

Automation, Control and Intelligent Systems
2013; 1(3): 75-84

Published online July 30, 2013 (http://www.sciencepublishinggroup.com/j/acis)

doi: 10.11648/j.acis.20130103.17

An analysis of the reciprocal collision avoidance of
cooperative robots

A. Fratu
1
, M. Dambrine

2, 3, 4
, L. Vermeiren

2, 3, 4
, A. Dequidt

2, 3, 4

1Transilvania University of Brasov, 500036 Brasov, Romania
2Univ. Lille Nord de France, F-59000 Lille, France
3UVHC, LAMIH, F-59313 Valenciennes, France
4CNRS, UMR 8530, F-59313 Valenciennes, France

Email address:
fratu@unitbv.ro(A. Fratu), michel.dambrine@univ-valenciennes.fr(M. Dambrine),

laurent.vermeiren@univ-valenciennes.fr(L. Vermeiren), antoine.dequidt@univ-valenciennes.fr(A. Dequidt)

To cite this article:
A. Fratu, M. Dambrine, L. Vermeiren, A. Dequidt, An Analysis of the Reciprocal Collision Avoidance of Cooperative Robots.

Automation, Control and Intelligent Systems. Vol. 1, No. 3, 2013, pp. 75-84. doi: 10.11648/j.acis.20130103.17

Abstract: This paper presents a formal approach that addresses the reciprocal robots collision avoidance, where two

robots need to avoid collisions with each other, while moving in a common workspace. Based on our formulation, each

physical robot acts fully independently, communicating with the corresponding virtual prototype and imitating its behavior.

Each physical robot reproduces the pathway of its virtual prototype. With a view to collision avoidance, it is necessary to

detect a possible collision. This action includes the potentially intersecting regions test of the corresponding virtual

prototypes. The estimation of the collision-free actions on the virtual robots and the collaborative work of the physical

robots which imitate their virtual prototypes are the original ideas. Based on potentially intersecting regions of the virtual

robots, we identified a collision-free motion corridor for two cooperative robots. Using the definition of velocity obstacles,

we derived sufficient conditions for the collision-free motion of the two virtual robots. We tested the present approach on

several complex simulation scenarios involving two virtual robots and estimating collision-free actions for each of them

during the cooperative tasks. The focus of this paper is the identification of the collision-free actions for two virtual robots

and their behavioral imitation by the physical robots.

Keywords: Virtual Robots, Collision Detection, Reciprocal Collision Avoidance, Behavioral Imitation

1. Introduction

Cooperative robots systems are designed to achieve tasks

by collaboration. Collaborative robots which we can see

deployed nowadays in research or industries are

permanently endangered to collide. Therefore, installations

with multiple robots in the real world, such as collaborative

work and maintenance of the good state of the production

line, require collision avoidance methods, which take into

account the mutual constraints of the robots.

A key requirement for their efficient operation is good

coordination and reciprocal collision avoidance.

Collision avoidance is a fundamental problem for

cooperative robots. Collision avoidance is a highly

advanced robot control option that automatically detects

collisions and quickly causes the robot to stop and back up

to release the pressure. Not only does it reduces the force of

the collision, but also prevents the robot and its tooling

from being pressed against an object after a collision.

The contact of the robot with an obstacle must be

detected and it will cause the robot to stop quickly and

thereafter back off to reduce forces between the robot and

the environment. The problem of the contact with obstacles

imposes the null velocity in the moment of the impact.

The problem of the contact detection is better analyzed

on the virtual prototypes in the virtual environment, where

the virtual objects can be intersected.

The problem of the contact detection in the virtual

environment using virtual robots is important for the reason

that this built-in function is proven superior to mechanical

collision detection devices. It detects collisions in all

directions, protecting not only the end-effectors, but also

the work pieces and the robot itself.

The problem of the collision avoidance can generally be

defined in the context of an autonomous robot operating in

76 A. Fratu et al.: An Analysis of the Reciprocal Collision Avoidance of Cooperative Robots

an environment with obstacles, and /or other moving

entities, where the robot employs a continuous acting cycle.

For each cycle, an action for the robot must be computed

based on local observations of the environment, so that the

robot stays free of collisions with the obstacles and the

other moving entities, while making progress towards a

goal.

The problem of local collision-avoidance differs from

motion planning, where the global environment of the robot

is considered to be known and a complete pathway towards

a goal configuration is planned at once. Therefore, the

collision detection simply determines if two geometric

objects are intersecting or not.

The intersecting or mutually penetrating of two objects is

possible in the virtual world, where the intersecting of

virtual objects is possible, and where there is no risk of

destruction.

The ability of predicting the behavior of cooperative

manipulators is important for several reasons: for example

in design, designers want to know whether the manipulator

will be able to perform a certain typical task in a given time

frame; in creating feedback control schemes, where

stability is a major problem, the control engineer cannot

risk a valuable piece of equipment by exposing it to

untested control strategies. Therefore, a facile strategy for

collision avoidance, capable of predicting the behavior of a

robotic manipulator or of the system at whole becomes

imperative.

