

Advances in Applied Sciences
2021; 6(3): 43-48

http://www.sciencepublishinggroup.com/j/aas

doi: 10.11648/j.aas.20210603.11

ISSN: 2575-2065 (Print); ISSN: 2575-1514 (Online)

Simplified Data Processing for Large Cluster:
A MapReduce and Hadoop Based Study

Abdiaziz Omar Hassan
*
, Abdulkadir Abdulahi Hasan

College of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, China

Email address:

*Corresponding author

To cite this article:
Abdiaziz Omar Hassan, Abdulkadir Abdulahi Hasan. Simplified Data Processing for Large Cluster: A MapReduce and Hadoop Based Study.

Advances in Applied Sciences. Vol. 6, No. 3, 2021, pp. 43-48. doi: 10.11648/j.aas.20210603.11

Received: May 29, 2021; Accepted: June 21, 2021; Published: July 9, 2021

Abstract: With the drastic development of computing technologies, there is an ever-increasing trend in the growth of data.

Data scientists are overwhelmed with such a large and ever-increasing amount of data, as this now requires more processing

channels. The big concern arising here for large-scale data is to provide support for the decision making process. Here in this

study, the MapReduce programming model is applied, an associated implementation introduced by Google. This programming

model involves the computation of two functions; Map and Reduce. The MapReduce libraries automatically parallelize the

computation and handle complex tasks including big data distribution, loads and fault tolerance. This MapReduce

implementation with the source formation of Google and the open-source mechanism, Hadoop has an objective of handling

computation of large clusters of commodities. Our implication of MapReduce and Hadoop framework is aimed at discussing

terabytes and petabytes of storage with thousands of machines parallel to every machine and process at identical times. This

way, large processing and manipulation of big data are maintained with effective result orientations. This study will show up

the basics of MapReduce programming and open-source Hadoop structure application. The Hadoop system can speed up the

handling of big data and respond very fast.

Keywords: Google MapReduce Processes, Hadoop, Parallel Data Processing, HDFS, Cloud Computing,

Large Cluster Data Processing

1. Introduction

With the introduction and advancement of technology and

computerized innovation, the growth of data is unimaginable

and unreachable. Data scientists and handlers are getting

overwhelmed and frustrated with such a large and ever-

increasing amount of data with its processing requirements

ever-increasing and demanding more every time. With so

large an ever-increasing data, there comes to some problems

as well concerning its handling, processing, and

management. These problems are faced by various fields in

making use of this large scale, drawing meanings out of it, as

well as, using it for decision making.

Data mining, data classification, handling, and processing

are some of those technologies that can amend and draw new

ways out of these large data sets. For many years in the past,

this data mining technique with its pre-requisites is studied in

all applicable scenarios; resulting it to be the phase of

development of data mining methods and further their

application to make them workable. Various hurdles in the

wake of processing are faced by large-scale internet

companies including Google, Yahoo, Facebook, LinkedIn, as

well as, other bigger internet-solution providing companies

that require processing a huge chunk of data not only in

minimum timeframe but also keeping the cost-effective

solution in an application.

Google had developed MapReduce and the Google File

System, which is embracing to studied and investigated in

this research study. Google has also built a database

management system (DBMS) known as Big Table. This

system can search millions of pages and return the results in

milliseconds by employing some algorithms that work

through the MapReduce system and Google File System [1].

In the recent past, MapReduce has made its place as an

algorithm to handle computing paradigm and analysis of a

large amount of data [2]. MapReduce has got fame while it

44 Abdiaziz Omar Hassan and Abdulkadir Abdulahi Hasan: Simplified Data Processing for Large

Cluster: A MapReduce and Hadoop Based Study

was made part of the Google database management system

and Google file system. MapReduce could be employed for

measurability and is purely a fault-tolerant data processing

tool that can handle and process huge data along with lower-

bound computing nodes [3].

