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Abstract: The aim of this work is to propose a flatness control of a crane detailing adopted mechanisms and approaches 

in order to be able to control this system and to solve problems encountered during its functioning. The control objective is 

the sway-free transportation of the crane’s load taking the commands of the crane operator into account. Based on the 

mathematical model linearizing and stabilizing control laws for the slewing and luffing motion are derived using the 

input/output linearization approach. The method allows for transportation of the payload to a selected point and ensures 

minimisation of its swings when the motion is finished. To achieve this goal a mathematical model of the control system of 

the displacement of the payload has been constructed. A theory of control which ensures swing-free stop of the payload is 

presented. Selected results of numerical simulations are shown. At the end of this work, a comparative study between the 

real moving and the desired one has been presented. 
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1. Introduction 

Flatness-based control techniques have been developed 

and applied in many industrial processing with a great 

success in solving planning and tracking problems of 

reference trajectories such as thermal process control [15], 

motors control [1], chemical reactor control [16], crane 

control [10] etc… This theory was introduced in 1992 by 

M. Fliess and al. [6]. 

The existence of a variable called a flat output permits to 

define all other system variables. The dynamics of such 

process can be then deduced without solving differential 

equations. Therefore, it is possible to express the state, as 

well as the input and the output system, as differential 

functions of the flat output [6] [11]. 

Conventionally, it is difficult to resolve the path planning 

problem due to the necessity to solve the differential 

system equations from the initial conditions to obtain the 

solution at the final time. In the case of flat systems, this 

problem can be solved easily without approximation and 

without solving differential systems equations. Indeed, 

flatness property ensures the existence of a flat output 

which allows the parameterization of all system variables 

as a function of finite number of its derivatives. 

The goal of this work is to solve problems encountered 

during the motion of the load using the technique known 

by control by fatness whose main objective is to attenuate 

the undesirable swings of the load [7], [9], [13]. In fact, the 

differential flatness has been introduced by Fliess and al. [5] 

in 1995.  The states and the in puts of the flat system can be 

expressed in function of the particular out puts and their 

successive derivatives. We can find a lot of the literature 

uses a linear approaches [3], [8], [19] or an approaches of 

optimal control [12], [20]. Also, several methods are 

proposed in [9] and [14] in order to decrease the 

oscillations created by the outsides disruptions. Authors of 

[2] and [4] use energizing techniques by exploiting the fact 

that a crane can be identified to a pendulum if we fixes the 

length of the vertical cable bound to the load. Other 

techniques can be useful: technique of in put / out put 

linearization, technique of in put / state linearization, but 

these techniques present several problems which are so 

difficult to solve it. We here interested to exploit the 

concept of the flatness in order to control the system crane: 

in section 2, we present the dynamic model of the crane. In 

section 3, the crane is modeled by a flat system. Section 4 

deals with flatness and linearization. Section 5 deals with 

flatness and trajectories generation. Finally, in section 6, 

we present the flatness and the tracking of trajectory. 
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2. Formulation of the Problem 

The most of the weight handling equipments use ropes 

and winches in order to displace the load. This system of 

raising went up on a mechanical structure with one or two 

articulations. 

Among these weight handling equipments, we consider 

the crane system which its characteristics are the following: 

· A load of mass � which its coordinates are:��, ��  

A weight handling equipment compound a rope, pulleys 

and winches. The motors manipulating the winches are 

supposed to be controlled by two couples:�� and �	. 

· A mechanical structure entirely articulate on which is 

fixed the winches of coil of the ropes. 

· A rail breaks the movement of the pulley.  

The tabular diagram of the crane is given by the following 

figure: [17] 

 

 

Figure 1. Crane in dimension 2. 

2.1. Model of the crane 

The dynamic model of the crane can be given by: [17] 
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The geometric constraints between the coordinates of the 

wagon and the load: 
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So an explicit representation of the system can be 

obtained  �
�, 
��, 
�, 
��, 
, 
� �. 

3. Flat Systems 

Recent research in trajectory tracking control has 

focused on systems with a property known as differential 

flatness. A nonlinear system 
� � ��
, ��  is differentially 

flat if an output �can be found such that the states 
 and 

inputs � can be expressed in terms of � and a finite number 

of its derivatives [4]. A benefit of flat systems is that flat 

outputs can follow arbitrary trajectories �����  provided 

that the trajectory is sufficiently smooth. For this system 

we can choose the position of the load denoting by
 
��, ��, 

and we verify if it presents a flat output, that is to say, 

verify that all variables and all controls of the system can 

be expressed in function of this chosen output. According 

to the model (1), we can see that the third equation can be 

got by using the derivative in order two of �
 
and �, more 

precisely, by using the following expression: 
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It is easy to see that all variables of the system denoting 

by�
�, 
�, �, �, ��, �	� can be expressed in function of �and 

� (the coordinates of the load) and of their derivatives until 

the order 4, this result is compatible with the principle of 

flatness. 

