
 

Automation, Control and Intelligent Systems 
2013; 1(5): 113-120 

Published online November 10, 2013 (http://www.sciencepublishinggroup.com/j/acis) 

doi: 10.11648/j.acis.20130105.13  

 

A Comparative Evolutionary models for solving Sudoku  

A. A. Ojugo.
1
, D. Oyemade.

1
, R. E. Yoro.

2
, A. O. Eboka.

3
, M. O. Yerokun

3
, E. Ugboh

3
 

1Department of Mathematics/Computer Sci, Federal University of Petroleum Resources Effurun, Delta State 
2Department of Computer Science, Delta State Polytechnic Ogwashi-Uku, Delta State, Nigeria 
3Department of Computer Sci. Education, Federal College of Education (Technical), Asaba, Delta State 

Email address: 
ojugo_arnold@yahoo.com(A. A. Ojugo), ojugoarnold@hotmail.com(A. A. Ojugo), davidoyemade@yahoo.com(D. Oyemade), 

rumerisky@yahoo.com(R. E. Yoro), an_drey2k@yahoo.com(A. O. Eboka), agapenexus@hotmail.co.uk(M. O. Yerokun), 

ugbohh@gmail.com(E. Ugboh) 

To cite this article: 
A. A. Ojugo., D. Oyemade., R. E. Yoro., A. O. Eboka., M. O. Yerokun, E. Ugboh. A Comparative Evolutionary Models for Solving 

Sudoku. Automation, Control and Intelligent Systems. Vol. 1, No. 5, 2013, pp. 113-120. doi: 10.11648/j.acis.20130105.13 

 

Abstract: Evolutionary algorithms have become robust tool in data processing and modeling of dynamic, complex and 

non-linear processes due to their flexible mathematical structure to yield optimal results even with imprecise, ambiguity and 

noise at its input. The study investigates evolutionary algorithms for solving Sudoku task. Various hybrids are presented here 

as veritable algorithm for computing dynamic and discrete states in multipoint search in CSPs optimization with application 

areas to include image and video analysis, communication and network design/reconstruction, control, OS resource 

allocation and scheduling, multiprocessor load balancing, parallel processing, medicine, finance, security and military, fault 

diagnosis/recovery, cloud and clustering computing to mention a few. Solution space representation and fitness functions (as 

common to all algorithms) were discussed. For support and confidence model adopted ϖ1=0.2 and ϖ2=0.8 respectively 

yields better convergence rates – as other suggested value combinations led to either a slower or non-convergence. CGA 

found an optimal solution in 32 seconds after 188 iterations in 25runs; while GSAGA found its optimal solution in 18seconds 

after 402 iterations with a fitness progression achieved in 25runs and consequently, GASA found an optimal solution 

2.112seconds after 391 iterations with fitness progression after 25runs respectively. 

Keywords: Swarms, Agents, Elitist, Evolutionary Algorithms, Constraints, Fitness Function 

 

1. Introduction 

Soft Computing (SC) aims to harness the potentials of 

other disciplines via Artificial Intelligence. Thus, create a 

synergy dedicated to solve problems by exploiting numeric 

data and human knowledge simultaneously as mathematical 

models and symbolic reasoning, yielding a technique that is 

tolerant to imprecision, uncertainty, partial truth and noise 

in its data via optimization. Often termed evolutionary 

programming, SC performs quantitative data processing to 

ensure qualitative knowledge statements and experience 

using components such as genetic algorithm (GA), particle 

swarm optimization (PSO), artificial neural network (ANN) 

etc to mention a few (Abarghouei, Ghanizadeh and 

Shamsuddin, 2009). 

SC has proven efficient in complex optimization. Ojugo 

(2012) notes 3-feats in their attempt to explore dynamic 

processes: (a) Continuous adaptation, (b) Flexibility and (c) 

Robustness. All evolutionary algorithms are derived from 

translating into mathematical models, principles of 

biological processing in the fastest time to yield implicit 

and predictive evolution of a model that stems from 

experience in its ability to recognize data feats and 

behaviours. And in turn, yield an optimal fitness of high 

quality and void of overfitting that will constantly affect any 

solution’s quality (Coello, Pulido and Lechuga, 2002). 

