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Abstract: This paper presents a formal approach that addresses the reciprocal robots collision avoidance, where two 

robots need to avoid collisions with each other, while moving in a common workspace. Based on our formulation, each 

physical robot acts fully independently, communicating with the corresponding virtual prototype and imitating its behavior. 

Each physical robot reproduces the pathway of its virtual prototype. With a view to collision avoidance, it is necessary to 

detect a possible collision. This action includes the potentially intersecting regions test of the corresponding virtual 

prototypes. The estimation of the collision-free actions on the virtual robots and the collaborative work of the physical 

robots which imitate their virtual prototypes are the original ideas. Based on potentially intersecting regions of the virtual 

robots, we identified a collision-free motion corridor for two cooperative robots. Using the definition of velocity obstacles, 

we derived sufficient conditions for the collision-free motion of the two virtual robots. We tested the present approach on 

several complex simulation scenarios involving two virtual robots and estimating collision-free actions for each of them 

during the cooperative tasks. The focus of this paper is the identification of the collision-free actions for two virtual robots 

and their behavioral imitation by the physical robots.  

Keywords: Virtual Robots, Collision Detection, Reciprocal Collision Avoidance, Behavioral Imitation  

1. Introduction 

Cooperative robots systems are designed to achieve tasks 

by collaboration. Collaborative robots which we can see 

deployed nowadays in research or industries are 

permanently endangered to collide. Therefore, installations 

with multiple robots in the real world, such as collaborative 

work and maintenance of the good state of the production 

line, require collision avoidance methods, which take into 

account the mutual constraints of the robots. 

A key requirement for their efficient operation is good 

coordination and reciprocal collision avoidance. 

Collision avoidance is a fundamental problem for 

cooperative robots. Collision avoidance is a highly 

advanced robot control option that automatically detects 

collisions and quickly causes the robot to stop and back up 

to release the pressure. Not only does it reduces the force of 

the collision, but also prevents the robot and its tooling 

from being pressed against an object after a collision. 

The contact of the robot with an obstacle must be 

detected and it will cause the robot to stop quickly and 

thereafter back off to reduce forces between the robot and 

the environment. The problem of the contact with obstacles 

imposes the null velocity in the moment of the impact.  

The problem of the contact detection is better analyzed 

on the virtual prototypes in the virtual environment, where 

the virtual objects can be intersected. 

The problem of the contact detection in the virtual 

environment using virtual robots is important for the reason 

that this built-in function is proven superior to mechanical 

collision detection devices. It detects collisions in all 

directions, protecting not only the end-effectors, but also 

the work pieces and the robot itself. 

The problem of the collision avoidance can generally be 

defined in the context of an autonomous robot operating in 
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an environment with obstacles, and /or other moving 

entities, where the robot employs a continuous acting cycle.  

For each cycle, an action for the robot must be computed 

based on local observations of the environment, so that the 

robot stays free of collisions with the obstacles and the 

other moving entities, while making progress towards a 

goal.  

The problem of local collision-avoidance differs from 

motion planning, where the global environment of the robot 

is considered to be known and a complete pathway towards 

a goal configuration is planned at once. Therefore, the 

collision detection simply determines if two geometric 

objects are intersecting or not.  

The intersecting or mutually penetrating of two objects is 

possible in the virtual world, where the intersecting of 

virtual objects is possible, and where there is no risk of 

destruction.  

The ability of predicting the behavior of cooperative 

manipulators is important for several reasons: for example 

in design, designers want to know whether the manipulator 

will be able to perform a certain typical task in a given time 

frame; in creating feedback control schemes, where 

stability is a major problem, the control engineer cannot 

risk a valuable piece of equipment by exposing it to 

untested control strategies. Therefore, a facile strategy for 

collision avoidance, capable of predicting the behavior of a 

robotic manipulator or of the system at whole becomes 

imperative.  

In the real world, like collision detection, where robots 

need to interact with their surrounding, it is important that 

the computer can simulate the interactions of the 

cooperative participants with the passive or active changing 

environment, using virtual prototyping.  

In this paper, we address the more necessary but less 

studied problem of two-robot reciprocal collision avoidance, 

where collisions need to be avoided for multiple tasks.  