In the real world, like collision detection, where robots

need to interact with their surrounding, it is important that

the computer can simulate the interactions of the

cooperative participants with the passive or active changing

environment, using virtual prototyping.

In this paper, we address the more necessary but less

studied problem of two-robot reciprocal collision avoidance,

where collisions need to be avoided for multiple tasks.

This problem has important applications in many areas in

robotics, such as multi-robot cooperation and coordination.

It is also a key component in modeling and behavioral

simulation of robots, for computer graphics and Virtual

Reality.

In this paper, we propose a new method that

simultaneously determines actions for two virtual robots

that each may have different objectives or will cooperate

for a common objective. The actions are computed for each

virtual robot and are transferred to the corresponding

physical robot, with a central coordination for the

collaborative tasks. Yet, we prove that our method

guarantees the collision-free motion for each of the robots.

We assume that each virtual robot end-effectors can

move in any direction, such that the control input of each

robot is given by a three-dimensional velocity vector. Also,

we assume that the algorithm is able to deduce the exact

shape, position and velocity of obstacles and of the virtual

robots, in the virtual environment.

The present simulation method is based on the velocity

approach, which provides a sufficient condition for each

robot to be collision-free for at least a fixed amount of time

into the future. That implies that each robot takes into

account the observed velocity of other robots in order to

avoid collisions with them. Also, each robot selects its own

velocity from its velocity space in which certain regions are

marked as “forbidden” because of the presence of another

robot.

The formulation “reciprocal collision avoidance”,

supposes for each robot that there are a lot of velocities,

within the velocity-space, which may to be selected in

order to guarantee the collision avoidance.

In this paper we develop and formal analysis of a new

collision avoidance strategy for a group of two cooperative

robots.

The remainder of this paper is organized as follows: in

Section 2, we review prior work in collision avoidance.

Section 3 describes collision detection of the virtual objects.

The model we used for reciprocal collision avoidance is

described in Section 4. Collision detection through the

animation of the virtual robots is detailed in Section 5. A

possible strategy of the programming pathway of physical

robots, based on a patent is proposed in Section 6. Finally,

in Section 7, we present an experimental configuration for

physical robot programming by imitation of the virtual

prototype and we discuss the limitations and possible

extensions of our model to answer complex situations,

before concluding.

2. State-of-the-Art and Possible

Extensions

The problem of collision avoidance has been extensively

studied. Many approaches assume the observed obstacles to

be static (i.e. non-moving), and compute an immediate

action for the robot that would avert collisions with the

obstacle, in many cases taking into account the robot’s

kinematics and dynamics.

If the obstacles are also moving, such approaches

typically repeatedly “plan again” based on new readings of

the positions of the obstacles. This may work well if the

obstacles move more slowly than the robot, but among fast

obstacles, the velocity of the obstacles needs to be specified.

The problem of the obstacles moving at high speeds is

generally referred to as “asteroid avoidance”, and

approaches typically extrapolate the observed velocities in

order to estimate the future positions of obstacles [10].

However, such approaches are insufficient for multi-

robot location, where the robot encounters other robots that

also make decisions based on their surroundings:

considering them as moving obstacles neglects the fact that

they react to the robot in the same way as the robot reacts

to them, and inherently causes adverse actions in the

motion of the robots [11].

 Automation, Control and Intelligent Systems 2013; 1(3): 75-84 77

Velocity Obstacles (VO) [1, 3, 19] have been a

successful velocity-based approach to avoid collisions with

moving obstacles; they provide a sufficient and necessary

condition for a robot to select velocity that avoids collisions

with an obstacle moving at a known velocity.

Besides the Velocity Obstacle approach, many other

methods have been proposed for collision-avoidance,

navigation, and planning among moving obstacles [12, 13,

18, 19]. There are also Recursive Velocity Obstacles [10]

and Common Velocity Obstacle methods [15, 18].

However, most of the existing work does not take into

account that the obstacles’ motion may be affected by the

presence of the robot. Such approaches are generally not

able to plan safe paths among obstacles moving at high

speeds [11].

There is also an extensive amount of literature on multi

agent navigation, in which each agent navigates

individually among the other agents, which are considered

as obstacles, e.g. [3, 4, 9 - 16, 18, 19]. Most of these

techniques have focused on multitude simulation. Also, in

these cases, the other agents are assumed to be either

passively moving obstacles or static obstacles. A number of

approaches follow the Velocity Obstacle concept to avoid

the collision between agents.

In multi-agent planning, the composite configuration

space of the agents is considered, and a path is centrally

planned in this space [17, 20]. These works focus on

different aspects of the problem (e.g. finding optimal

coordination) and are frequently not suited for on-line real-

time application.

