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Abstract: A toxicity data set of 58 phenols to Tetrahymena pyriformis expressed as pEC50 (Log to base 10 of effective 

concentration, EC50) was taken from literature and the molecular structure of each molecule was optimized to obtain their 

minimum energy geometry. The descriptors of each optimized molecule were computed and subsequently used to build QSTR 

models. The best QSTR model hinted that the toxicity of phenol was dominantly influenced by the descriptors; molecular 

complexity (FMF), valence path cluster (VPC) and topological diameter (topo). The results of the statistical analysis of the tri- 

parametric model include; n = 41, Lack of fit (LOF) score = 0.06566, R
2
 = 0.7629, R

2
adj.= 0.7437, Q

2
LOO = 0.7, F-value = 

39.69. The generated QSTR model has been proven to possess statistical significance, high predictive power and wide 

applicability domain. Thus, it is recommended for environmental risk assessment of phenols. 
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1. Introduction 

Phenols are important group of chemicals that has found 

wide applications in medicine, industry and agriculture [1]. 

Because of their extensive usage, they are constantly being 

released into the environments constituting a serious threat to 

humans and the ecosystem owing to their high toxicity and 

persistence in the environment [2-4]. The high toxicity of 

phenol made it one of the first compounds inscribed into The 

List of Priority Pollutants by the US Environmental 

Protection Agency [5]. Acute poison with nitro-phenol is 

characterized by burning pain in mouth and throat, white 

necrotic lesions in mouth, esophagus and stomach, vomiting, 

headache, irregular pulse, decrease of temperature and 

muscle weakness, depression, convulsions and death [6]. 

The large quantity of these chemicals been released into 

the environment stemming from anthropogenic and natural 

sources, and the high toxicity associated with them has made 

proper evaluation of their risk a sine qua non (very 

necessary). QSTR modelling has unquantifiable role to play 

in this regard as it provides theoretical predictive methods 

that can fill gaps in the data and identify those compounds 

that are most promising for empirical assessment since it is 

not practically and economically feasible to conduct toxicity 

tests on all phenols released into the environment owing to 

the unavailability of property/activity data of several classes 

of this compound [7-10]. 

Jionghao and Zhang [11] studied the acute toxicity of 31 

halogenated phenols using semi empirical PM3 and coding of 

halogens’ substitutional positions. Peng and Liu [12] 

investigated quantum chemical descriptors based QSAR 

models on toxicity of 22 halogenated phenols with Hartee-

Fock and DFT methods with the basis set 6-31G (d, p) and 6-

311G (d, p) respectively. In the above-mentioned models, 

which have high correlation coefficient, external validation 

of the developed models was not performed making it hard to 

know the external predictive power. 
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More recently, Guangyu et al. [13] investigated the link 

between structures of halogenated phenols and their acute 

toxicity in their work titled: A QSTR Study of the Acute 

Toxicity of Halogenated Phenols in which DFT-B3LYP 

method, with the basis set 6-31G (d, p), was employed to 

calculate some quantum chemical descriptors of 43 

halogenated phenols compounds. The above descriptors 

along with the octanol-water partition coefficient were 

used to establish a QSTR of the toxicity of these 

compounds to tetrahymena pyriformis by multiple linear 

regression (MLR) and support vector machine (SVM). 

The statistical results indicate that the multiple correlation 

coefficient (R
2
) and cross validation using leave-one-out 

were 0.922, 0.892 and 0.944, 0.924, respectively. To 

validate the predictive power of the resulting models, 

external validation multiple correlation coefficient and 

cross validation (Q
2
 ext) were 0.975, 0.919 and 0.957, 

0.934, respectively. The results revealed that there are 

good correlations among the acute toxicity of halogenated 

phenols to Tetrahymena pyriformis and the octanol-water 

partition coefficient, highest occupied molecular orbital, 

dipole moment, the sum of halogenated electric charges. 

Though their result showed that the QSAR models have 

both favorable estimation stability and good prediction 

power but the models could only be applied to 

halogenated phenols only. Thus, it can be inferred that the 

QSTR models have very narrow applicability domain. 

2. Materials and Methods 

A toxicity data set of 58 phenols to Tetrahymena pyriformis 

expressed as pEC50 (Log to base 10 of EC50) was taken from 

literature [14]. The entire data set and their respective pEC50 are 

presented in Table 1. 70% (41 phenols) of the data was used as 

training set while 30% (17 phenols) was used as test set. 