This problem has important applications in many areas in 

robotics, such as multi-robot cooperation and coordination. 

It is also a key component in modeling and behavioral 

simulation of robots, for computer graphics and Virtual 

Reality.  

In this paper, we propose a new method that 

simultaneously determines actions for two virtual robots 

that each may have different objectives or will cooperate 

for a common objective. The actions are computed for each 

virtual robot and are transferred to the corresponding 

physical robot, with a central coordination for the 

collaborative tasks. Yet, we prove that our method 

guarantees the collision-free motion for each of the robots. 

We assume that each virtual robot end-effectors can 

move in any direction, such that the control input of each 

robot is given by a three-dimensional velocity vector. Also, 

we assume that the algorithm is able to deduce the exact 

shape, position and velocity of obstacles and of the virtual 

robots, in the virtual environment. 

The present simulation method is based on the velocity 

approach, which provides a sufficient condition for each 

robot to be collision-free for at least a fixed amount of time 

into the future. That implies that each robot takes into 

account the observed velocity of other robots in order to 

avoid collisions with them. Also, each robot selects its own 

velocity from its velocity space in which certain regions are 

marked as “forbidden” because of the presence of another 

robot.  

The formulation “reciprocal collision avoidance”, 

supposes for each robot that there are a lot of velocities, 

within the velocity-space, which may to be selected in 

order to guarantee the collision avoidance. 

In this paper we develop and formal analysis of a new 

collision avoidance strategy for a group of two cooperative 

robots. 

The remainder of this paper is organized as follows: in 

Section 2, we review prior work in collision avoidance. 

Section 3 describes collision detection of the virtual objects.  

The model we used for reciprocal collision avoidance is 

described in Section 4. Collision detection through the 

animation of the virtual robots is detailed in Section 5. A 

possible strategy of the programming pathway of physical 

robots, based on a patent is proposed in Section 6. Finally, 

in Section 7, we present an experimental configuration for 

physical robot programming by imitation of the virtual 

prototype and we discuss the limitations and possible 

extensions of our model to answer complex situations, 

before concluding. 

2. State-of-the-Art and Possible 

Extensions 

The problem of collision avoidance has been extensively 

studied. Many approaches assume the observed obstacles to 

be static (i.e. non-moving), and compute an immediate 

action for the robot that would avert collisions with the 

obstacle, in many cases taking into account the robot’s 

kinematics and dynamics. 

If the obstacles are also moving, such approaches 

typically repeatedly “plan again” based on new readings of 

the positions of the obstacles. This may work well if the 

obstacles move more slowly than the robot, but among fast 

obstacles, the velocity of the obstacles needs to be specified. 

The problem of the obstacles moving at high speeds is 

generally referred to as “asteroid avoidance”, and 

approaches typically extrapolate the observed velocities in 

order to estimate the future positions of obstacles [10]. 

However, such approaches are insufficient for multi-

robot location, where the robot encounters other robots that 

also make decisions based on their surroundings: 

considering them as moving obstacles neglects the fact that 

they react to the robot in the same way as the robot reacts 

to them, and inherently causes adverse actions in the 

motion of the robots [11]. 
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Velocity Obstacles (VO) [1, 3, 19] have been a 

successful velocity-based approach to avoid collisions with 

moving obstacles; they provide a sufficient and necessary 

condition for a robot to select velocity that avoids collisions 

with an obstacle moving at a known velocity.  

Besides the Velocity Obstacle approach, many other 

methods have been proposed for collision-avoidance, 

navigation, and planning among moving obstacles [12, 13, 

18, 19]. There are also Recursive Velocity Obstacles [10] 

and Common Velocity Obstacle methods [15, 18]. 

However, most of the existing work does not take into 

account that the obstacles’ motion may be affected by the 

presence of the robot. Such approaches are generally not 

able to plan safe paths among obstacles moving at high 

speeds [11]. 

There is also an extensive amount of literature on multi 

agent navigation, in which each agent navigates 

individually among the other agents, which are considered 

as obstacles, e.g. [3, 4, 9 - 16, 18, 19]. Most of these 

techniques have focused on multitude simulation. Also, in 

these cases, the other agents are assumed to be either 

passively moving obstacles or static obstacles. A number of 

approaches follow the Velocity Obstacle concept to avoid 

the collision between agents. 