1.1. Sudoku Overview 

Sudoku is a classical CSP task with variables whose 

permutation yields a unique solution to satisfy constraints. 

It is a logic-based combinatorial puzzle of 81-cells in 9X9 

grid, each cell contains an integer 1 to 9, and further split 

into nine 3X3 sub-grids with these constraints in mind: 

a. Each row and column of cell is only allowed to 

contain integers one through nine exactly once 

b. Each 3X3 sub-grid is also allowed to contain 

integers one through nine exactly once. 



114  A. A. Ojugo. et al.:  A Comparative Evolutionary Models for Solving Sudoku 

 

A number of cells are predefined by the puzzle setter, so 

that each puzzle has a unique solution. Fig. 1 is a typical 

puzzle, whose solution is fig 2. Various algorithms have 

been used to solve Soduko (Santos-Garcia and Palomino, 

2007; History of Sudoku, 2013). Some are easily solved via 

simple logic by mimicking how humans will solve it. 

Harder puzzles are solved via backtracking algorithms, 

whose demerit is that its efficiency depends on number of 

guesses required to solve puzzle (Mantere and Koljonen, 

2007). Harder puzzles require longer time to solve, and its 

solution is via optimization. 

 

Fig. 1. Typical Soduko Puzzle 

 

Fig 2. Solution of Soduko Puzzle 

Studies exist that have employed stochastic optimization 

techniques. A major motivation of this study is that difficult 

puzzles can be solved efficiently as simple puzzles – due to 

the fact that the solution space is searched stochastically 

until a suitable solution is found. Thus, puzzle does not have 

to be logically solvable or easy for a solution to be reached 

efficiently (Lewis, 2007; Moraglio and Togelius, 2007). 

Stochastic methods can be used to find global optima for 

multipoint dependent tasks for which many local optima 

exists that requires systemic search, enabling a space 

(continuous or encoded discrete) whose solution via 

hill-climbing method often gets stuck at local minima, a 

function of their speed in time of finding the solution 

(global optima). Due to the nature of constraints in Soduko, 

it is likely to find a solution that satisfies some constraints 

(solution found is, local optima) but not all of them. Its 

stochastic nature allows solution space to be searched still 

(though local optimum is found) until global optima is 

found (Mantere and Koljonen, 2007). 

This study explores the implementation of various 

stochastic evolutionary optimization methods. Each is 

implemented and tested on the puzzle in figure 1. 

1.2. Solution Space Representation 

Fig. 1 consists of 49-empty cells, corresponding to its 

solution space. Perez and Marwala (2011) notes this 

solution space can be represented as: 

a. First method treats each one of 49 empty cells as 

separate variable, particle or agent so that each 

particle or agent requires its own swarm or 

population. Thus, the solution space consists of 49 

separate population groups. The problem with this 

approach is that each agent can only be operated 

upon separately, which prevents the possibility of 

interaction between these individuals or particles. 

Thus, it is more computationally challenging and 

demanding. 

b. Second, we treat as combination – 49 integers 

ranging between 1 and 9 (corresponding to the 

empty cells in fig. 1). As one individual or particle – 

so that the solution space instead of consisting of 

49-different solution groups as in the first case, has 

only one population with each particle or individual 

having 49-dimensions or genes. This approach 

allows for greater interaction amongst the particles 

or individuals – since algorithm operations are 

carried out between all possible solutions. This 

approach is less more computationally demanding. 

c. Third, represent an individual as a puzzle with all its 

cells filled while ensuring that one of the constraints 

mentioned above is always met. Thus, in initializing 

a population state, it is ensured that each 3X3 

sub-grid in each of the puzzles contains the numbers 

1-9 exactly once. Also, any operation carried out on 

an individual must ensure that this constraint is not 

violated. This, is less demanding (when compared 

to the first method) as individual is still represented 

as a complete puzzle (as opposed to one cell). 

1.3. Fitness Function 

A number of possibilities exist with regards to 

implementing a good fitness function. From arithmetic view, 

sum of each column-row-and-grid must equal 45 and its 

product, equals 362880. A possible fitness function to 



 Automation, Control and Intelligent Systems 2013; 1(5): 113-120  115 

 

implement such must ensure that all constraints are met. Its 

demerit is non-repetition of same integer in same row, 

column or grid constraints is not guaranteed. A row with 

nine entries of 5 equals 45 – causing the algorithm to 

converge to local minimum and not meet all the constraints. 