Discussing how MapReduce works, a distributed file

system (DFS) first categorizes data in multiple categories,

and then data is presented as a pair containing key and

values. The MapReduce framework performs its applications

and function on a single machine where the data may be

preprocessed before map functions or post-process the output

of MapReduce function performed [4]. As Hadoop is applied,

which is a famous open-source application of MapReduce to

handle large datasets. It employs an already provided user-

level filesystem to handle storage across the cluster [5]. This

implication will provide you with a speedy output but less

significant, yet giving you a reasonable speed as well as

handling a larger dataset that tackles a large number of

computing nodes and minimizes application time by 30%

comparing with ordinary data mining techniques [6].

1.1. Programming Model and Application of MapReduce

Function

The programming model indicates and includes defined

sets of input pairs of key or value, and outlays output pairs of

key and values. This MapReduce function has two outlays:

one is Map and the other, Reduce. The map function

considers the input pair and provides key/value pairs. These

values and intermediate outputs are grouped by the

MapReduce function and then passed further to the Reduce

function. The Reduce function accepts these intermediate

keys and merges their values to form a smaller set of values.

Let us assume an example of counting the occurrence of each

word in a large dataset, and appear to use it with the map and

reduce functions. The code to do this counting of occurrence

will be similar to the following code:

map (String key, String value):// key: document name//

value: document contents for each wordw in value:

EmitIntermediate(w, "1");

reduce (String key, Iterator values):// key: a word// values:

a list of counts int result = 0; for each v in values: result +=

ParseInt (v); Emit(As String(result));

Herewith this example, the program in detail counts the

occurrences of each word within input files specified on the

command line.

#include "mapreduce/mapreduce.h" // User’s map function

class Word Counter: public Mapper {public: virtual void

Map (const MapInput& input) {const string& text =

input.value(); const int n = text.size(); for (int i = 0; i < n;) {//

Skip past leading whitespace while ((i < n) &&

isspace(text[i])) i++; // Find word end int start = I; while ((i <

n) &!isspace(text[i])) i++; if (start < I)

Emit(text.substr(start,i-start),"1");}}};

REGISTER_MAPPER(WordCounter); // User’s reduce

function class Adder: public Reducer {virtual void Reduce

(ReduceInput* input) {// Iterate over all entries with the//

same key and add the values int64 value = 0; while (!input-

>done()) {value += StringToInt(input->value()); input-

>NextValue(); // Emit sum for input->key () Emit

(IntToString(value));}};}

REGISTER_REDUCER(Adder); int main (int argc,

char** argv) {ParseCommandLineFlags(argc, argv);

1.2. MapReduce Specification

spec;// Store list of input files into "spec" for (int i = 1; i <

argc; i++) {MapReduceInput* input = spec.add_input();

input->set_format("text"); input->set_filepattern(argv[i]);

input->set_mapper_class("WordCounter");} // Specify the

output files: // /gfs/test/freq-00000-of-00100 // /gfs/test/freq-

00001-of-00100 //

Figure 1. Execution plan of the programming model.

 Advances in Applied Sciences 2021; 6(3): 43-48 45

1.3. MapReduce Output

out = spec.output(); out->set_filebase("/gfs/test/freq"); out-

>set_num_tasks(100); out->set_format("text"); out-

>set_reducer_class("Adder") // Optional: do partial sums

within map // tasks to save network bandwidth out-

>set_combiner_class("Adder"); // Tuning parameters: use at

most 2000 // machines and 100 MB of memory per task

spec.set_machines(2000); spec.set_map_megabytes(100);

spec.set_reduce_megabytes(100); // Now run it

The above code was written in terms of string inputs and

outputs, but the map and reduce functions have also

associated types that are defined and assessed through the

listing of variables and values.

map (k1,v1) → list(k2,v2) reduce (k2,list(v2)) → list(v2)

The map function will dig out the key from each recording

and will forward the key with a matching record pair. On the

other hand, the reduce function will give all pairs unchanged.

2. Related Works

Seema Maitrey with her fellow researchers has studied big

data handling with a new technique under the name of

"MapReduce: Simplified Data Analysis of Big Data".