In multi-agent planning, the composite configuration 

space of the agents is considered, and a path is centrally 

planned in this space [17, 20]. These works focus on 

different aspects of the problem (e.g. finding optimal 

coordination) and are frequently not suited for on-line real-

time application. 

The problem of collision avoidance becomes harder 

when the obstacles are also intelligent decision-making 

entities that try to avoid collisions as well. The reactive 

nature of the other entities must be specifically taken into 

account in order to guarantee that collisions are avoided. 

However, the robot may not be able to communicate with 

other entities and may not know their intents. It is the case 

of the Reciprocal Velocity Obstacles (RVO) problem [10, 

11], in which robots are partially given the responsibility of 

avoiding the collisions. This formulation only guarantees 

collision-avoidance under specific conditions, and does not 

provide a sufficient condition for collision-avoidance in 

general. 

To overcome this limitation, there exists the Optimal 

Reciprocal collision Avoidance (ORCA) [15], which 

provides a sufficient condition for multiple robots to avoid 

collisions with one another, and thus can guarantee the 

collision-free operating. However, decoupled multi-agent 

operation is not only computationally impractical; it also 

requires central coordination among robots. 

Many approaches that in fact guarantee collision 

avoidance have so far been limited to robots with specific 

and simple dynamics. 

In this paper, we propose a new strategy, which is 

supposed to detect the collision using the virtual prototypes 

and to transfer the trajectory of virtual robots to physical 

robots, in the real environment, assuming that each physical 

robot can perfectly imitate the movement /behavior of its 

virtual prototype.  

3. Collision Detection 

Collision detection frequently arises in various 

applications including virtual prototyping, dynamic 

simulation, interaction and motion planning. Collision 

detection has been exhaustively researched for more than 

four decades. Most of the commonly used algorithms are 

based on spatial partitioning or Bounding Volume 

Hierarchies (BVHs). 

Typically, for a simulated environment consisting of 

multiple moving virtual objects, collision problems consist 

of two phases: the “broad phase”, where collision is 

performed to reduce the number of pair intelligent tests, 

and the “narrow phase”, where the pairs of objects in 

proximity are checked for collision.  

In this section, we present a study based on the collision 

detection algorithm for computing all the contacts between 

multiple moving virtual objects in a large virtual 

environment. It uses the visibility reducing algorithm 

described in [2]. The overall algorithm is general and 

applicable to all environments.  

Algorithms for narrow phase can be further subdivided 

into efficient algorithms for convex objects and general 

purpose algorithms based on spatial partitioning and BVHs, 

for polygonal models [2]. However, these algorithms often 

involve pre-computation and are mainly designed for rigid 

models. 

The performance of collision detection depends on the 

input model complexity and the problem output, which is 

the number of colliding or overlapping primitives. However, 

existing algorithms may not achieve interactive 

performance on large models consisting of thousands of 

triangles, due to their high complexity and output of the 

problem. Moreover, the memory requirements of these 

algorithms are typically very high.  

Based on our strategy, we compute a Potentially 

Colliding Set (PCS) of virtual objects that are either 

overlapping or are in close proximity [2].  

If an object Oi does not belong to the PCS, it implies that 

Oi does not collide with any object in the PCS. Based on 

this property, we can reduce the number of virtual object 

pairs that need to be checked for exact collision. 

This is similar to the concept of computing the 

potentially visible set (PVS) of primitives from a viewpoint 

for spatial relation. We perform visibility computations 

between the objects in the image space to check whether 

they are potentially colliding or not.  

Given a set S of virtual objects, we test the relative 

visibility of an object O with respect to set S, using an 

image space visibility query. The query checks whether any 

part of O is spatially intersected by S, rasterizing all the 

objects belonging to set S.  
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The object O is considered fully-visible if all the 

fragments generated by the rasterizing of O have a depth 

value less than the corresponding pixels in the frame buffer. 

We do not consider the self masking of a virtual object O in 

checking its visibility status. 

If an object does not intersect in either of the two passes, 

then it does not belong to the PCS. Each pass requires the 

object representation for an object to be rendered twice. We 

can either render all the triangles used to represent an 

object or a bounding box of the object. Initially, the PCS 

consists of all the objects in the scene.  