The problem of collision avoidance becomes harder

when the obstacles are also intelligent decision-making

entities that try to avoid collisions as well. The reactive

nature of the other entities must be specifically taken into

account in order to guarantee that collisions are avoided.

However, the robot may not be able to communicate with

other entities and may not know their intents. It is the case

of the Reciprocal Velocity Obstacles (RVO) problem [10,

11], in which robots are partially given the responsibility of

avoiding the collisions. This formulation only guarantees

collision-avoidance under specific conditions, and does not

provide a sufficient condition for collision-avoidance in

general.

To overcome this limitation, there exists the Optimal

Reciprocal collision Avoidance (ORCA) [15], which

provides a sufficient condition for multiple robots to avoid

collisions with one another, and thus can guarantee the

collision-free operating. However, decoupled multi-agent

operation is not only computationally impractical; it also

requires central coordination among robots.

Many approaches that in fact guarantee collision

avoidance have so far been limited to robots with specific

and simple dynamics.

In this paper, we propose a new strategy, which is

supposed to detect the collision using the virtual prototypes

and to transfer the trajectory of virtual robots to physical

robots, in the real environment, assuming that each physical

robot can perfectly imitate the movement /behavior of its

virtual prototype.

3. Collision Detection

Collision detection frequently arises in various

applications including virtual prototyping, dynamic

simulation, interaction and motion planning. Collision

detection has been exhaustively researched for more than

four decades. Most of the commonly used algorithms are

based on spatial partitioning or Bounding Volume

Hierarchies (BVHs).

Typically, for a simulated environment consisting of

multiple moving virtual objects, collision problems consist

of two phases: the “broad phase”, where collision is

performed to reduce the number of pair intelligent tests,

and the “narrow phase”, where the pairs of objects in

proximity are checked for collision.

In this section, we present a study based on the collision

detection algorithm for computing all the contacts between

multiple moving virtual objects in a large virtual

environment. It uses the visibility reducing algorithm

described in [2]. The overall algorithm is general and

applicable to all environments.

Algorithms for narrow phase can be further subdivided

into efficient algorithms for convex objects and general

purpose algorithms based on spatial partitioning and BVHs,

for polygonal models [2]. However, these algorithms often

involve pre-computation and are mainly designed for rigid

models.

The performance of collision detection depends on the

input model complexity and the problem output, which is

the number of colliding or overlapping primitives. However,

existing algorithms may not achieve interactive

performance on large models consisting of thousands of

triangles, due to their high complexity and output of the

problem. Moreover, the memory requirements of these

algorithms are typically very high.

Based on our strategy, we compute a Potentially

Colliding Set (PCS) of virtual objects that are either

overlapping or are in close proximity [2].

If an object Oi does not belong to the PCS, it implies that

Oi does not collide with any object in the PCS. Based on

this property, we can reduce the number of virtual object

pairs that need to be checked for exact collision.

This is similar to the concept of computing the

potentially visible set (PVS) of primitives from a viewpoint

for spatial relation. We perform visibility computations

between the objects in the image space to check whether

they are potentially colliding or not.

Given a set S of virtual objects, we test the relative

visibility of an object O with respect to set S, using an

image space visibility query. The query checks whether any

part of O is spatially intersected by S, rasterizing all the

objects belonging to set S.

78 A. Fratu et al.: An Analysis of the Reciprocal Collision Avoidance of Cooperative Robots

The object O is considered fully-visible if all the

fragments generated by the rasterizing of O have a depth

value less than the corresponding pixels in the frame buffer.

We do not consider the self masking of a virtual object O in

checking its visibility status.

If an object does not intersect in either of the two passes,

then it does not belong to the PCS. Each pass requires the

object representation for an object to be rendered twice. We

can either render all the triangles used to represent an

object or a bounding box of the object. Initially, the PCS

consists of all the objects in the scene.

We perform these two passes to reduce objects from the

PCS. We will check if an object potentially intersects with a

set of objects or not.

It should be noted that our method based on reducing

algorithm [7] is quite different from algorithms that reduce

PCS using 2D overlap tests.

Many applications need to compute the exact

overlapping features (e.g. triangles) for collision response.

Instead of testing each object pair in the PCS for exact

overlap, we again use the visibility formulation to identify

the potentially intersecting virtual regions among the

objects in the PCS.

Specifically, we use a fast global reducing algorithm to

localize these regions of interest. We perform object level

reducing to compute the PCS of objects.

Initially, all the objects belong to the PCS. Firstly, we

perform the reduction along each coordinate axis by using

the axis aligned bounding boxes as the object’s

representation for collision detection. The reduction is

performed till the PCS does not change between successive

iterations.

We also use the object’s triangulated representation for

further reducing the PCS.

The size of the resulting set is expected to be small and

we use all-pair bounding box overlap tests to compute the

potentially intersecting pairs.

If the size of this set is large, then we use the sweep-and-

reduce technique [5] to reduce this set instead of

performing all-pair tests.