Thus, different method is needed (Poli et al, 2006b). The 

fitness function implemented here involves determining 

whether an integer is repeated or not present in row, column 

or sub-grid. A fitness value is assigned to a possible solution, 

based on number of repeated or non-present integers. The 

more the repeated or non-present integers there are in a 

solution’s rows and columns, the higher the fitness value 

assigned to that solution; while if third approach to solution 

space representation is considered, then only repetitions in 

rows and columns are considered; While if second approach 

is used, then repetitions in the sub-grid contributes to fitness 

value (Poli et al, 2006b). 

1.4. Statement of Problem 

Some evolutionary models use backtracking to offer 

systemic search (in discrete/continuous) spaces via 

hill-climbing method that often get them stuck at local 

minima (due to their speed). Thus, hybrids are designed to 

cub such defects. 

1.5. Objective of Study 

The study explores Soduko solved via optimization to 

find a solution space using the third approach in this study 

to avoid clumsy result presentation via: (a) Cultural Genetic 

Algorithm (CGA), (b) Genetic Algorithm Gravitational 

Search Algorithm, and (c) Genetic Algorithm Simulated 

Annealing respectively. 

1.6. Significance of study 

Application of this study will yield computational 

intelligence – veritable tool for dynamic multipoint search 

in CSPs, applied in areas such as image and video analysis, 

communication, control, antenna designs, VLSI, data route 

and compression, simulation, network design and 

reconstruction, multiprocessor load balancing, OS task 

scheduling and resource allocation, parallel processing, 

power generation, medical and pharmaceutical, finance and 

economics, security and military, engine design and 

automation, system fault diagnosis and recovery, 

forecasting and predictions, cloud and clustering computing 

etc. 

1.7. Limitations of Study 

Hybrid, though difficult to implement – are used to 

provide a means for better selection of search space, 

encoded via structured learning (to address the general 

problem of determining existing statistical dependencies 

amongst data variables) and yield better generation with 

crossover, mutation and temperature schedules etc. 

2. Cultural Genetic Algorithm (CGA) 

CGA is an evolutionary technique with individuals 

influenced both genetically and culturally (Reynolds, 1994), 

whose background is built on genetic algorithm (GA) as 

thus: 

2.1. Genetic Algorithm 

GA is a population optimization inspired by Darwinian 

evolution and genetics (survival of fittest and natural 

selection). It consists of a population (set of numeric data) 

chosen for natural selection that consists of potential 

solutions to a specific task with each potential solutions 

referred to as an individual (combination of genes). An 

optimal combination of genes can lie dormant in the 

population (from a combination of individuals). An 

individual with a genetic combination close to the optimal 

is described as being fit (Hassan and Crosswley, 2004). 

A new pool is created by mating two individuals from the 

current pool. The fitness function is then applied to 

determine how close an individual is to the optimal solution. 

The selection function ensures that the genetic data from the 

fittest individuals is passed down to the next generation or 

pool – so that a fitter pool emerges. Eventually, the new 

population (as newer pools are created) will converge on the 

optimal solution or gets close to it as possible. GA 

operations are carried out in four steps namely: 

a. Initialize – encodes chromosomes into a format 

suitable for natural selection and many encoding 

modalities exists (each with its own merits and 

demerits). An individual in population can be 

represented in binary (which requires more bits to 

do so). But, if decimal is used – it allows greater 

diversity in chromosome representation and greater 

variance of subsequent generations (Perez and 

Marwala, 2011). An issue with binary encoding is 

that populations are not naturally represented in 

binary due to length as it is computationally more 

expensive (Ojugo, Eboka, Okonta, Yoro and 

Aghware, 2012). 

Another allows individual to be encoded as floating 

point numbers or its combination and is far more 

efficient than binary encoding. Values encoded are 

similar with character and commands to represent 

an individual. Encoding scheme encodes data – so 

that each solution set consist candidates encoded as 

fixed length vector in one or more pools of different 

types. The fitness function sees a solution set from 

various candidates evaluated, to determine its 

goodness of fit. If a solution is reached, function is 

good; else, is bad and not selected for crossover. 