This research study is focused on using the MapReduce

technique that is based on cloud-based technologies. A

famous application of cloud technology is Google, which

works aligned with this technology and handles data and

processes with care. They also discussed Hadoop that is used

by companies other than Google, including Facebook,

Yahoo, etc. The analytical processing of data using Hadoop

and the application of MapReduce is verified and assessed

with their research-based study [7].

Another researcher Jeffrey Dean with his fellow

researchers has studied the MapReduce framework getting a

lot of attention for the application on big data. They

classified it as a programming model with implementation

with the aim of processing and handling large datasets being

responsive for a wide variety of real-world operations [8].

Figure 2. Anatomy of MapReduce function.

Richard M. Yoo and his fellows have studied Scalable

MapReduce with a large-scale shared-memory system and

talked about dynamic runtimes with simplifying parallel

programming, as well as automatically detecting scenarios.

They discussed how a multi-layered approach works along

that work for the optimizations on the algorithm,

implementation, and OS interaction defining and

channelizing significant speedup improvements with 256

threads. They also identified the hurdles or roadblocks which

are involved in limiting the scalability of runtimes on shared-

memory systems [9].

Kyong Lee with his fellows had discussed Google's

MapReduce technique that works for big data handling and

processing more simply and smoothly together with the

benefit of minimized cost. The main characteristic of this

MapReduce model was that it able to process large data sets

among others distributed among multiple nodes and multiple

channels [10].

B Panda and his fellows had highlighted the MapReduce

system and its applications with big data at an International

Conference. They highlighted the MapReduce mechanism

being a proprietary system of Google. They also discussed the

distributed computing being great to extend simplified with

implications of Map and Reduce functions, providing the

basics and insights of achieving the desired performance [11].

Jeffrey Dean with his fellows had discussed simplified

data processing on large clusters with the MapReduce

framework. They stated this being the subsidiary

infrastructure of Google’s MapReduce that allocates to a

distributed file system and enables the algorithms to locate

data and make it available. They termed it easy to use as with

the opinion of programmers as more than ten thousand

distinct MapReduce programs are on implementation

internally at Google within the last four-year span [12].

Bayardo Panda and his fellows have discussed massively

parallel learning with the application of the MapReduce

framework. They highlighted combining the MapReduce

programming technique with the distributed file system,

being a way to achieve distributed computing objectives with

data processing over thousands of computing nodes [11].

46 Abdiaziz Omar Hassan and Abdulkadir Abdulahi Hasan: Simplified Data Processing for Large

Cluster: A MapReduce and Hadoop Based Study

Jaliya Ekanayake and her fellows have discussed MapReduce

for data-intensive scientific analysis. They discussed the

MapReduce technique due to its application to large parallel data

analyses. They discussed this with efficient parallel/concurrent

algorithms meeting the scalability and performance

requirements to handle and process scientific data [13].

Anam Alam and her fellows have discussed the Hadoop

Architecture and Its Issues, together with their implication at

an international conference. Hadoop is categorized as a

distributed program or framework used to handle a large

amount of data. Hadoop is usually used for data-intensive

applications. With its extensive application, every social

media site has made use of it [14].

R. Vijayakumari and her fellows have discussed the

comparative analysis of Google File System and Hadoop

Distributed File System. They discussed this distributed

computing, parallel computing, grid computing, and other

parameters including; Design Goals, Processes, Fire

management, Scalability, Protection, Security, cache

management replication, etc. to compare both these methods

and their application of the file system [15].

3. Methodology

The methods used may not look familiar to a common

audience. The first one is MapReduce which is in fact

oriented to programmers, rather than business users. This has

gained popularity due to its easy application, efficiency and

ability to control “Big Data” in a timely manner. MapReduce

framework with its application and programming model is

discussed above. An example of occurrences is discussed and

employed with the MapReduce framework.

3.1. Hadoop

Another process employed and utilized is Hadoop which is

connected with Java implementation and Java application.