4. Flatness and linearization 

We are interested in this paragraph to appear a dynamic 

endogenous feedback. 

In fact, by using expressions in subsection 3, we can put 
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���� � �	                                   (12) 

Then, the dynamic endogenous feedback can be 

calculated by identifying the derivatives of �and � until 

order 4 with their expressions in terms of inputs�� and �	.  

According to the equations in subsection 3 and by 

making the change of the control, we obtain: 
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Then, we will have:  
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By reversing this linear system in relation to ��and �	, 

we will have: 
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By this way, we construct a dynamic endogenous 

feedback by introducing a compensator whose state is 

given by���, �� �, �	�  

Then the problem that remains to solve consists to the 

generation of trajectory leaving from an initial position 

arriving to a final position. 

5. Flatness and Generation of 
Trajectories 

We suppose that we want to bring the load from the 

position of departure ��� , ���  at the instant �� , without 

moving, to the final position ��� , ��� at the instant��, also 

without moving, and to make it pass by the point denoting 

by:������
	 , 2�� � ��� which must be the maximum of this 

curve between�� and ��. 
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This trajectory ���� must verify the four conditions 

denoting by: 
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which satisfied the last conditions. 

It remains to construct the trajectory���� which verifies: 
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6. Flatness and Tracking of Trajectory 

By using the expression of the dynamic endogenous 

feedback calculated in paragraph 4 and the expressions of 

(32)-(33), we will have the following curly system, with 
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We have a curly system of order 8. 
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��%and �	%are the inputs of references which corresponds 

of trajectories of references��% and�	%. 

The constant&�' and &	' are chosen in order to assure the 

stability of the systems denoting by: 
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Finally, we replaced ��
�'�

and���%�'with their expressions in 

function of �
3, 
� 3, 
1, 
� 1, 
, 
� , �1, �� 1� in order to 

assure the local exponential convergence of these last to 

their references. 

7. Simulations 

We present in this part the simulation of the controls and 

trajectories browsed by the load. 

The conditions of simulation can be represented by: 
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�� � 0 corresponds to the position of the wagon at�� 
and 
�� � 10*  corresponds to the position of the wagon 

at ��  . Concerning the length of the cable, we chose at ��, 

�� � �2*  and at �� , 
�� � �1,5* , we will have the 

initial position of the load ,��     �        0
��     � �2*.   and the final 

position is defined by , ��     �        10
��     � �1,5*. 

. 

Figures 2a and 2b show the crane position responses. It 

is clear that the tracking errors resulting for the two 

movements (horizontal axis and vertical axis) are 

acceptable. Figures 3a and 3b represent the corresponding 

control input based on flatness. Then the law control 

provides action control values that are suitable for the used 

actuators. This is yielded from the pole assignment, which 

imposes convenient dynamics for the closed loop system. 

Finally, it is obvious that the satisfactory output tracking 

performance has been achieved through the proposed 

control scheme. The controls are limited between a 

minimal intensity and a maximal one. Figure 4 shows the 

swing of the crane around the vertical and the last figure 
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represent the motion of the crane on the phase. 

 

Fig. 2a. The position responses(horizontal axis). 

 

Fig. 3a. The control variable(T1). 

 

 

Fig 4. The swing of the crane. 

 

 

Fig. 2b. The position responses(vertical axis). 

 

Fig. 3a. The control variable(T2) 

 

 

 

Fig 5. The moving of the crane on the phase. 
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8. Conclusion 

In this paper we are proposed a flatness control of a 

crane. This control is used to generate the desired trajectory 

and to force the crane to follow it. Experimental results 

show the proposed algorithm efficiencies. 

The real and the desired moving of the crane indicate 

that a similar procedure could be applied to controlling the 

luffing. The problem was also extended to take into 

account the case when working motion starts with non-zero 

swing of the payload or there are other disturbances. The 

swing-free stop control is frequently used in the case of 

overhead cranes, particularly those intended for 

transferring large payloads, or in the case of reloading 

works performed repeatedly. The proposed strategy of 

controlling the slewing motion used as a whole or only for 

stopping the swinging payload could increase work safety 

and improve work quality. Therefore, the objective of the 

control of the crane by flatness is to increase the 

productivity and the man's operational security on the one 

hand and to eliminate the undesirable swings of the load on 

the other hand. 
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