The fitness function is the only part with knowledge 

of the task at hand and the more solutions are found, 

the higher its fitness value (Heppner and Grenander, 

1990). Ojugo et al (2012) notes the support and 

confidence fitness model is as thus: 



116  A. A. Ojugo. et al.:  A Comparative Evolutionary Models for Solving Sudoku 

 

If A then B, 

Support = |A and B| / N 

Confidence = |A and B| / |A| 

Fitness = w1 * support + w2 * confidence 
b. Selection – First, a fitness function is used to 

determine how close an individual is to an optimal 

solution. After which, individuals are selected for 

mating. Two selection methods are: (a) Roulette 

method first sums the fitness of all individuals. 

Then, selects random number between 0 and the 

summed result. The fitness’s are summed again 

until the random number is reached or just exceeded, 

from which last individual to be summed is selected, 

and (b) tournament selects a random number of the 

individuals in pool and the fittest individual is 

selected. The larger the number of individuals 

selected, the better the chances of selecting a fittest 

individual. It continues until one is chosen, from 

last two or three solutions remaining, to become 

selected parents to create the new offspring. 

Selection ensures that the fittest individuals are 

selected and more likely chosen for mating but also 

allows for less fit individuals from the pool and the 

fittest to be selected. A selection function which 

only mates the fittest is termed elitist and often leads 

to the algorithm converging at a local optima. Here, 

the tournament algorithm is adopted (it is easier and 

more efficient to code) as it works on parallel 

architectures, allowing selection pressure to be 

easily adjusted (Ojugo et al, 2012) as thus: 

Algorithm: Tournament Selection {} 

1. Input: Population of chromosome 

2. Output: Selected Chromosome for crossover 

3. Randomly select 3-chromosomes from pool 

4. Pick best 2-solution based on fitness value 

5. Return the selected two solution 

6. Apply Crossover | Select best solution as parent 

c. Crossover – involves the reproductive process in 

which two individuals exchange their genetic 

materials to yield a new, fitter individual while 

ensuring that genes of fit individuals are mixed in an 

attempt to create a fitter new generation. There are 

various types of crossover depending on encoding 

type, two of which are stated as: (a) simple 

crossover on binary encoded pool, involves 

choosing multi- or particular-point and all genes are 

from one parent, and (b) arithmetic crossover in 

which the new pool is created by adding 

percentages of one individual to another (Kilic and 

Kaya, 2001; Ojugo et al, 2012). 

d. Mutation – A child’s chromosome, gene sequence is 

slightly altered by either (changing its genes or its 

sequence) – to ensure the pool converge to a global 

minimum (instead of local optimum). Algorithm 

stops once an optima is found. Though 

computationally expensive, GA can also stop when 

a number of new pools are created or once no better 

solution is found. A gene may or may not change 

depending on mutation rate. Mutation improves 

diversity needed in reproduction (Ojugo et al, 

2012). 

Algorithm for Mutation 

1. Input: A chromosome rule 

2. Output: Mutated solution, a fns of mutation rate 

3. Set mutation threshold (between 0 and 1) 

4. For each network attribute in chromosome 

5. Generate a random number between 0 and 1 

6. If random number > mutation threshold then 

7. Generate Random value for N-Queen 

8. Set solution attribute value with 

9. Generated attribute value 

10. End if 

11. End For Each 

2.2. Cultural GA (CGA) 

Cultural GA is one of the many variants of GA with a 

belief space categorized as: (a) Normative (where there is a 

particular range of values to which an individual is bound), 

(b) Domain (data about the domain of the task is available), 

(c) Temporal (data about events in the space is available) 

and (d) Spatial (topographical data of space is available). 

In addition to a belief space, an influence function is 

needed for CGA (Reynolds, 1994) to form interface 

between the pool and belief space, to help alter individuals 

in the pool to conform to its belief space. CGA is chosen, as 

the model must yield individuals that cannot violate its 

belief space and reduces number of possible individuals GA 

needs to generate until an optimum is found. Thus, it is best 

for Sudoku than other variants (Mantere and Koljonen, 

2007). Two CGA methods used in Sudoku: 

a. First – implements the second solution space in 

section 1.2 (each individual consist 49- genes, each 

gene corresponding to a non-fixed cell in puzzle). 