Spartan’ 14 software was used to optimize the geometries of all 

the molecules using DFT method at the B3LYP/6-31G level. 

Padel descriptor tool kit was used to compute all the descriptors 

of the molecules. QSTR models were generated using Genetic 

Function Approximation (GFA) – Multilinear Regression 

techniques in Material Studio software with the pEC50 as 

dependent variable and the computed descriptors as independent 

variables. Many QSTR models were generated but Model 1 was 

selected based on the model with the best statistical significance 

(LOF score = 0.06566, R
2
 = 0.7629, R

2
adj.= 0.7437, Q

2
LOO = 0.7, 

F-value = 39.69]. The chemical structure of a representative of 

the data set studied is shown in Figure 1. 

 

2-Hydroxyacetophenone 

Figure 1. Chemical structure of member of the data set. 

Table 1. Name and Experimental pEC50 of the Phenols Studied. 

Cpd. Name pEC50 Cpd. Name pEC50 

1 4-Fluorophenol 0.02 30 2-Bromo-4-methylphenol 0.60 

2 2-Cyanophenol 0.03 31 2,4-Difluorophenol 0.61 

3 5-F-2-OH-acetophenone 0.04 32 3-Isopropylphenol 0.61 

4 2,4-Dimethylphenol 0.07 33 2-Cl-4,5-dimethylphenol 0.69 

5 2-Hydroxyacetophenone 0.08 34 4-Butoxyphenol 0.70 

6 2,5-Dimethylphenol 0.08 35 4-Chloro-2-methylphenol 0.70 

7 3,5-Dimethylphenol 0.11 36 3-tert-Butylphenol 0.73 

8 4'-Hydroxypropiophenone 0.12 37 4-Chloro-3-methylphenol 0.80 

9 2,3-Dimethylphenol 0.12 38 4-Iodophenol 0.85 

10 3,4-Dimethylphenol 0.12 39 2,2'-Biphenol 0.88 

11 2-Ethylphenol 0.16 40 4-tert-Butylphenol 0.91 

12 2-Chlorophenol 0.18 41 3,4,5-Trimethylphenol 0.93 

13 4-OH-2-CH3-acetophenone 0.19 42 4-sec-Butylphenol 0.98 

14 4-Ethylphenol 0.2 43 2,4-Dichlorophenol 1.04 

15 3-Ethylphenol 0.23 44 4-Chloro-3-ethylphenol 1.08 

16 2,3,6-Trimethylphenol 0.28 45 2-Phenylphenol 1.09 

17 2,4,6-Trimethylphenol 0.28 46 3-Chloro-4-fluorophenol 1.13 

18 2-OH-5-CH3-acetophenone 0.31 47 6-tert-Butyl-2,4-dimethyIphenol 1.16 

19 2-Bromophenol 0.33 48 4-Chloro-3,5-dirnethyIphenol 1.20 

20 5-Br-2-OH-benzyl alcohol 0.34 49 4-Cyclohexylphenol 1.56 

21 2,3,5-Trimethylphenol 0.36 50 3,4-Dinitrophenol 0.27 

22 2-Chloro-5-methylphenol 0.39 51 2,6-Dinitrophenol 0.54 

23 4-Allyl-2-methoxyphenol 0.42 52 2,6-Dichloro-4-nitrophenol 0.63 

24 2-Hydroxybenzaldehyde 0.42 53 2,5-Dinitrophenol 0.95 

25 2,6-Difluorophenol 0.47 54 4-Bromo-2-fluoro-6-nitrophenol 1.62 

26 4-Cyanophenol 0.52 55 2-Amino-4-nitrophenol 0.47 

27 4-Propyloxyphenol 0.52 56 2,6-Diiodo-4-nitrophenol 1.71 

28 4-Chlorophenol 0.55 57 3-Fluoro-4-nitrophenol 0.94 

29 5-Methyl-2-nitrophenol 0.59 58 4-Hexyloxyphenol 1.64 

Literature source for the toxicity data: Jiang et al., 2011 
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3. Results and Discussion 

Model 
*
1: 

n = 41, LOF score = 0.06566, R
2
 = 0.7629, R

2
adj.= 0.7437, 

Q
2

LOO = 0.7, F-value = 39.69 

The definition of the descriptors in the models include; 

FMF = complexity of molecule, VPC = valence path 

cluster, topo = topological diameter, In the equation, n is the 

number of compounds, R
2
 is the multiple correlation 

coefficient, R
2

adj is adjusted R
2
, F stands for significance of 

regression and Q
2

LOO stands for Leave one out cross-

validation coefficient. 