We decompose each object into sub-objects. We have

extended this approach at sub-object level and computed

the potentially intersecting areas.

4. Reciprocal Collision Avoidance

For two robot end-effectors A and B, the velocity obstacle,
τ

BA
VO (read: the velocity obstacle for A induced by B for

time window τ) is the set of all relative velocities of A with

respect to B, which will result in a collision between A and

B at some moment before time τ [9]. It is formally defined

as follows.

Let be an A robot end-effector with radius rA, positioned

at pA on a horizontal disc. For a configuration of two robot

end-effectors A and B, the horizontal disc of radius (rA + rB)

is centered at (pB − pA) in the Cartesian space.

Let S (p, r) denote an open horizontal disc of radius r

centered at vector position p and defined by (1).

},{),(rSrS ≤−∈= pssp (1)

Then the velocity obstacle is defined as:

)},(],,0[{ BAABBA
rrSvttvVO +−∈∈∃= ppττ

 (2)

Let vtA and vtB be the current operational velocities of the

robots’ end-effectors A and B, respectively. The definition

of the velocity obstacle implies that if (vA - vB) є τ
BA

VO , or

equivalently if (vB -vA) є τ
AB

VO , then A and B will collide

at some moment before time τ if they continue moving at

their current velocity.

On the other hand, if (vA-vB) ¢ τ
BA

VO , the two robot end-

effectors A and B are guaranteed to be collision-free for at

least τ time. Robot end-effector A will collide with robot

end-effector B within τ time if its velocity vA is inside
τ

BA
VO and it will be collision-free for at least τ time if its

velocity is outside the velocity obstacle.

For an articulated robot arm, the robot end-effectors

velocity vector is calculated as, tXv ɺ= where Xt is the

Cartesian position vector of the robot end-effector. The

vector Xt can be described as a function of robot joints

variables vector, q:

)f(q=tX (3)

Equation (3) can be obtained easily with the help of the

Denawit - Hartenberg operators.

The robot end-effectors velocity vector v can be obtained

as:

qqJ ɺɺ)(ttXv == (4)

where J is a Jacobean matrix, and qɺ is the robot joints

velocities vector.

Given a trajectory that each moving robot end-effector

will travel, we can determine the exact collision time.

Please refer to [18] for more details. If the path that each

robot end-effector travels is not known in advance, then we

can calculate a lower bound on the collision time. This

lower bound on the collision time is calculated adaptively

to speed up the performance of the dynamic collision

detection.

5. Collision Detection through

Animation of two Virtual Robots

Our proposed scheme for dynamic simulation or

animation, using the distance computation algorithm, is an

iterative process which continuously inserts and deletes the

 Automation, Control and Intelligent Systems 2013; 1(3): 75-84 79

object pairs from a stack according to their approximate

time of collision, as the objects move in a dynamic

environment.

Our simulation method purely exploits the spatial

arrangement of the two end-effectors without any other

information.

The end-effector pair which has a small separation is

likely to have an impact within the next few time instances,

and those virtual pairs which are far apart from each other

cannot possibly come to interfere with each other until a

certain moment.

For spatial tests to reduce the number of virtual pairs

judicious comparisons, we assume the environment is quite

free and the end-effectors move in such a way that the

geometric coherence can be preserved, i.e. the assumption

that the motion is essentially continuous in the time domain.

Planning scene formulation for cooperative tasks is

presented in the figures below.

In the cooperative task studies, the simulation is used to

find whether it is possible to avoid the collision between a

particular part of the robot arm and diverse objects in the

work space and so to find one possible free path.

In this section we will describe how to render a planning

scenario in the form of constraints for the constraint-based

planning framework.

Our visibility using the PCS computation algorithm is

based on a hardware visibility query which determines if a

primitive is fully-visible or not.

By assuming that the geometry representing the robots

and obstacles is given, the motion is prescribed for

obstacles over time.

Our system then defines constraints that will restrict the

motion of the robots to meet the design specifications, and

also guides the robots to complete the planning tasks so that

the collision will be avoided.

Our virtual system was implemented on a programming

platform, using the Delphi object-oriented programming

language.

In this section we have tested our system of two robots

for collision detection in the following scenes for the

virtual prototyping applications.

5.1. Scene 1: Individual Task for each Robot

The individual task for each robot is studied in scene 1.

Each of the two robot arms is composed of rigid

components that are held together by constraints. For all of

the components of the robot arm, the planner must compute

paths to ensure the joint constraints do not collide with the

obstacles as the conveyors and lead the end-effectors along

the prescribed path.

In this scene (an example seen in Fig. 1), two articulated

robot arms, with six degrees of freedom, are used to

transfer (manipulate) cubic objects from one conveyor belt

to another conveyor belt.

Each robot arm follows a path over the conveyor body

while avoiding obstacles.