This should be used in two different ways. These are the

outputs advantageous API streamed output and the other

involving building of Hadoop apps with C++. Hadoop

Distributed File System is a target file system especially to

use with MapReduce programs. This best applicable to the

small number of very large files. With the use of replication,

data availability could be made possible within Hadoop

Distributed File System (HDFS).

To process all of the files created by the mapping

mechanism, the Reduce program get access to internode data.

When this is executed, map and reduce, both programs will

write it down to the local file system to avoid the burden over

the HDFS system. HDFS can support multiple readers and

one writer (MROW) approach. The indexing mechanism

might not apply to HDFS, so, this would just be applied to

read-only applications that only scan and read the contents of

the file.

3.1.1. Hadoop Architecture

Hadoop Distributed File System stores data within its

computing nodes, providing customized and high aggregate

bandwidth across the entire cluster. This file system

installation has different nodes plus one single name node,

called the master node and various data nodes, called slave

nodes. The name node has held responsible for the

management of the file system namespace and controls the

access to files by clients. The data nodes or slave nodes are

distributed in a way that one data node is assigned per

machine in the cluster, managing data while attaching it to

the machines where they run. The name node has an

operation execution scenario within the file system

namespace and assigns those data blocks to data nodes.

Those data nodes are there to handle read and write requests

from clients and performing operations with the instruction

provided [16].

Figure 3. Hadoop Architecture.

Hadoop Distributed File system manipulates and handle

data chunks and replicates these data chunks across the

server for performance keeping and mechanism, load-

balancing and resiliency. The processing application of any

 Advances in Applied Sciences 2021; 6(3): 43-48 47

problem execution will specify the number of replicates of

the file right when it is created, and this count or record can

be changed any time after that. The name node has the ability

to adopt different decisions concerning block replication.

3.1.2. Deploying Hadoop

Hadoop compiles in three different ways, the first one is a

standalone mode, which is the default mode of Hadoop,

running as a single Java process. The second one is Pseudo-

distributed mode, which involves the configuration of

Hadoop to run on a single machine, whereas, with different

Hadoop processes, run divergent Java processes. The third

one is fully disseminating or cluster mode, involving one

machine, as the name node and another, as the job tracker.

There could be a secondary name node that might work for

periodic handshaking with a name node for fault tolerance.

3.1.3. Replication Management

HDFS provides a reliable way to store huge data in a

distributed environment as data blocks. The blocks are also

replicated to provide fault tolerance. The default replication

factor is 3 which is again configurable. So, as you can see in

the figure below where each block is replicated three times

and stored on different DataNodes (considering the default

replication factor):

Figure 4. Block replication.

3.2. Hadoop Based Oozie Structure and Implementation

Apache Oozie manages all the tasks and makes them

organized. So, this could be known as a scheduler for

Hadoop. This mechanism provides workflow of dependent

jobs that later on and helps to develop Directed Acyclic

Graphs of workflows that allow jobs or tasks to run in

parallel and sequentially in Hadoop.

Figure 5. Oozie workflow chart.

This type of Oozie workflow works with both action nodes

and control-flow nodes. An action node represents a

workflow task like moving files into HDFS, running a

MapReduce, or running a shell script of a program written in

Java. While a control-flow node controls the execution of the

task by allowing different action nodes and controlling

control nodes.

4. Results and Discussions

Discussing results and discussions, big data and its

requisite technologies can bring about significant changes

and benefits to your business. But with the increased and

widespread use of technologies, it might turn into a difficult

task for your organization to manage, control and tackle a

heterogeneous collection of data and get your desired

outcomes.

To handle the growth of individual companies, certain

aspects should be followed so that timely results could be

attained from Big Data since effective use of Big Data, the

modernization, and effectiveness for entire divisions and

economies are to be attained. Therefore, you should know

how to ensure the effectiveness of usage, management and

48 Abdiaziz Omar Hassan and Abdulkadir Abdulahi Hasan: Simplified Data Processing for Large

Cluster: A MapReduce and Hadoop Based Study

re-use of data sources, including public data to construct

applications. There is a need to evaluate the best approach to

use for filtering and analyzing the data. For the optimized

processing, Hadoop with MapReduce could be employed. As

we have used in this paper, with the basics of MapReduce

programming and open-source Hadoop framework

application. The Hadoop framework can speed up the

processing of big data and respond very fast. The

extensibility and simplicity of these frameworks will be the

critical factors that make it a replenishing tool for big data

handling, processing, and management.