Population of 55-individuals is randomly initialized 

and each contain genes to conform to belief space 

defined as: (1) Normative (individuals contain 

genes ranging from 1-to-9), (2) Domain (individual 

contain genes, as integers) and (3) Spatial 

(individual contains genes that do not result in 

repetition of a fixed cell value within same row, 

column and grid as defined in fig 1). Third belief 

has topographic knowledge of the space (i.e. fixed 

cell values). An influence function ensures a belief 

space is adhered to, and only random numbers 

between 1 and 9 are used to initialize puzzle. It also 

implements a rounding function to ensure that the 

values are all integer and checks that the random 

numbers generated are not repetitions of one of the 

fixed numbers in the same row, column and grid. 

Once problem is initialized, fitness function 

determines the fitness of each individual in the pool. 

From which a sub-pool of 30 individuals are 



 Automation, Control and Intelligent Systems 2013; 1(5): 113-120  117 

 

selected for reproduction via tournament, to 

determine which individuals will mate. 

In reproduction, both crossover (simple single point) 

and mutation is carried out – in which a number 

between 1 and 49 is randomly generated from a 

Gaussian distribution, corresponding to the point of 

crossover. All genes before this point come from 

one parent; while the other parent contributes the 

rest. A new individual, whose genetic makeup is a 

combination of both parents is thus, reproduced. 

The new individual also undergoes mutation from 

which three random genes are selected for mutation 

and are allocated new random values that still 

conforms to the belief space. The new individuals 

replace ones in the pool, with low fitness values 

(creating a new pool). This continues until an 

individual with a fitness value of zero (0) is found – 

to imply that the solution to the puzzle has been 

reached (Cantu-Paz and Goldberg, 2000). 

b. Second – uses third solution space (each individual 

is a complete puzzle: each 3X3 grid in each puzzle 

contain numbers 1 to 9 exactly once so that each 

3X3 grid is a gene). Pool of 100 such individual 

randomly initialized and their fitness computed. 

The best individual and fitness in the pool at each 

generation is tracked. The fitness function as 

described above is used where only repetitions in 

the rows and columns, contributes to an increase in 

the fitness value. Thus, no repetitions in the grid as 

this will also help ensure each contains genes that 

conform to its belief space which are: (1) Normative 

(each 3X3 grid contains entries 1 and 9), (2) 

Domain (each 3X3 grid contain integer entries), (3) 

Spatial (each 3X3 grid must have integers 1 to 9 just 

once), and (4) temporal (with mutation, it cannot 

alter fixed cell values). 

This process only implements mutation on each 

individual separately so that in a 3X3 grid 

(randomly selected), two unfixed cells in grid are 

randomly selected and switched. During 

reproduction, the mutation is applied on each 

individual population. Number of mutation applied 

on an individual depends on how far CGA has 

progressed (how fit is the fittest individual in the 

population). Thus, number of mutations 

implemented equals the fitness of the fittest 

individual divided by 2. If fittest individual equals 

31, number of mutation equals 16. 

Thus, at initialization – it is ensured that the first 

three (3) beliefs are met; while mutation ensures the 

fourth belief is met. In addition is an influence 

function in which best fitness helps influence how 

many mutations takes place. Thus, knowledge of 

solution (how close puzzle is from being solved) 

has direct impact on how the algorithm is 

implemented; and thus, the algorithm terminates 

when the best individual has a fitness of 0 – to imply 

that the solution has been found (Reynolds, 1994). 

3. GA-Gravitational Search (GAGSA) 

GAGSA is a powerful optimization method, which 

explores GA’s parallel ability to search a space via multiple 

individual and GSA’s speed and flexibility in finding a 

better optimal point even when a local minimum is found. 

Both are essential to find solution, to a Sudoku task (Perez 

and Marwala, 2011) 

3.1. Gravitational Search Algorithm 

GSA is based on laws of gravity and motion of isolated 

masses, with each mass representing a solution space and 

states that particle attracts each other and gravitational force 

between them, is directly proportional to their masses 

product and inversely proportional to their distance. Thus, 

an agent’s performance depends on its mass (agents with 

heavier masses attracts those of smaller masses). GSA uses 

exploration to navigate its space and guarantee the choice of 

values by these agents are not violated; and uses 

exploitation to find optima in shortest time – with agents of 

heavier masses, moving slowly in order to attract those of 

lesser mass (Ojugo, 2012). Agents are randomly initialized. 

