on the fundamental frequency f11, 

where 2= ω π
mn mn

f  is the natural frequency corresponding to 

the first mode of vibration. The distribution of the deflection 

and the temperature of the plate are shown below. 

 

Figure 1. The distribution of the deflection of the plate. 

The maximum deflection, wmax, is achieved in the center of 

the square plate point (x = a/2, y = b/2) and is equal to 
32.4 10−× m. 

 

Figure 2. The distribution of the temperature of the plate. 

The maximum temperature θmax for heating the plate is also 

reached at this point and is equal to 90.1°C. The figures show 

the characteristics calculated for the points of maximum 

values of amplitudes and temperatures for corresponding 

vibration modes. 

In figures 3 and 4, the amplitude– and temperature– 

frequency responses on vibration at the point of maximum 

deflections and temperatures in the vicinity of the first 

resonance frequency under a transverse loading with 

amplitude ′ =q 400 Pa for different values of 
xx

N  are shown. 

In figures 3 and 4, the blue, red and green lines show the 

amplitude– and temperature–frequency responses for the 

values of =
xx

N 0, 20, and 45 kN/m respectively. 
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Figure 3. The amplitude–frequency response of the plate. 

 

Figure 4. The temperature–frequency response of the plate. 

Figure 3 illustrates the effect of shifting the resonant 

frequency (to the region of higher frequency values) with an 

increase in preliminary tensile membrane tractions in the plate, 

which corresponds to the known theoretical and 

experimentally confirmed result. A similar effect is obtained 

for the case of temperature frequency response (Figure 4). The 

shift of the resonance region to the right is accompanied by an 

increase in temperature. 

 

Figure 5. The amplitude–frequency response of the plate under different 

values. 

In figures 5 and 6, the amplitude– and temperature–

frequency responses on vibration of the square plate in the 

vicinity of the first resonance frequency for =
xx

N 45 kN/m 

under different values of the transverse loading are shown. In 

figures 5 and 6, the blue, red, and green lines show the 

amplitude– and temperature–frequency responses for the 

values of transverse loading with amplitudes ′ =q 200, 350, 

and 400 Pa respectively. 

As it can be seen from figure 5, the behavior of the 

amplitude–frequency response corresponds to the typical 

behavior of the characteristics in the case of a linear 

viscoelastic material and is accompanied by an increase in the 

amplitude of deflection with an increase in the amplitude of 

the transverse loading. 

 

Figure 6. The temperature–frequency response of the plate under different 

values. 

The temperature–frequency response corresponding to this 

case is presented in figure 6. It illustrates a sharp increase in 

temperature at resonance frequency, which, a critical value of 

the loading parameter is reached, leads to dangerous levels of 

heating. The maximum temperature is equal to 90.1°C. 

For the elastomer chosen as the plate material, the melting 

point is 120°С. Therefore, in this work, the value of 100°С 

was chosen as the critical value of the heating temperature θcr, 

at which a noticeable softening of the material is observed. 

4.2. Non-stationary Problem 

Next, the non-stationary problem for the square plate was 

considered. The heat conduction equation (14) complemented 

with thermal initial and boundary conditions (15) was solved. 

The ambient temperature is chosen to be equal to TC = 20°C. 

The dissipative heating temperature equals θ = T − TC. 

In figure 7, the temperature–time dependence at the 

resonant frequency f = 468.1 Hz for the normal membrane 

force =
xx

N 45 kN/m under different values of the transverse 

loading is shown. In figure 7, the green, violet, blue, and red 

lines show the temperature–time dependence for the values of 

transverse loading with amplitudes ′ =q 200, 350, 400, and 

500 Pa respectively. 
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Figure 7. The temperature–time dependence under different values of the 

transverse loading. 

The distribution of the temperature of the plate at point  

y = b/2 at the resonant frequency f = 468.1 Hz for the value 

=
xx

N 45 kN/m is shown in the figure 7. 

In figure 8, the green, violet, blue, and red lines show the 

distribution of the temperature for the values of transverse 

loading with amplitudes ′ =q 200, 350, 400, and 500 Pa 

respectively after 800 seconds of vibration. 

 

Figure 8. The distribution of the temperature of the plate at point y = b/2. 

 

Figure 9. Wöhler diagram calculated at the falling branch of the 

temperature–frequency characteristics. 

Figure 8 illustrates the distribution of the temperature in the 

first eigenmode (m = 1, n = 1). The maximum temperature is 

reached at x = a/2 and equals θmax = 79.5°C. 

The first eigenmode is the most energy-intensive vibration 

mode. 

In figure 9, the Wöhler diagram at frequency f = 468.1 Hz, 

which is resonant for the membrane force =
xx

N 45 kN/m, was 

constructed. In figure 9, the green, blue, violet, and red lines 

corresponds to =
xx

N 20, 30, 40, and 45 kN/m respectively. 

This is called a falling branch. 

 

Figure 10. Wöhler diagram calculated at the raising branch of the 

temperature–frequency characteristics. 

In figure 10, the Wöhler diagram at frequency f = 337.9 Hz, 

which is resonant for the membrane force =
xx

N 0, was 

constructed. In figure 10, the red, violet, blue, and green lines 

corresponds to =
xx

N 0, 5, 10, and 20 kN/m respectively. This 

is called a raising branch. 

To provide the efficiency of the plate, it is necessary to 

choose such modes on vibration in which the level of heating 

does not exceed a critical value θcr. Critical levels of 

prestresses and loads are determined by the points of 

intersection of the temperature–frequency response with a line 

of θcr = 100°С. 

5. Conclusion 

Under the assumption of the Kirchhoff–Love hypotheses 

validity, the formulation and solution of the stationary and 

non-stationary problems of forced resonant vibrations and 

vibroheating of a viscoelastic polyethylene plate with 

preliminary normal membrane force in case of a rectangular 

plate, hinged along the contour are presented. For the most 

energy-intensive first mode of bending vibrations of a 

pivotally supported plate, the influence of the indicated 

preliminary state, as well as the level of the transverse 

distributed load, material properties, heat transfer conditions 

on the frequency dependences of the maximum deflection 

amplitude and dissipative heating temperature was studied. 

The critical values of prestresses are determined at which the 
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temperature of the vibroheating reaches a value at which the 

plate material begins to soften. Temperature–time 

dependences for a given elastomeric plate are shown. The 

material fatigue limits are found for which the Wöhler 

diagrams are constructed. 
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