Figure1. Scene for individual tasks

5.2. Scene 2: Cooperative Mission

The cooperative mission for two robots is analyzed

below. In our example, a second scene shown in Fig. 2, the

end-effectors of the left robot and of the right robot

respectively, avoid each other in a firm behavior during a

cooperative task. In this scene, two articulated robot arms,

with 6 degrees of freedom, are used to manipulate together

a rigid object for an assembly operation. The robot arms

avoid the moving belt to get in touch with a plate object

passing it on the assembly conveyer belt. The goal to

manipulate together the same object in a cooperative

mission requires both robots to maneuver around each other

without colliding.

Figure 2.Scene for cooperative mission

5.3. Scene 3: Assembly Line Planning

In this example, shown in Fig. 3, two robot arms must

assemble a plate object with two cubical objects, on a

conveyer belt. Both robots must be moved simultaneously

around each other to position the plate object on top of the

two cubical objects and to avoid collision. The assembly

line contains a support structure that is moving over the

conveyer belt in the same direction as the assembled parts.

The moving structure may become an obstruction that

causes the robots to reactively modify their path, to avoid

collision. In spite of the rapid progress in the performance

80 A. Fratu et al.: An Analysis of the Reciprocal Collision Avoidance of Cooperative Robots

of the graphics processing units, it may not be possible to

visualize or perform collision detection between massive

models at interactive rates on graphics hardware.

Figure 3. Scene for assembly line planning

Since the usual models of the cooperative robots are

rather complex and may have thousands of components, the

algorithm as described in [10, 11], becomes essential to

generate a realism of motion.

The visual results indicate that the approximated implicit

integration, mixed with the post-step inverse dynamics

process, achieves simulation of rigid objects very well.

6. Possible Strategy of the Programming

Pathway of the Physical Robots

We propose an original idea that allows us to transfer the

joint trajectory of each virtual robot to the corresponding

joint of the real (physical) robot. With other worlds we

prepare the free-trajectories for the pair of the virtual

cooperative robots; these trajectories can be transferred to

their corresponding pair of the physical cooperative robots.

In the real world, the programming pathway of the

physical robots can be realized using the pathway of the

virtual robot prototypes [9]. Therefore, the virtual robot

behavior must be specifically taken into account in order to

guarantee that collisions are avoided between

corresponding physical robots. Each real robot may be able

to communicate with her virtual corresponding entity and

may imitate their intents. We call this problem reciprocal

collision avoidance using the virtual robots prototypes, and

it is the focus of this paper.

The strategy that we realized in this paper, for the virtual

robots, is formally defined as follows. Let there be a set of

two virtual partners-robots sharing a virtual environment.

Each robot has a current position and a current velocity.

These parameters are part of the robot’s external state, i.e.

we assume that they can be estimate in the virtual

environment.

Furthermore, each virtual robot has a maximum speed

and a preferred velocity, which is the velocity the robot

would assume had no other robot/object been in its way.

We consider these parameters part of the internal state of

the robot, and can therefore not be observed by the other

robot.

The task is for each virtual robot to independently (and

simultaneously) select a new velocity for itself such that

both virtual robots are guaranteed to be collision-free for at

least a fixed amount of time, when they would continue to

move at their new velocity.

As a secondary objective, the virtual robots should select

their new velocity as close as possible to their preferred

velocity. The virtual robots are not allowed to communicate

with each other, and can only use observations of the

partner-robot’s current position and velocity.

In our collaborative work systems, the virtual robot

prototypes are used mainly as an intermediate result for

calculating the “nearest neighbors” and the potentially

intersecting areas in a possible collision. We compute a

PCS of virtual objects that are either partly covered or in

close proximity. If an object does not belong to the PCS, it

implies that this object does not collide with any object. We

initially compute the PCS of virtual objects based on the

above algorithm (section 3 and 4). As an alternative of

testing each object pair in the PCS for partial cover, we use

the visibility formulation to identify the potentially

intersecting virtual areas among the objects.

Based on this property, we developed a programming

platform for a pair real (physical) robots based on a

cooperative virtual robot’s pair, which needs to be checked

for exact collision detection. This platform needs to

compute the exact overlapping area of the virtual

cooperative robots, as collision response.

7. Experimental Configuration for

Programming by Imitation of an

Anthropomorphic Robot

A physical anthropomorphic robot is controlled to follow

the arbitrary path reference with a predefined velocity

profile over time. The physical robot follows an imaginary

robot path which is ideally generated by the virtual robot.

The physical robot must follow the virtual robot’s trajectory.

On the basis of robot kinematics equations, a robot

control system is presented in Fig. 4.

Fig. 4 also displays (left image) the user interface for a

virtual anthropomorphic robot arm, which has been created

by the motion simulation system.

The proposed architecture provides libraries and tools

focused on 3D simulation of the dynamics systems and on a

control and planning interface that provides primitives for

motion planning by imitation. This architecture is

composed of several modules and has separate nodes

launched as executables which communicate via message

passing. Via the numerical interface NI, one transfers the

 Automation, Control and Intelligent Systems 2013; 1(3): 75-84 81

joint angles data from a motion capture system to the

kinematic model for an anthropomorphic robot.