At time t, a gravitational force of mass j acts on mass i based 

on Rij Euclidean distance between any two masses as thus: 

���
� � ���	


���	
 
���	

�����	� �
 ���

���	 �  ��
���	     (1) 

G (gravitation constant) decreases in time to control its 

accuracy with ε is small constant. Total force is: 

��
� � ∑ ����� 
  ���  �������,� !         (2) 

rand – randomizes agents’ initial states at intervals [0,1]. 

The acceleration of agent i, at time t in dimension d is 

directly proportional to force acting on that agent, and 

inversely proportional to its mass, given by: 

"�
���	 �  

#�
$��	


����	
                 (3) 

Next agent’s velocity is a function of its current velocity 

and its current acceleration computed as: 

%�
��� & 1	 �  ����� 
 %�

���	 & "�
���	      (4) 

��
��� & 1	 � ��

� 
 %�
��� & 1	         (5) 

Vi
d
(t) is agent velocity in dth dimension at time t, and 

rand is between [0,1]. Masses are calculated via fitness 

function, as agents of heavier masses keeps attracting those 

of lesser mass. Masses are updated: 

(���	 �
#�����	) *+,����	

������	) *+,����	
              (6) 

fiti(t) is fitness value of agent i at time t. Best(t) and 



118  A. A. Ojugo. et al.:  A Comparative Evolutionary Models for Solving Sudoku 

 

worst(t) indicates strongest and weakest agent according to 

fitness. For minimization task via reverse engineering, 

best(t) and worst(t) are defined as: 

-./���	 �  min��3!,4..67 �8����	       (7) 

9:�/���	 �  max��3!,4..67 �8����	     (8) 

At start, agents are located as solution points in the search 

space such that with each cycle, the positions and velocities 

of agents are updated via Eq. (4) and (5), and masses M is 

updated via Eq. (6). The iteration is stopped when an 

optimal is found. Thus, we seek agents of lower masses 

(reverse engineering). 

3.2. GAGSA as in Sudoku 

The initial use of GA will help achieve a low fitness – so 

that once a better individual is not found by GA after a 

number of generations, the best individual is chosen for a 

series of random walks via its structured learning till an 

optimal solution is found. Factors defined for GAGSA 

includes (with GA), how many number of runs is there, how 

is population representation, its size and reproduction 

function – must be addressed. 

As used in Sudoku, a population of 10 puzzles are 

initialized to represent the third solution scheme of section 

1.2 is met with each 3X3 grid containing integer 1 to 9 

exactly once. The reproduction function for the GA, only 

mutation is implemented to randomly select a grid and 

randomly swap two unfixed cells in the grid. Number of 

mutations corresponds to best fitness; and, best fitness and 

individual, is tracked until a fitness of 2 is found 

(experimentally, it is found that GA found a fitness of 2 very 

quickly). Perez and Marwala (2011) notes GA found 

individuals with low energy of 2, which enters a GSA cycle 

fairly late. Thus, if GA yields an individual with fitness 

close to optimal – gravitational force and force acting on 

each particle is computed with Eq. (1) and (2), to accept 

individuals with masses lower or equal to current (state’s) 

mass. This runs, until a state with the mass of 0 is reached 

(solution is found). 

4. GA-Simulated Annealing (GASA) 

A background of simulated annealing as thus: 

4.1. Simulated Annealing 

SA as inspired by annealing process used to strengthen 

glass and crystals – such that a glass is heated until it 

liquefies and then, allowed  to cool slowly so that the 

molecules settles into lower energy states. Thus, it rather 

tracks and alters the state of an individual, continuously 

evaluating its energy using an energy function. Its optimal 

point is found by running series of Markov chain under 

different thermodynamic states: neighbouring state is 

determined by randomly changing an individual’s current 

state by implementing the neighbourhood function. If state 

with lower energy is found, individual moves to it. Else, if 

neighbourhood state has a higher energy, then the individual 

will move to that state only, if an acceptance probability 

condition is met. If not met, the individual remains at the 

current state (Perez and Marwala, 2011). 

The acceptance probability is difference in energies 

between current and neighbouring states, and temperatures. 