 

Figure 2. Comparison Between the Predicted and Experimental Values of pEC50. 

 

Figure 3. Plot of the Residuals Versus the Experiment pEC50 Values of Model 1. 

The high R
2
 of Model 1 is an indication that the model 

explained a very high percentage of the variation of the 

response variables (descriptor), high enough for a robust 

QSTR model. The high R
2

adj value and its closeness in value 

to the value of R
2
 implies that the model has excellent 

explanatory power to the descriptors in it. Also, the high Q
2
 

value of the model shows that it is not over-fitted. F value 

judges the overall significance of the regression coefficients. 

The high F value of the model is an indication that the 

regression coefficients are significant. 

A good predictive ability of the model 1 for the training 

and test set compounds is depicted by the high linearity of 

Figure 2 which gives the plot of predicted values of the test 

and training sets and their experimental values. Also, Figure 

3 gives the residual plot of the optimum model. Most of the 

calculated residuals are distributed on both sides of the zero 

line, a conclusion may be drawn that there is no systematic 

error in the development of the present model. 
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Figure 4. Plot of Actual Verses Predicted pEC50 of Test Set Molecules. 

Table 2. External Validation Table. 

Test set 

Compound 
Actual pEC50 

Predicted 

pEC50 
Residual 

3 0.04 0.03 0.01 

6 0.08 0.07 0.01 

9 0.12 0.11 0.01 

12 0.18 0.19 -0.01 

15 0.23 0.22 0.01 

18 0.31 0.28 0.03 

21 0.36 0.4 -0.04 

24 0.42 0.41 0.01 

27 0.52 0.55 -0.03 

30 0.6 0.64 -0.04 

33 0.69 0.77 -0.08 

36 0.73 0.72 0.01 

39 0.88 0.84 0.04 

42 0.98 0.79 0.19 

45 1.09 0.99 0.1 

48 1.2 1.34 -0.14 

51 0.54 0.62 -0.08 

The comparison of the predicted pEC50 of the test set 

compounds with their experimental values by the optimum 

QSTR model is presented in Table 2. The low residual values 

shown in the table confirms the high predictive power of the 

model. To further augment the claim of high agreement revealed 

by Table 2, the experimental pEC50 of test set molecules were 

plotted against their predicted pEC50 (Figure 4). The high 

Linearity of these plot indicates reveal an all-encompassing 

agreement between the experimental and predicted values 

indicative of the high predictive power of the model. 

Based on the information provided by model 1, the main 

factors that could impact the biological toxicity of phenols 

include FMF (complexity of molecule), VPC (valence path 

cluster, describing molecular connectivity), and topo 

(topological diameter). According to statistic learning theory, 

comparing the importance of each parameter entails the 

knowledge of the standardize coefficient of them in the 

regression equation, the bigger the absolute value of the 

standardized coefficient, the greater the influence of the 

parameter. In the equation, the standardized coefficient of 

FMF, VPC, and topo parameters are 2.41, 0.95, and 0.27, 

respectively. Thus, it could be inferred that the dominant 

descriptor of phenol toxicity is FMF descriptor. The three 

parameters describe the size of the molecules. Their positive 

coefficient implies that the EC50 of the studied molecules 

increase with the value of these descriptors in the molecule. 

4. Conclusion 

According to the QSTR study, pEC50 of halogenated 

phenols to Tetrahymena pyriformis increases with the 

descriptors; molecular complexity, valence path cluster and 

molecular topological diameter, descriptors of molecular 

size. Validation of the optimum model shows that it has good 

stability and great predictive power and as such could be of 

immense help in cheaper and safer quantitative risk 

assessment of these chemicals in our environment. 

Recommendation 

In view of the robustness and stability of the generated 

Genetic Function Approximation (GFA) derived model, it is 

suggested that environmental regulatory agencies locally and 

internationally should adopt it in the environmental risk 

assessment of phenols. This will undoubtedly reduce the 

level of pollution of our ecosystem by these toxic chemicals. 
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