To generate the desired motion sequence for the real

robot, we capture the motions from a virtual robot model

and map these to the joint settings of the physical robot.

Initially, a set of virtual postures is created to the virtual

robot arm, VRA and the pictures’ positions are recorded for

each posture, during motion [9].

These recorded pictures’ positions provide a set of

Cartesian points in the 3D capture volume for each posture.

To obtain the final robot posture, the virtual pictures’

positions are assigned as positional constraints on the

physical robot. To derive the joint angles, standard inverse

kinematics (IK) routines are used.

The IK routine then directly generates the desired joint

angles on the robot for each posture.

We assume the use the virtual robot prototypes and the

motion capture systems to obtain the reference motion data,

which typically consist of a set of trajectories in the

Cartesian space.

The data is obtained using a motion capture channel

taking into account the joint motion range. The symbolic

spatial relations specifying the virtual environment can be

used for the automatic planning of the possible virtual path

as reference for the real robotic arm, RRA, which may

guide the motion process during execution.

Figure 4. Programming platform with the corresponding virtual robot and the real robot face-to-face

The easiest way to generate the spatial relations explicitly

is the interactively programming of the behavior of the vir-

tual prototype in its virtual environment in order to specify

suitable position coordinates θv1, θv2, θv3. These position

coordinates are used by the physical robot as reference po-

sition coordinates.

This kind of specification provides an easy to use

interactive graphical tool to define any kind of robot path;

the user has to deal only with a limited and manageable

amount of spatial information in a very comfortable manner.

An automatic robot programming system has to

recognize the correct robot task type and should map it to a

sequence of robot operations [6]. The desired pathways are

automatically transferred and parameterized in the NI,

using the path planner. The physical robot receives the

position coordinates of the virtual robot through NI.

Fig. 4 shows a simple path-following system which

keeps a constant communication between the virtual robot’s

path and the control system, CS. The control system is

designed to force the real robot to follow the reference path.

The main program simply defines “start” and “goal”

positions. After moving the virtual robot to the ‘start’

position in the joint “interpolation” mode, the real robot is

moved in the “following” mode, while a “monitor

function” has been activated.

The “monitor function” is reading the reference path

values, which are used in closed loops to compute the

physical joint torques.

In similar ways, any functional dependencies of some

path properties (speed, distance etc.) can be specified in a

textual programming manner.

The trajectories are sent to visualization, so that users

can see the results of the animation.

The robot’s control system is connected via the

Transmission Control Protocol (TCP) to a PC, equipped

with the interface card; the PC is running the simulation

and control process. The robot control system receives and

executes each 16 ms, an elementary move operation.

The communication protocol between the virtual robot

and the physical robot uses the CAN bus. This application

can be coded with just a few lines of the DELPHI code,

presented below.

82 A. Fratu et al.: An Analysis of the Reciprocal Collision Avoidance of Cooperative Robots

unit ControlCAN;

interface

uses

 WinTypes;

const

 DLL_NAME = 'ControlCAN.dll';

type

//1.ZLGCAN

VCI_BOARD_INFO = Record

 hw_Version : WORD;

 fw_Version : WORD;

 dr_Version : WORD;

 in_Version : WORD;

 irq_Num : WORD;

 can_Num : BYTE;

 str_Serial_Num : array[0..19] of CHAR;

 str_hw_Type : array[0..39] of CHAR;

 Reserved : array[0..3] of WORD;

END;

PVCI_BOARD_INFO=^VCI_BOARD_INFO;

//2.

VCI_CAN_OBJ = Record

 ID : UINT;

 TimeStamp : UINT;

 TimeFlag : BYTE;

 SendType : BYTE;

 RemoteFlag : BYTE;

 ExternFlag : BYTE;

 DataLen : BYTE;

 Data : array[0..7] of BYTE;

 Reserved : array[0..2] of BYTE;

END;

PVCI_CAN_OBJ = ^VCI_CAN_OBJ;

//3.

VCI_CAN_STATUS = Record

 ErrInterrupt : UCHAR;

 regMode : UCHAR;

 regStatus : UCHAR;

 regALCapture : UCHAR;

 regECCapture : UCHAR;

 regEWLimit : UCHAR;

 regRECounter : UCHAR;

 regTECounter : UCHAR;

 Reserved : DWORD;

END;

PVCI_CAN_STATUS = ^VCI_CAN_STATUS;

//4.

VCI_ERR_INFO = Record

 ErrCode : UINT;

 Passive_ErrData : array[0..2] of BYTE;

 ArLost_ErrData : BYTE;

END;

PVCI_ERR_INFO = ^VCI_ERR_INFO;

//5.