Temperature is initially set high, so individual is more 

inclined towards higher energy state – allowing the 

individual to explore a greater portion of the space and 

preventing it from being trapped in local optimum. As 

algorithm progresses – temperature reduces with cooling so 

that individuals converge towards lowest energy states and 

thus, an optimum point (Perez and Marwala, 2011). The 

algorithm is as thus: 
Simulated Annealing Algorithm: 

1. Initialize an individual state and energy 

2. Initialize temperature 

3. Loop until temperature is at minimum 

4. Loop until maximum number of iterations reached 

5. Find neighbourhood state via neighbourhood 

function 

6. If neighbourhood state has lower energy than 

current 

7. Then change current state to neighbouring state 

8. Else if the acceptance probability is fulfilled 

9. Then move to the neighbouring state 

10. Else retain the current state 

11. Keep track of state with lowest energy 

12. End inner loop 

13. End outer loop 

4.2. Hybrid GA-SA 

GASA is a powerful model that combines GA’s parallel 

search to explore the space via multiple individuals and 

SA’s flexibility to find a better optimal point, even when a 

local minimum is found. Both are essential in finding 

solution to a Sudoku task (Perez and Marwala, 2011). 

Initial use of GA helps achieve a low fitness – so that 

once a better individual is not found after a number of runs, 

the best individual is chosen for a series of random walks 

until an optimal solution is found. These factors must be 

defined for GASA: (a) On GA: number of runs, population 

representation, size and reproduction function, and (b) On 

SA (with GA complete), SA is run on the fittest individual 

until a solution is found and what is the neighbourhood size 

and function. 

As applied to Sudoku, a population of 10 puzzles are 

initialized to represent the third solution scheme of section 

1.2 is met with each 3X3 grid containing integer 1 to 9 

exactly once. The reproduction function for the GA, only 

mutation is implemented to randomly select a grid and 

randomly swap two unfixed cells in the grid (for which, if 

GA produces an individual with a fitness close to the 

optimal – then temperature schedule is omitted and only a 



 Automation, Control and Intelligent Systems 2013; 1(5): 113-120  119 

 

single Markov chain is run). The number of mutations will 

correspond to the best fitness, with the best fitness and 

individual tracked until a fitness of 2 is found 

(experimentally, it is found that GA found a fitness of 2 very 

quickly). Perez and Marwala (2011) notes since GA found 

individuals with low energy, they enter into the SA cycle 

fairly late so that no temperature schedule is needed. Instead, 

a simple moderated Markov chain is used, which accepts 

the states with energies that are lower or equal to the current 

state’s energy. This runs until the state with the energy of 0 

is reached (solution is found). The SA and GA shares the 

same fitness function; while SA neighbourhood function is 

same as mutation function used in GA. 

5. Result Discussion 

After testing all three (3) models on figure 1 puzzle, the 

results are presented as follows: 

5.1. CGA Result 

CGA took 32 seconds to find the solution after 188 

iterations or generations (at best). CGA was run 25 times (to 

eradicate non-biasness) and it was able to find an optimal 

solution every time – and the time taken varied significantly 

between 32 seconds and 8 minutes, as CGA convergence 

time depends on how close the initial population is to the 

solution and on the random mutation applied to the 

individuals in the pool and is supported by Perez and 

Marwala (2011). 

5.2. GAGSA Result 

GSAGA solves puzzle (at best) 18seconds after 402 

iterations with a fitness progression achieved across GSA 

and GA as well. The GA cycle achieved a fitness of 2 in 90 

iterations and GSA implemented a gravitational pull and 

mass update of 332 iterations before finding a solution. 

GSAGA was run 25 times and solved the puzzle each time 

on a range between 12seconds and 11minutes – due to its 

stochastic nature so that convergence time depends on 

initialization and gravitational pull cum mass updates. 

5.3. GASA Result 

GASA solves puzzle at 2.112seconds after 391 iterations 

with fitness progression across GA and SA. GA achieved a 

fitness of 2 in 90 iterations and SA used Markov chain of 

301 iterations to find a solution. With 25 runs, GASA 

solved puzzle every time on a range between 4seconds and 

3minutes – due to its stochastic nature as convergence time 

depends on initialization as well as the random swaps and is 

supported by Perez and Marwala (2011). 