We perform these two passes to reduce objects from the 

PCS. We will check if an object potentially intersects with a 

set of objects or not.  

It should be noted that our method based on reducing 

algorithm [7] is quite different from algorithms that reduce 

PCS using 2D overlap tests.  

Many applications need to compute the exact 

overlapping features (e.g. triangles) for collision response. 

Instead of testing each object pair in the PCS for exact 

overlap, we again use the visibility formulation to identify 

the potentially intersecting virtual regions among the 

objects in the PCS.  

Specifically, we use a fast global reducing algorithm to 

localize these regions of interest. We perform object level 

reducing to compute the PCS of objects.  

Initially, all the objects belong to the PCS. Firstly, we 

perform the reduction along each coordinate axis by using 

the axis aligned bounding boxes as the object’s 

representation for collision detection. The reduction is 

performed till the PCS does not change between successive 

iterations.  

We also use the object’s triangulated representation for 

further reducing the PCS.  

The size of the resulting set is expected to be small and 

we use all-pair bounding box overlap tests to compute the 

potentially intersecting pairs.  

If the size of this set is large, then we use the sweep-and- 

reduce technique [5] to reduce this set instead of 

performing all-pair tests.  

We decompose each object into sub-objects. We have 

extended this approach at sub-object level and computed 

the potentially intersecting areas. 

4. Reciprocal Collision Avoidance  

For two robot end-effectors A and B, the velocity obstacle, 
τ

BA
VO  (read: the velocity obstacle for A induced by B for 

time window τ ) is the set of all relative velocities of A with 

respect to B, which will result in a collision between A and 

B at some moment before time τ [9]. It is formally defined 

as follows.  

Let be an A robot end-effector with radius rA, positioned 

at pA on a horizontal disc. For a configuration of two robot 

end-effectors A and B, the horizontal disc of radius (rA + rB) 

is centered at (pB − pA) in the Cartesian space. 

Let S (p, r) denote an open horizontal disc of radius r 

centered at vector position p and defined by (1).  

},{),( rSrS ≤−∈= pssp                   (1) 

Then the velocity obstacle is defined as: 

)},(],,0[{ BAABBA
rrSvttvVO +−∈∈∃= ppττ

 (2) 

Let vtA and vtB be the current operational velocities of the 

robots’ end-effectors A and B, respectively. The definition 

of the velocity obstacle implies that if (vA - vB) є τ
BA

VO , or 

equivalently if (vB -vA) є τ
AB

VO , then A and B will collide 

at some moment before time τ if they continue moving at 

their current velocity.  

On the other hand, if (vA-vB) ¢ τ
BA

VO , the two robot end-

effectors A and B are guaranteed to be collision-free for at 

least τ time. Robot end-effector A will collide with robot 

end-effector B within τ time if its velocity vA is inside 
τ

BA
VO  and it will be collision-free for at least τ time if its 

velocity is outside the velocity obstacle. 

For an articulated robot arm, the robot end-effectors 

velocity vector is calculated as, tXv ɺ= where Xt is the 

Cartesian position vector of the robot end-effector. The 

vector Xt can be described as a function of robot joints 

variables vector, q: 

)f(q=tX                  (3) 

Equation (3) can be obtained easily with the help of the 

Denawit - Hartenberg operators. 

The robot end-effectors velocity vector v can be obtained 

as: 

qqJ ɺɺ )(ttXv ==              (4) 

where J is a Jacobean matrix, and qɺ  is the robot joints 

velocities vector.     

Given a trajectory that each moving robot end-effector 

will travel, we can determine the exact collision time. 

Please refer to [18] for more details. If the path that each 

robot end-effector travels is not known in advance, then we 

can calculate a lower bound on the collision time. This 

lower bound on the collision time is calculated adaptively 

to speed up the performance of the dynamic collision 

detection. 

5. Collision Detection through 

Animation of two Virtual Robots 

Our proposed scheme for dynamic simulation or 

animation, using the distance computation algorithm, is an 

iterative process which continuously inserts and deletes the 
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object pairs from a stack according to their approximate 

time of collision, as the objects move in a dynamic 

environment.  

Our simulation method purely exploits the spatial 

arrangement of the two end-effectors without any other 

information.  