5. Conclusion

MapReduce programming model is applied, an associated

implementation introduced by Google. This programming

model involves the computation of two gatherings; Map and

Reduce.

Hadoop performance is made up of an ecosystem of tools

and technologies that will requirement careful analysis and

expertise to determine the suitable mapping of technologies

to enable a smooth migration.

Hadoop is a highly scalable platform and is largely

because of its ability that it stores and allocates large data sets

across lots of servers. The servers used here are quite

inexpensive and can operate in parallel. The processing

power of the system can be improved with the addition of

more servers.

Hadoop MapReduce programming model offers

suppleness to process structure or unstructured data by

several business organizations who can use the data and

operate on different types of data. Thus, they can achieve a

business value out of those meaningful and beneficial data

for the business organizations for analysis.

References

[1] G. Z. &. C. B. Jason R Swedlow, "Channeling the data
deluge," Nature methods, vol. 8, p. 463–465, 2011.

[2] J. Maitrey S, "An Integrated Approach for CURE Clustering
using Map-Reduce Techniques," In Proceedings of Elsevier,
vol. 2, 2013.

[3] D. D, "MapReduce: A major step backwards," The Database
Column, 2011.

[4] Y. Kim and K. Shim, "Parallel Top-K Similarity Join
Algorithms Using MapReduce," Arlington, VA, USA, 2012.

[5] J. Shafer, S. Rixner and A. L. Cox, "The Hadoop distributed
filesystem: Balancing portability and performance," White
Plains, NY, USA, 2010.

[6] S. M. CA Moturi, "Use of MapReduce for Data Mining and
Data Optimization on a Web Portal," International Journal of
Computer, vol. 56, no. 7, 2012.

[7] C. J. Seema Maitreya, "MapReduce: Simplified Data Analysis
of Big Data," Procedia Computer Science, vol. 57, pp. 563-
571, 2015.

[8] S. G. Jeffrey Dean, "MapReduce: Simplified Data Processing
on Large Clusters," USENIX Association OSDI, vol. 4, pp.
137-149, 2004.

[9] R. M. Yoo, A. Romano and C. Kozyrakis, "Phoenix rebirth:
Scalable MapReduce on a large-scale shared-memory
system," Austin, TX, USA, 2009.

[10] H. C. Y. D. C. B. M. Kyong-Ha Lee, "Parallel data processing
with MapReduce: a survey," ACM SIGMOD Record, vol. 40,
no. 4, 2012.

[11] B. P. J. S. H. S. B. R. J. Bayardo, "PLANET: Massively
Parallel Learning of Tree Ensembles with MapReduce,"
PVLDB, vol. 2, no. 2, pp. 1426-1437, 2009.

[12] S. G. Jeffrey Dean, "MapReduce: simplified data processing
on large clusters," Communications of the ACM, vol. 51, no. 1,
2008.

[13] J. Ekanayake, S. Pallickara and G. Fox, "MapReduce for Data
Intensive Scientific Analyses," Indianapolis, IN, USA, 2008.

[14] A. Alam and J. Ahmed, "Hadoop Architecture and Its Issues,"
Las Vegas, NV, USA, 2014.

[15] R. K. R. R. Vijayakumari, "Comparative analysis of Google
File System and Hadoop Distributed File System,"
International Journal of Advanced Trends in Computer
Science and Engineering, vol. 3, no. 1, pp. 553-558, 2014.

[16] J. J. B. X. Y. F. Wang, "Hadoop high availability through
metadata replication”, in Proc," The first international
workshop on Cloud data management, pp. 37-44, 2009.

[17] A. D. R.-L. H. D. S. P. Hung-chih Yang, "Map-reduce-merge:
simplified relational data processing on large clusters," 2007.