6. Conclusion / Recommendation 

The Sudoku is solved efficiently via stochastic method: 

three of which are used in this work. Solution space 

representation and fitness functions (as common to all 

algorithms) were discussed, and support/confidence model 

adopts ϖ1=0.2 and ϖ2=0.8 to give better convergence. 

Other values, led to a slower convergence or 

non-convergence. 

 

References 

[1] Abarghouei, A., Ghanizadeh, A and Shamsuddin, S., (2009): 
Advances in soft computing methods in edge detection, J. 
Advance Soft Comp. Applications, ISSN: 2074-8523, 1(2). 

[2] Cantu-Paz, E and Goldberg, D.E., (2000): Efficient parallel 
genetic algorithms: theory and practices, Computer 
methods in applied mechanics and engineering, 186(2-4), 
pp 221-238. 

[3] Coello, C. A., Pulido, G. T and Lechuga, M.S., (2002): 
Handling multiple objectives with particle swarm 
optimization, Evo. Comp., Vol. 8, pp 256–279. 

[4] Hassan, R and Crosswley, W., (2004): Variable 
population-based sampling for probabilistic design 
optimization and with a genetic algorithm, 
AIAA-2004-0452), 42nd Aerospace Science meeting, Reno, 
NV. 

[5] Hassan, R., Cohanin, B., De Wec and Venter, G., (2006): 
Comparism of PSO and GA, American Institute of 
Aeronautic and Astronautics (AIAA-2006), 44th Aerospace 
Science meeting, Washington–DC. 

[6] Heppner, H and Grenander, U (1990): A stochastic 
non-linear model for coordinated bird flocks, In Krasner, S 
(Ed.), The ubiquity of chaos, (pp. 233–238). Washington: 
AAAS. 

[7] History of Sudoku, Conceptis Editoria, [online]: 
www.conceptispuzzle.com/articles/sudoku, last accessed 
17-01-2013. 

[8] Kilic, A. and Kaya, M.A (2001): A new local search 
algorithm based on genetic algorithms for the n-queens 
problem, Proc. Genetic and Evo. Comp. conf. 
(GECCO-2001), 158 – 161 

[9] Lewis, R., (2007): Metaheuristics can solve Sudoku, J. 
Heuristics Archive, 13(8), pp 387 – 401 

[10] Mantere, T and Koljonen, J., (2007): Solving and rating 
Sudoku puzzles via genetic algorithm, Proc. Congress on 
Evol. Comp.,1382-1389. 

[11] Moraglio, A and Togelius, J., (2007): Geometric particles 
swarm optimization for Sudoku puzzle, 
http://julian.togelius.com/Moraglio2007Geomet-ric.pdf, 
last accessed 16-January-2013. 

[12] Ojugo, A., Eboka, A., Yoro, E., Okonta, E and Aghware, 
F.O., (2012): Genetic algorithm rule-based intrusion 
detection system, J. Emerging Trends in Comp. Info. Syst., 
ISSN: 2079-8407, 3(8), pp 1182-1194 

[13] Ojugo, A.A., (2012): Gravitational search neural network 
algorithm for rainfall runoff modeling, Unpublished PhD 
thesis, Abakiliki: Ebonyi State University, Nigeria. 



120  A. A. Ojugo. et al.:  A Comparative Evolutionary Models for Solving Sudoku 

 

[14] Perez, M and Marwala, T., (2011): Stochastic optimization 
approaches for solving Sudoku, Proc. IEEE Congress on 
Evo. Comp., pp 256–279, Vancouver: Piscataway. 

[15] Poli, R., Wright A., McPhee, N and Langdon, W., (2006b): 
Emergent behaviour, population based search and low-pass 
filtering, Proc. on Comp. Intelligence and Evo.Comp., 
pp395-402, Vancouver: Piscataway 

[16] Reynolds, R., (1994): An introduction to cultural 
algorithms, Proc. of 3rd Annual Conf. on Evo. 
Programming, River Edge: New Jersey, World Scientific, 
pp 131-139. 

[17] Santos-Garcia, G and Palomino, M., (2007): Solving the 
Sudoku puzzle with rewriting rules, Notes on Theo. 
Computer Sci., 17(4), pp79-93 

 