The end-effector pair which has a small separation is 

likely to have an impact within the next few time instances, 

and those virtual pairs which are far apart from each other 

cannot possibly come to interfere with each other until a 

certain moment.  

For spatial tests to reduce the number of virtual pairs 

judicious comparisons, we assume the environment is quite 

free and the end-effectors move in such a way that the 

geometric coherence can be preserved, i.e. the assumption 

that the motion is essentially continuous in the time domain.  

Planning scene formulation for cooperative tasks is 

presented in the figures below. 

In the cooperative task studies, the simulation is used to 

find whether it is possible to avoid the collision between a 

particular part of the robot arm and diverse objects in the 

work space and so to find one possible free path.  

In this section we will describe how to render a planning 

scenario in the form of constraints for the constraint-based 

planning framework.  

Our visibility using the PCS computation algorithm is 

based on a hardware visibility query which determines if a 

primitive is fully-visible or not. 

By assuming that the geometry representing the robots 

and obstacles is given, the motion is prescribed for 

obstacles over time.  

Our system then defines constraints that will restrict the 

motion of the robots to meet the design specifications, and 

also guides the robots to complete the planning tasks so that 

the collision will be avoided. 

Our virtual system was implemented on a programming 

platform, using the Delphi object-oriented programming 

language.  

In this section we have tested our system of two robots 

for collision detection in the following scenes for the 

virtual prototyping applications. 

5.1. Scene 1: Individual Task for each Robot 

The individual task for each robot is studied in scene 1.  

Each of the two robot arms is composed of rigid 

components that are held together by constraints. For all of 

the components of the robot arm, the planner must compute 

paths to ensure the joint constraints do not collide with the 

obstacles as the conveyors and lead the end-effectors along 

the prescribed path. 

In this scene (an example seen in Fig. 1), two articulated 

robot arms, with six degrees of freedom, are used to 

transfer (manipulate) cubic objects from one conveyor belt 

to another conveyor belt.  

Each robot arm follows a path over the conveyor body 

while avoiding obstacles. 

 

Figure1. Scene for individual tasks  

5.2. Scene 2: Cooperative Mission 

The cooperative mission for two robots is analyzed 

below. In our example, a second scene shown in Fig. 2, the 

end-effectors of the left robot and of the right robot 

respectively, avoid each other in a firm behavior during a 

cooperative task. In this scene, two articulated robot arms, 

with 6 degrees of freedom, are used to manipulate together 

a rigid object for an assembly operation. The robot arms 

avoid the moving belt to get in touch with a plate object 

passing it on the assembly conveyer belt. The goal to 

manipulate together the same object in a cooperative 

mission requires both robots to maneuver around each other 

without colliding. 

 

Figure 2.Scene for cooperative mission 

5.3. Scene 3: Assembly Line Planning 

In this example, shown in Fig. 3, two robot arms must 

assemble a plate object with two cubical objects, on a 

conveyer belt. Both robots must be moved simultaneously 

around each other to position the plate object on top of the 

two cubical objects and to avoid collision. The assembly 

line contains a support structure that is moving over the 

conveyer belt in the same direction as the assembled parts. 

The moving structure may become an obstruction that 

causes the robots to reactively modify their path, to avoid 

collision. In spite of the rapid progress in the performance 
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of the graphics processing units, it may not be possible to 

visualize or perform collision detection between massive 

models at interactive rates on graphics hardware. 

 

Figure 3. Scene for assembly line planning 

Since the usual models of the cooperative robots are 

rather complex and may have thousands of components, the 

algorithm as described in [10, 11], becomes essential to 

generate a realism of motion. 

The visual results indicate that the approximated implicit 

integration, mixed with the post-step inverse dynamics 

process, achieves simulation of rigid objects very well. 

6. Possible Strategy of the Programming 

Pathway of the Physical Robots 

We propose an original idea that allows us to transfer the 

joint trajectory of each virtual robot to the corresponding 

joint of the real (physical) robot. With other worlds we 

prepare the free-trajectories for the pair of the virtual 

cooperative robots; these trajectories can be transferred to 

their corresponding pair of the physical cooperative robots. 