VCI_INIT_CONFIG = Record

 AccCode : DWORD;

 AccMask : DWORD;

 Reserved : DWORD;

 Filter : UCHAR;

 Timing0 : UCHAR;

 Timing1 : UCHAR;

 Mode : UCHAR;

END;

PVCI_INIT_CONFIG = ^VCI_INIT_CONFIG;

//6.

function VCI_OpenDevice (DeviceType : DWORD;

 DeviceInd : DWORD;

 Reserved : DWORD) : DWORD;

 stdcall;

 external DLL_NAME;

function VCI_CloseDevice (DeviceType : DWORD;

 DeviceInd : DWORD) : DWORD;

 stdcall;

 external DLL_NAME;

function VCI_InitCAN (DeviceType : DWORD;

The applicable robot tasks are designed and the desired

pathways are programmed off-line and stored in the buffers

B1, B2, B3.

The following errors are delivered by the comparative

modules CM1, CM2, CM3. The controllers interpret fol-

lowing errors and generate corresponding variables, which

are transmitted to the actuators.

Process changes from disturbances result in new sensor

signals, identifying the state of the process, to be transmit-

ted again to the controller. A control loop, including sensors,

control algorithms and actuators, is arranged for each joint

in such a way as to try to regulate the position variables at

reference positions value to obtain the desired closed loop

performances.

While motion execution is in progress, the real robot

joints RRJ1, RRJ2, RRJ3 are activated into the real

environment. Each time, a skill primitive is executed by the

CS; it changes the robot joints state. As no time limit for

the motion is specified, the real robot imitates the behavior

of the virtual robot.

In our laboratory we are currently developing Cartesian

control architecture able to interpret the physical robot

commands in the above given form. The basis of our

implementation is a flexible and modular system for robot

programming by imitation.

 Automation, Control and Intelligent Systems 2013; 1(3): 75-84 83

In our experimental configuration, in order to prove the

correctness of the robot programming by imitation, we

have chosen an anthropomorphic robot arm, with 3 DOF

equipped with electrical actuators, mounted on the real

robot’s joints.

The designed control algorithm proved stable and robust

to the errors when following the reference path, to input

and output noises and to other disturbances.

8. Conclusion and Future Work

This paper gives an application of the collision detection

algorithm described in [2, 10, 11], for virtual manipulation

planning with virtual robots. We have applied this

algorithm to perform collision detection in a virtual

environment.

This algorithm has also been utilized for dynamic

simulation and its practicality has been demonstrated for

different applications.

The distance computation method, described in [11] has

been used in the dynamics simulator written in the Delphi

language.

Our vision of this dynamic simulator is the ability to

simulate small mechanical parts of a robot arm. It reduces

the frequency of the checks significantly, so as to help

speed up the calculations.

We revealed the potential of the Reciprocal Velocity

Obstacle approach by applying it to scenarios in which two

virtual robots accomplish their tasks, independently or in

cooperation, in a complex environment.

We would like to extend the current method, allowing it

to handle various types of time-varying data sets used in

animation process.

Furthermore, we would like to apply our collision

detection framework to several applications including the

motion planning of physical robots while passing near each

other.

In our formulation, the real robots must have exactly the

same dynamics model as virtual robots in order to be able

to imitate the behavior of the latter.

Virtual robots could be handled using an abstraction of

the dynamics model of their real homologue. Real robots

will imitate the virtual robot's behavior and will move

according to it.

For virtual robots, we have implemented this algorithm

in 2D and 3D. In 3D, we used an immersive environment,

to be able to virtually manipulate the animated objects. We

ordered the robots to grip the object and move it around a

scene containing different obstacles situated on a ground

plane.

It is important to note here that this virtual model is not

dynamic, but rather a succession of static postures, which

greatly limits its applications. We experimented with our

approach on several complex simulation scenarios,

containing virtual interoperations. As each robot is

independent, we can fully parallelize the simulation of the

actions for each robot to realize the animation.

Actually, the method and installation described in [9] are

currently under testing to be eventually integrated into a

real collision environment, developed at Transilvania

University of Brasov.

In addition to discussing the original contributions, this

paper presents a set of directions to be considered for future

work.

The authors intend to extend experiments to investigate

these ideas and examine the possibility of how to

implement them.

The authors expect fully automated robot programming

by imitation based on this method, using robust enough

system to be applied in industrial applications, will not be-

come true before the end of this decade.

Acknowledgements

The authors wish to thank the entire team at LAMIH

Laboratory of University of Valenciennes-France, for

cooperation and engagement in the research activity in the

field of robotics.

This cooperation gave us the opportunities to work in a

multidisciplinary team and provided us important

experiences to extend our research in future projects.

References

[1] C. Fulgenzi, A. Spalanzani, C. Laugier, “Dynamic obstacle
avoidance in uncertain environment combining PVOs and
occupancy grid”. In Proc. IEEE Int. Conf. on Robotics and
Automation, pp.1610–1616, 2007.