In the real world, the programming pathway of the 

physical robots can be realized using the pathway of the 

virtual robot prototypes [9]. Therefore, the virtual robot 

behavior must be specifically taken into account in order to 

guarantee that collisions are avoided between 

corresponding physical robots. Each real robot may be able 

to communicate with her virtual corresponding entity and 

may imitate their intents. We call this problem reciprocal 

collision avoidance using the virtual robots prototypes, and 

it is the focus of this paper. 

The strategy that we realized in this paper, for the virtual 

robots, is formally defined as follows. Let there be a set of 

two virtual partners-robots sharing a virtual environment. 

Each robot has a current position and a current velocity. 

These parameters are part of the robot’s external state, i.e. 

we assume that they can be estimate in the virtual 

environment.  

Furthermore, each virtual robot has a maximum speed 

and a preferred velocity, which is the velocity the robot 

would assume had no other robot/object been in its way. 

We consider these parameters part of the internal state of 

the robot, and can therefore not be observed by the other 

robot. 

The task is for each virtual robot to independently (and 

simultaneously) select a new velocity for itself such that 

both virtual robots are guaranteed to be collision-free for at 

least a fixed amount of time, when they would continue to 

move at their new velocity.  

As a secondary objective, the virtual robots should select 

their new velocity as close as possible to their preferred 

velocity. The virtual robots are not allowed to communicate 

with each other, and can only use observations of the 

partner-robot’s current position and velocity.  

In our collaborative work systems, the virtual robot 

prototypes are used mainly as an intermediate result for 

calculating the “nearest neighbors” and the potentially 

intersecting areas in a possible collision. We compute a 

PCS of virtual objects that are either partly covered or in 

close proximity. If an object does not belong to the PCS, it 

implies that this object does not collide with any object. We 

initially compute the PCS of virtual objects based on the 

above algorithm (section 3 and 4). As an alternative of 

testing each object pair in the PCS for partial cover, we use 

the visibility formulation to identify the potentially 

intersecting virtual areas among the objects. 

Based on this property, we developed a programming 

platform for a pair real (physical) robots based on a 

cooperative virtual robot’s pair, which needs to be checked 

for exact collision detection. This platform needs to 

compute the exact overlapping area of the virtual 

cooperative robots, as collision response.  

7. Experimental Configuration for 

Programming by Imitation of an 

Anthropomorphic Robot 

A physical anthropomorphic robot is controlled to follow 

the arbitrary path reference with a predefined velocity 

profile over time. The physical robot follows an imaginary 

robot path which is ideally generated by the virtual robot. 

The physical robot must follow the virtual robot’s trajectory. 

On the basis of robot kinematics equations, a robot 

control system is presented in Fig. 4.  

Fig. 4 also displays (left image) the user interface for a 

virtual anthropomorphic robot arm, which has been created 

by the motion simulation system. 

The proposed architecture provides libraries and tools 

focused on 3D simulation of the dynamics systems and on a 

control and planning interface that provides primitives for 

motion planning by imitation. This architecture is 

composed of several modules and has separate nodes 

launched as executables which communicate via message 

passing. Via the numerical interface NI, one transfers the 
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joint angles data from a motion capture system to the 

kinematic model for an anthropomorphic robot.  

To generate the desired motion sequence for the real 

robot, we capture the motions from a virtual robot model 

and map these to the joint settings of the physical robot. 

Initially, a set of virtual postures is created to the virtual 

robot arm, VRA and the pictures’ positions are recorded for 

each posture, during motion [9].  

These recorded pictures’ positions provide a set of 

Cartesian points in the 3D capture volume for each posture. 

To obtain the final robot posture, the virtual pictures’ 

positions are assigned as positional constraints on the 

physical robot. To derive the joint angles, standard inverse 

kinematics (IK) routines are used. 

The IK routine then directly generates the desired joint 

angles on the robot for each posture. 

We assume the use the virtual robot prototypes and the 

motion capture systems to obtain the reference motion data, 

which typically consist of a set of trajectories in the 

Cartesian space. 

The data is obtained using a motion capture channel 

taking into account the joint motion range. The symbolic 

spatial relations specifying the virtual environment can be 

used for the automatic planning of the possible virtual path 

as reference for the real robotic arm, RRA, which may 

guide the motion process during execution. 