[2] N. K. Govindaraju, S. Redon, M. C. Lin and D. Manocha,
“CULLIDE: Interactive Collision Detection Between
Complex Models in Large Environments using Graphics
Hardware”, M. Doggett, W. Heidrich, W. Mark, A. Schilling
(Editors), Graphics Hardware, 2003.

[3] D. Hennes, D. Claes, W. Meeussen, K. Tuyls, “Multi-robot
collision avoidance with localization uncertainty”, In:
Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, Conitzer,
Winikoff, Padgham, and van der Hoek (eds.), June, 4– 8,
2012, Valencia, Spain.

[4] Y. Abe, M.Yoshiki, “Collision avoidance method for
multiple autonomous mobile agents by implicit cooperation”.
IEEE/ RSJ, Int. Conf. Intelligent Robots and Systems,
pp.1207-1212, 2001.

[5] K. O. Arras, J. Persson, N. Tomatis, R. Siegwart, “ Real-
Time Obstacle Avoidance for Polygonal Robots With a
Reduced Dynamic Window” in Proc. IEEE Int. Conf. on
Robotics and Automation, Washington DC, May 2002,
pp.3050-3055.

[6] N. Galoppo, “Animation, Simulation, and Control of Soft
Characters using Layered Representations and Simplified
Physics-based Methods” Dissertation submitted to the

84 A. Fratu et al.: An Analysis of the Reciprocal Collision Avoidance of Cooperative Robots

faculty of the University of North Carolina Chapel Hill,
2008.

[7] S.E. Yoon, “Interactive Visualization and Collision
Detection using Dynamic Simplification and Cache-
Coherent Layouts”. Dissertation submitted to the faculty of
the University of North Carolina, Chapel Hill, 2006.

[8] A. Fratu, L. Vermeiren, A., Dequidt, “Using the Redundant
Inverse Kinematics System for Collision Avoidance. The 3rd
International Symposium on Electrical and Electronics
Engineering - ISEEE- 2010, 16-18 sept. Galati, Romania,
Proceedings ISBN 978-1- 4244-8407-2, pp. 88-93.

[9] A. Fratu, “Method and installation for joints trajectory
planning of a physical robot arm” (proposal - patent)
unpublished.

[10] J. van den Berg, S. Guy, M. Lin, D. Manocha, “ Reciprocal
n-body collision avoidance”. In: Proc. Int. Symposium on
Robotics Research, 2009

[11] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, C.
Pradalier, R. Siegwart, and G. Hirzinger, ”Reciprocal n-body
collision avoidance”, Robotics Research, The 14th
International Symposium ISRR, Springer Tracts in
Advanced Robotics, vol. 70, Springer-Verlag, May 2011, pp.
3-19.

[12] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha,
“Independent navigation of multiple mobile robots with
hybrid reciprocal velocity obstacles”, IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, St. Louis, Mo., 2009.

[13] J. Snape, S. J. Guy, J. van den Berg, S. Curtis, S. Patil, M.
Lin, and D. Manocha, “Independent navigation of multiple
robots and virtual agents”. In Proc. of the 9th Int. Conf. on
Autonomous Agents and Multi agents Systems (AAMAS
2010), Toronto, Canada, May 2010.

[14] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D.
Manocha, and P. Dubey, “ Clear Path: Highly Parallel
Collision Avoidance for Multi-Agent Simulation” In: Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA), Aug. 2009.

[15] J. Snape, J.van den Berg, S.J. Guy, D. Manocha, “S-ORCA:
Guaranteeing Smooth and Collision-Free Multi-Robot
Navigation Under Differential-Drive Constraints”. In: Proc.
IEEE Int. Conf. Robotics and Automation, 2010.

[16] D. M. Stipanovic, P. F. Hokayem, M. W. Spong, D. D. Siljak,
“Cooperative Avoidance Control for Multiagent Systems”.
In: ASME Journal of Dynamic Systems Measurement and
Control, Vol.129, pp. 699–707, 2007.

[17] R. Diankov and J. Kuffner, “Openrave: A planning
architecture for autonomous robotics”. Technical report,
CMU-RI-TR-08-34, The Robotics Institute, Carnegie
Mellon University, 2008.

[18] M. Turpin, N. Michael, V. Kumar,” Trajectory planning and
assignment in multi robot systems”. Proc. Workshop on
Algorithmic Foundations of Robotics, 2012.

[19] J. van den Berg, D. Wilkie, S. Guy, M. Niethammer, D.
Manocha, “LQG-Obstacles: Feedback control with collision
avoidance for mobile robots with motion and sensing un-
certainty.” IEEE Int. Conf. on Robotics and Automation,
River Centre, Saint Paul, Minnesota, USA, May 14-18,
2012, pp. 346- 353.

[20] Y. Li and K. Gupta, “Motion planning of multiple agents in
virtual environments on parallel architectures,” in Proc.
IEEE Int. Conf. on Robotics and Automation, 2007, pp.
1009–1014.