 

Figure 4. Programming platform with the corresponding virtual robot and the real robot face-to-face 

The easiest way to generate the spatial relations explicitly 

is the interactively programming of the behavior of the vir-

tual prototype in its virtual environment in order to specify 

suitable position coordinates θv1, θv2, θv3. These position 

coordinates are used by the physical robot as reference po-

sition coordinates. 

This kind of specification provides an easy to use 

interactive graphical tool to define any kind of robot path; 

the user has to deal only with a limited and manageable 

amount of spatial information in a very comfortable manner. 

An automatic robot programming system has to 

recognize the correct robot task type and should map it to a 

sequence of robot operations [6]. The desired pathways are 

automatically transferred and parameterized in the NI, 

using the path planner. The physical robot receives the 

position coordinates of the virtual robot through NI. 

Fig. 4 shows a simple path-following system which 

keeps a constant communication between the virtual robot’s 

path and the control system, CS. The control system is 

designed to force the real robot to follow the reference path.  

The main program simply defines “start” and “goal” 

positions. After moving the virtual robot to the ‘start’ 

position in the joint “interpolation” mode, the real robot is 

moved in the “following” mode, while a “monitor 

function” has been activated.  

The “monitor function” is reading the reference path 

values, which are used in closed loops to compute the 

physical joint torques. 

In similar ways, any functional dependencies of some 

path properties (speed, distance etc.) can be specified in a 

textual programming manner.  

The trajectories are sent to visualization, so that users 

can see the results of the animation.  

The robot’s control system is connected via the 

Transmission Control Protocol (TCP) to a PC, equipped 

with the interface card; the PC is running the simulation 

and control process. The robot control system receives and 

executes each 16 ms, an elementary move operation. 

The communication protocol between the virtual robot 

and the physical robot uses the CAN bus. This application 

can be coded with just a few lines of the DELPHI code, 

presented below. 
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unit ControlCAN; 

interface 

uses 

 WinTypes; 

const 

 DLL_NAME = 'ControlCAN.dll'; 

type 

//1.ZLGCAN 

VCI_BOARD_INFO = Record 

 hw_Version : WORD; 

 fw_Version : WORD; 

 dr_Version : WORD; 

 in_Version : WORD; 

 irq_Num : WORD; 

 can_Num : BYTE; 

 str_Serial_Num : array[0..19] of CHAR; 

 str_hw_Type : array[0..39] of CHAR; 

 Reserved : array[0..3] of WORD; 

END; 

PVCI_BOARD_INFO=^VCI_BOARD_INFO; 

//2. 

VCI_CAN_OBJ = Record 

 ID : UINT; 

 TimeStamp : UINT; 

 TimeFlag : BYTE; 

 SendType : BYTE; 

 RemoteFlag : BYTE; 

 ExternFlag : BYTE; 

 DataLen : BYTE; 

 Data : array[0..7] of BYTE; 

 Reserved : array[0..2] of BYTE; 

END; 

PVCI_CAN_OBJ = ^VCI_CAN_OBJ; 

//3. 

VCI_CAN_STATUS = Record 

 ErrInterrupt : UCHAR; 

 regMode : UCHAR; 

 regStatus : UCHAR; 

 regALCapture : UCHAR; 

 regECCapture : UCHAR; 

 regEWLimit : UCHAR; 

 regRECounter : UCHAR; 

 regTECounter : UCHAR; 

 Reserved : DWORD; 

END; 

PVCI_CAN_STATUS = ^VCI_CAN_STATUS; 

//4. 

VCI_ERR_INFO = Record 

 ErrCode : UINT; 

 Passive_ErrData : array[0..2] of BYTE; 

 ArLost_ErrData : BYTE; 

END; 

PVCI_ERR_INFO = ^VCI_ERR_INFO; 

//5. 

VCI_INIT_CONFIG = Record 

 AccCode : DWORD; 

 AccMask : DWORD; 

 Reserved : DWORD; 

 Filter : UCHAR; 

 Timing0 : UCHAR; 

 Timing1 : UCHAR; 

 Mode : UCHAR; 

END; 

PVCI_INIT_CONFIG = ^VCI_INIT_CONFIG;  

//6. 

function VCI_OpenDevice ( DeviceType : DWORD; 

 DeviceInd : DWORD; 

 Reserved : DWORD) : DWORD; 

 stdcall; 

 external DLL_NAME; 

function VCI_CloseDevice ( DeviceType : DWORD; 

 DeviceInd : DWORD) : DWORD; 

 stdcall; 

 external DLL_NAME; 

function VCI_InitCAN ( DeviceType : DWORD; 

 

 

The applicable robot tasks are designed and the desired 

pathways are programmed off-line and stored in the buffers 

B1, B2, B3. 

The following errors are delivered by the comparative 

modules CM1, CM2, CM3. The controllers interpret fol-

lowing errors and generate corresponding variables, which 

are transmitted to the actuators.  

Process changes from disturbances result in new sensor 

signals, identifying the state of the process, to be transmit-

ted again to the controller. A control loop, including sensors, 

control algorithms and actuators, is arranged for each joint 

in such a way as to try to regulate the position variables at 

reference positions value to obtain the desired closed loop 

performances. 

While motion execution is in progress, the real robot 

joints RRJ1, RRJ2, RRJ3 are activated into the real 

environment. Each time, a skill primitive is executed by the 

CS; it changes the robot joints state. As no time limit for 

the motion is specified, the real robot imitates the behavior 

of the virtual robot. 

In our laboratory we are currently developing Cartesian 

control architecture able to interpret the physical robot 

commands in the above given form. The basis of our 

implementation is a flexible and modular system for robot 

programming by imitation.  
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In our experimental configuration, in order to prove the 

correctness of the robot programming by imitation, we 

have chosen an anthropomorphic robot arm, with 3 DOF 

equipped with electrical actuators, mounted on the real 

robot’s joints.  

The designed control algorithm proved stable and robust 

to the errors when following the reference path, to input 

and output noises and to other disturbances. 

8. Conclusion and Future Work 

This paper gives an application of the collision detection 

algorithm described in [2, 10, 11], for virtual manipulation 

planning with virtual robots. We have applied this 

algorithm to perform collision detection in a virtual 

environment. 

This algorithm has also been utilized for dynamic 

simulation and its practicality has been demonstrated for 

different applications.  

The distance computation method, described in [11] has 

been used in the dynamics simulator written in the Delphi 

language.  

Our vision of this dynamic simulator is the ability to 

simulate small mechanical parts of a robot arm. It reduces 

the frequency of the checks significantly, so as to help 

speed up the calculations.  

We revealed the potential of the Reciprocal Velocity 

Obstacle approach by applying it to scenarios in which two 

virtual robots accomplish their tasks, independently or in 

cooperation, in a complex environment. 

We would like to extend the current method, allowing it 

to handle various types of time-varying data sets used in 

animation process.  

Furthermore, we would like to apply our collision 

detection framework to several applications including the 

motion planning of physical robots while passing near each 

other. 

In our formulation, the real robots must have exactly the 

same dynamics model as virtual robots in order to be able 

to imitate the behavior of the latter.  

Virtual robots could be handled using an abstraction of 

the dynamics model of their real homologue. Real robots 

will imitate the virtual robot's behavior and will move 

according to it.  

For virtual robots, we have implemented this algorithm 

in 2D and 3D. In 3D, we used an immersive environment, 

to be able to virtually manipulate the animated objects. We 

ordered the robots to grip the object and move it around a 

scene containing different obstacles situated on a ground 

plane.  

It is important to note here that this virtual model is not 

dynamic, but rather a succession of static postures, which 

greatly limits its applications. We experimented with our 

approach on several complex simulation scenarios, 

containing virtual interoperations. As each robot is 

independent, we can fully parallelize the simulation of the 

actions for each robot to realize the animation. 

Actually, the method and installation described in [9] are 

currently under testing to be eventually integrated into a 

real collision environment, developed at Transilvania 

University of Brasov.  

In addition to discussing the original contributions, this 

paper presents a set of directions to be considered for future 

work.  

The authors intend to extend experiments to investigate 

these ideas and examine the possibility of how to 

implement them. 

The authors expect fully automated robot programming 

by imitation based on this method, using robust enough 

system to be applied in industrial applications, will not be-

come true before the end of this decade. 
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